A. Mallevre, L'histoire de l'énergie nucléaire en France de 1895 à nos jours, ARCEA Diffusion, 2006.

M. Höök, Depletion of fossil fuels and anthropogenic climate change???A review, Energy Policy, vol.52, pp.797-809, 2013.
DOI : 10.1016/j.enpol.2012.10.046

. Le-protocole-de-kyoto, United Nations Framework Convention on Climate Change, 1997.

B. Velde and A. Meunier, The origin of clay minerals in soils and weathered rocks, 2008.
DOI : 10.1007/978-3-540-75634-7

H. Murray, Applied clay mineralogy, 2007.

R. E. Grim, Applied Clay Mineralogy, Geologiska Foereningan i Stockholm. Foerhandlingar, vol.84, issue.4, 1962.
DOI : 10.1080/11035896209447314

G. W. Brindley, Crystal structures of clay minerals and their X-ray identification, 1980.
DOI : 10.1180/mono-5

F. Salles, Hydratation des argiles gonflantes, Laboratoire de modélisation des transferts dans l'environnement, 2006.

C. Klein, Manual of mineralogy, 1985.

D. M. Macewan and A. A. Ruiz-amil, Interstratified clay minerals, Soil components, 1975.

C. A. Jouenne, Traité de céramiques et matériaux minéraux, 2001.

R. C. Mackenzie, The differential thermal investigation of clays, 1957.

W. M. Carty and U. Senapati, Porcelain?Raw Materials, Processing, Phase Evolution, and Mechanical Behavior, Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behaviour, pp.3-20, 1998.
DOI : 10.1016/0955-2219(96)00033-7

M. Bellotto, A. Gualtieri, and G. Artioli, Kinetic study of the kaolinite-mullite reaction sequence. Part 1: kaolinite dehydroxylation, Physics and chemistry of minerals, pp.207-214, 1995.

R. E. Grim, DTA curves of clay mineral mixtures, American Mineralogy, pp.493-501, 1947.

B. Sonupralak, M. Sarikaya, and I. A. Aksay, Spinel phase formation during the 980°C exothermic reaction in the kaolinite to mullite reaction series, Journal of the American Ceramic Society, vol.70, p.837842, 1987.

A. Gualtieri, M. Bellotto, G. Artioli, and S. Clark, Kinetic study of the kaolinitemullite reaction sequence. Part 2: mullite formation, Physics and chemistry of minerals, pp.215-222, 1995.

G. W. Brindley and M. Nakahira, The Kaolinite-Mullite Reaction Series: II, Metakaolin, Journal of the American Ceramic Society, vol.42, issue.7, pp.314-318, 1959.
DOI : 10.1107/S0365110X55000510

. Perry, Microstructural evolution in alumina porcelain, Nex-York state college of ceramics, 1997.

L. Mattyasovsky, Mechanical Strength of Porcelain, Journal of the American Ceramic Society, vol.32, issue.7, pp.2367-2373, 1991.
DOI : 10.1063/1.1707702

R. E. Grim and W. F. Bradley, Rehydration and dehydration of the clay minerals, Journal of the American Ceramic Society, vol.33, p.50, 1948.

A. F. Gualtieri and S. Ferrari, Kinetics of illite dehydroxylation, Physics and Chemistry of Minerals, vol.61, issue.2, pp.490-501, 2006.
DOI : 10.1007/s00269-006-0092-z

V. A. Drits, G. Besson, and F. Muller, An Improved Model for Structural Transformations of Heat-Treated Aluminous Dioctahedral 2:1 Layer Silicates, Clays and Clay Minerals, vol.43, issue.6, pp.718-731, 1995.
DOI : 10.1346/CCMN.1995.0430608

F. Muller, V. A. Drits, A. Plancon, and J. L. Robert, Structural Transformation of 2:1 Dioctahedral Layer Silicates during Dehydroxylation-Rehydroxylation Reactions, Clays and Clay Minerals, vol.48, issue.5, pp.572-585, 2000.
DOI : 10.1346/CCMN.2000.0480510

URL : https://hal.archives-ouvertes.fr/hal-00115342

E. Murad, Clays and clay minerals: the firing process, Hyperfine Interactions, vol.117, issue.1/4, pp.337-356, 1998.
DOI : 10.1023/A:1012683008035

R. A. Rowland, Differential Thermal Analysis of Clays and Carbonates*, Clays and Clay Minerals, vol.1, issue.1, p.151, 1952.
DOI : 10.1346/CCMN.1952.0010118

D. Wattanasiriwech and S. Wattanasiriwech, Fluxing action of illite and microcline in a triaxial porcelain body, Journal of the European Ceramic Society, vol.31, issue.8, pp.1371-1376, 2011.
DOI : 10.1016/j.jeurceramsoc.2011.01.025

C. M. Earnest, Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens, Clay Minerals, pp.270-286, 1991.
DOI : 10.1007/BFb0010271

C. M. Earnest, Thermal analysis of selected illite and smectite clay minerals

I. Part, Smectite clay specimens, Clay Minerals, pp.288-312, 1991.

P. Bala, B. Samantaray, and S. Srivastava, Dehydration transformation in Ca-montmorillonite, Bulletin of Materials Science, vol.73, issue.1, pp.61-67, 2000.
DOI : 10.1007/BF02708614

I. Brown, K. Mackenzie, and R. H. Meinhold, The thermal reactions of montmorillonite studied by high-resolution solid-state29Si and27Al NMR, Journal of Materials Science, vol.43, issue.9, pp.3265-3275, 1987.
DOI : 10.1007/BF01161191

R. E. Grim and W. F. Bradley, INVESTIGATION OF THE EFFECT OF HEAT ON THE CLAY MINERALS ILLITE AND MONTMORILLONITE*, Journal of the American Ceramic Society, vol.98, issue.6, pp.242-248, 1940.
DOI : 10.1111/j.1151-2916.1940.tb14263.x

V. Balek, M. Bene?, Z. Málek, G. Matuschek, A. Kettrup et al., Emanation thermal analysis study of Na-montmorillonite and montmorillonite saturated with various cations, Journal of Thermal Analysis and Calorimetry, vol.4, issue.3, pp.617-623, 2006.
DOI : 10.1180/claymin.1961.004.25.01

J. Lucas and N. Trauth, Study of high temperature behavior of montmorillonite, Service de la Cartographie Geologique de l'Alsace Lorraine, 1965.

W. Zhan and S. Guggenheim, The dehydroxylation of chlorite and the formation of topotactic product phases, Clays and clay minerals, pp.622-629, 1995.

R. T. Martin, Reference chlorite characterization for chlorite identification in soil clays, Review Literature and Arts Of The Americas, 1954.

T. B. Bai, S. Guggenheim, and S. J. Wang, Metastable phase relations in the chlorite-H2O system, American Mineralogist, vol.78, pp.1208-1216, 1993.

R. Kreimeyer, Some notes on the firing colour of clay bricks, Applied Clay Science, vol.2, issue.2, pp.175-183, 1987.
DOI : 10.1016/0169-1317(87)90007-X

H. Fraser, Ceramic Faults and their remedies, A&C Black, 1986.

M. K. Reser and E. M. Levin, Phase diagrams for ceramists, 1964.

R. C. Mackenzie, Differential thermal analysis, Academic Pr, 1970.

S. Vojsic, Tile and Brick International, 2002.

T. Peters and R. Iberg, Mineralogical changes during firing of calcium-rich clay bricks, Ceramics Bulletin, vol.57, pp.503-509, 1978.

G. Cultrone, C. Rodriguez-navarro, E. Sebastian, O. Cazalla, and M. De-la-torre, Carbonate and silicate phase reactions during ceramic firing, European Journal of Mineralogy, vol.13, issue.3, pp.621-634, 2001.
DOI : 10.1127/0935-1221/2001/0013-0621

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.378.5880

M. Kornmann, Matériaux de terre cuite ? Matières de base et fabrication, Techniques de l'ingénieur, 2009.

P. V. Lade, C. D. Liggio, and J. A. Yamamuro, Effects of non-plastic fines on minimum and maximum void ratio of sand, Geotechnical testing journal, vol.21, pp.336-347, 1998.

P. Reiffsteck, N. Pham, P. Arbaut, and J. , Influence de la répartition granulométrique sur le comportement mécanique d'un sol, Bulletin des laboratoires des ponts et chaussées, pp.268-269, 2007.

P. Aungatichart and S. Wada, Correlation between Bigot and Ratzenberger drying sensitivity indices of red clay from Ratchaburi province (Thailand), Applied Clay Science, vol.43, issue.2, pp.182-185, 2009.
DOI : 10.1016/j.clay.2008.08.001

M. Kornmann, Matériaux de construction en terre cuite ? Fabrication et propriétés, Editions Septima, 2005.

K. Junge, Energy demand for the production of bricks and tiles, Ziegelindustrie, pp.16-24, 2002.

W. E. Lee and W. M. Rainforth, Ceramic microstructures ? property control by processing, 1994.

C. Schmidt-reinholz and H. Schmidt, Suitability tests on raw materials, heavy clay bodies and structural ceramic products, Interbrick, pp.38-42, 1985.

J. Sigg, Les produits de terre cuite, Editions Septima, 1991.

F. Thevenot, Céramiques composites à particules, cas du frittage réaction, Editions Septima, 1992.

A. D. Randolph and M. A. Larson, Theory of particulate processes, Academic press, 1988.

D. Bernache-assollant, Chimie physique du frittage, Editions Hermes, 1993.

M. F. Yan, Microstructural control in the processing of electronic ceramics, Materials Science and Engineering, vol.48, issue.1, pp.53-72, 1981.
DOI : 10.1016/0025-5416(81)90066-5

G. C. Kuczynski, The mechanism of densification during sintering of metallic particles, Acta Metallurgica, vol.4, issue.1, pp.58-61, 1956.
DOI : 10.1016/0001-6160(56)90110-9

H. François, De la rupture des matériaux à comportement fragile, 2010.

H. S. Kim, T. Guifang, and J. K. Kim, Clayware mechanical properties porosity dependent, Ceramic Bulletin, pp.20-25, 2002.

H. W. Russell, PRINCIPLES OF HEAT FLOW IN POROUS INSULATORS, Journal of the American Ceramic Society, vol.18, issue.1-12, pp.1-5, 1935.
DOI : 10.1111/j.1151-2916.1935.tb19340.x

R. Krishna, A unified approcach to the modeling of intraparticle diffusion in adsorption processes, Gas Separation & Purification, pp.91-104, 1993.

D. H. Everett, Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry, Pure and Applied Chemistry, vol.31, issue.4, pp.577-638, 2009.
DOI : 10.1351/pac197231040577

S. Zschiegner, S. Russ, A. Bunde, and J. Karger, Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer-) diffusion, Europhysics Letters (EPL), vol.78, issue.2, pp.1-5, 2007.
DOI : 10.1209/0295-5075/78/20001

J. Karger and D. M. Ruthven, Diffusion in zeolites and other microporous solids, 1992.

J. W. Gibbs, On the equilibrium of heterogeneous substances, Transactions of the Connecticut Academy of Art and Science, pp.108-248, 1878.

K. Horat and G. Simmons, Thermal conductivity of rock-forming minerals, Earth and Planetary Science Letters, vol.6, pp.359-368, 1969.

M. Matiasovsky and O. Koronthalyova, Analysis and modeling of effective thermal conductivity of dry porous building materials, Proceedings of 8 th symposium on building physics in the Nordic countries, pp.285-291, 2008.

H. Bal, Y. Jannot, S. Gaye, and F. Demeurie, Measurement and modelisation of the thermal conductivity of a wet composite porous medium: Laterite based bricks with millet waste additive, Construction and Building Materials, vol.41, pp.586-593, 2013.
DOI : 10.1016/j.conbuildmat.2012.12.032

URL : https://hal.archives-ouvertes.fr/hal-01430700

J. H. Qiao, R. Bolot, H. L. Liao, and C. Coddet, Knudsen Effect on the Estimation of the Effective Thermal Conductivity of Thermal Barrier Coatings, Journal of Thermal Spray Technology, vol.202, issue.2-3, pp.175-182, 2013.
DOI : 10.1007/s11666-012-9878-3

M. Filali, Conductivité thermique apparente des milieux granulaires soumis à des contraintes mécaniques : modélisation et mesures, 2006.

. Norme-française, Méthodes pour la détermination des propriétés thermiques, Maçonnerie et éléments de maçonnerie

B. Naitali, Elaboration , caractérisation et modélisation de matériaux poreux

D. M. Ruthven, Principles of adsorption and adsorption processes, 1984.

S. R. Mallidi, Application of mercury intrusion porosimetry on clay bricks to assess freeze-thaw durability ???a bibliography with abstracts, Construction and Building Materials, vol.10, issue.6, pp.461-465, 1996.
DOI : 10.1016/0950-0618(96)00005-0

M. Dondi, M. Marsigli, and B. Fabbri, Recycling of industrial and urban wastes in brick production ? A review, Tile and Brick International, pp.218-225, 1997.

S. N. Monteiro, J. Alexandre, J. I. Margem, R. Sanchez, and C. M. Vieira, Incorporation of sludge from water treatment plant into red ceramic, Construction and building materials, pp.1281-1287, 2008.

C. T. Isenhour, Sawdust addition to a shale body, American Ceramic Society Bulletin, vol.58, pp.1197-1198, 1979.

A. Zani, Utilizio diretto e/o indiretto di combustibili non convenzionali nel processo di cottura dei laterizi, Seminario generale delle unita operative, 1986.

M. Samara, Valorisation des sédiments fluviaux pollués après inertage dans la brique cuite, 2007.

R. Mesaros, Use of sludge from the municipal sewage system for brickmaking. New life for an obsolescent brickworks, Ziegelindustrie International, pp.251-254, 1989.

M. J. Murray and R. M. Liversidge, The use of cubic shaped sawdust in heavy clay products, Ceramurgia International, pp.119-124, 1978.

J. Warnatz, U. Maas, and R. W. Dibble, Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 2010.

A. Kohler, Use of industrial wastes with combustible components in the brick and tile industry, Ziegelindustrie International, pp.441-445, 1988.

A. Zani, A. Tenaglia, and A. Panigada, Re-use of papermaking sludge in brick production, Ziegelindustrie International, vol.12, pp.682-690, 1990.

N. Phonphuak, Effects of additive on the physical and thermal conductivity of fired clay bricks, Journal of Chemical Science and Technology, vol.2, pp.95-99, 2013.

M. Velasco, P. , M. Ortiz, M. P. Giro, M. A. et al., Fired clay bricks manufactured by adding wastes as sustainable construction material ??? A review, Construction and Building Materials, vol.63, pp.97-107, 2014.
DOI : 10.1016/j.conbuildmat.2014.03.045

L. Pérez-villarejo, D. Eliche-quesada, J. Iglesias-godino, and C. Martinez-garcia, Corpas-Iglesias A., Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks, Journal of Environment Management, pp.1-6, 2010.

C. Fernandez-pereira, J. A. De-la-casa, A. Gomez-barea, F. Arroyo, C. Leiva et al., Application of biomass gasification fly ash for brick manufacturing, Fuel, vol.90, issue.1, pp.220-232, 2011.
DOI : 10.1016/j.fuel.2010.07.057

A. A. Kadir and A. Mohajerani, Recycling cigarette butts in lightweight fired clay bricks, Proceedings of the Institution of Civil Engineers - Construction Materials, vol.164, issue.5, pp.219-229, 2011.
DOI : 10.1680/coma.900013

D. A. Okongwu, Effects of additives on the burnt properties of clay brick, American Ceramic Society Bulletin, vol.67, pp.1409-1411, 1988.

A. M. Segadaes, M. A. Carvalho, and W. Acchar, Using marble and granite rejects to enhance the processing of clay products, Applied Clay Science, vol.30, issue.1, pp.42-52, 2005.
DOI : 10.1016/j.clay.2005.03.004

M. Kara and O. Emrullahoglu, The utilization of red mud as a construction material, Tile and Brick International, pp.185-187, 1995.

C. Sadik, I. Amrani, and A. Albizane, Recent advances in silica-alumina refractory: A review, Journal of Asian Ceramic Societies, vol.2, issue.2, pp.83-96, 2014.
DOI : 10.1016/j.jascer.2014.03.001

I. Demir and M. Orhan, Reuse of waste bricks in the production line, Building and Environment, pp.1451-1455, 2003.

X. Lingling, G. Wei, W. Tao, and Y. Nanru, Study on fired bricks with replacing clay by fly ash in high volume ratio, Construction and building materials, pp.243-247, 2005.

C. Sikalidis and V. Zaspalis, Utilization of Mn???Fe solid wastes from electrolytic MnO2 production in the manufacture of ceramic building products, Construction and Building Materials, vol.21, issue.5, pp.1061-1068, 2007.
DOI : 10.1016/j.conbuildmat.2006.02.009

C. M. Vieira, E. T. Souza, and S. N. Monteiro, Influence of grog addition on a clay body used in red ceramic products, Industrial ceramics, pp.85-89, 2004.

C. M. Vieira and S. N. Monteiro, Incorporation of solid wastes in red ceramics: an updated review, Mat??ria (Rio de Janeiro), vol.14, issue.3, pp.881-905, 2009.
DOI : 10.1590/S1517-70762009000300002

N. M. Low, P. Fazio, and P. Guite, Development of light-weight insulating clay products from the clay-sawdust-glass system, Ceramics International, vol.10, issue.2, pp.59-65, 1984.
DOI : 10.1016/0272-8842(84)90027-0

S. Baillez and A. Nzihou, The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent, Chemical Engineering Journal, vol.98, issue.1-2, pp.141-152, 2004.
DOI : 10.1016/j.cej.2003.07.001

N. P. Norme-française, Essais pour déterminer les propriétés physiques des roches, Partie, vol.3, pp.94-410, 2001.

A. Norme, Propriétés en flexion des plastiques renforcés ou non renforcés et des matériaux d'isolation

A. Sugarawa and Y. Yoshizawa, An investigation on the thermal conductivity of porous materials and its application to porous rock, 1961.

.. De-construction, Absorption, p.43

.. Analyse-thermique-différentielle-de-la-farine-de-blé, FBL) et de la farine de noyaux d'olives (FNO), p.67

.. Analyse-thermogravimétrique-de-la-farine-de-blé, FBL) et de la farine de noyaux d'olives (FNO), p.67

F. De and F. De, Analyse thermique différentielle de produits soumis à une Incorporation de 4% en masse de PB1, p.110

F. De and F. De, Analyse thermogravimétrique de produits soumis à une incorporation de 4% en masse de PB1, p.110

F. Et-de, Anisotropie en fonction du taux de porosité de produits soumis à une incorporation de 4% en masse de PB1, p.124

F. Courbes-de-contrainte-et-de, déformation (flexion trois points) de produits conventionnels et soumis à une incorporation de 4% en masse de PB1, p.125

F. 8%-en-masse-de, Analyse thermique différentielle de produits soumis à à une incorporation de 4, p.128

F. 8%-en-masse-de, cuisson de produits soumis à une incorporation de 4, p.130

P. 8%-en-masse-de, cuisson de produits soumis à une incorporation de 4, p.130

F. 8%-en-masse-de, Distribution poreuse à la température de 600°C de produits soumis à une incorporation de 4, p.131

F. De and M. De, Anisotropie de produits soumis à une incorporation de 4, 6 ou 8% en masse de PB1, p.154