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Abstract—There have been numerous attempts to build 

query generators that compute eligibility criteria (EC) for a 

clinical trial automatically on repositories of patient data. 

However, one of the challenging key features of EC is the ability 

to express and compute complex temporal aspects. Existing EC 

generators has limited temporal capability and those do rely on 

underlying database technology to perform temporal reasoning. 

We propose a model that incorporates temporal features of 

existing generators. However, it separates the computation of 

the criteria, and in particular the temporal semantics, from the 

extraction of clinical data from the database to increase the 

efficiency of execution. We explain the implementation of this 

model and in particular its temporal algorithm, which runs in 

O(n log(n)) time where n is the number of clinical facts stored 

making it more efficient than existing reported generators, 

where performance, at best, has been reported to be O(n2). We 

perform an empirical validation to demonstrate the results. 

Keywords— Eligibility Criteria, Query Generator, Clinical 

Trial, Temporal Reasoning  

I. INTRODUCTION 

Clinical sites such as GP practices and hospitals routinely 
store clinical data about patients, increasingly in a structured 
(as opposed to free text) format in electronic health record 
(EHR) systems. Clinical trials need to recruit patients 
according to a set of eligibility criteria (EC), which will often 
relate to the clinical facts stored in EHR systems. Naturally, 
there is growing interest in automating the identification of 
patients for clinical trials using EHR systems. To enable 
computerised identification of suitable patients first requires a 
formal and machine-readable expression of a set of EC for the 
trial in question. Where eligibility criteria express temporal 
conditions, as Ross et al. [1] have identified, in 40% of cases 
a means of formalising time and performing temporal 
reasoning is also required. Most existing approaches, in 
computing temporal queries, depend on using the query 
language of the underlying database or use combined query to 
reason over complex temporal ECs.  We argue here that by 
formalising the expression of EC independently of the 
representation of the clinical data allows the temporal 
reasoning to be performed separately from the retrieval of the 
clinical data. This offers substantial improvements in the time 
taken to compute EC on large repositories of data. We 
described such a system and perform an empirical study to 
show that it does offer significant performance advantage over 
previously implemented systems. 

There have been various attempts to formalise ECs with 
the ultimate aim of computing them automatically against data 
from EHR systems. This problem has been approached from 
two directions: formalising natural language ECs in general 
and computing a subset of computable ECs from actual 

clinical data. In the first, approaches such as EligWriter [2], 
ERGO [3], Gello [4] and Arden Syntax [5] seek to represent 
EC in a formal or semi-formal notation. These enable varying 
degrees of formal reasoning that is not possible with natural 
language representations. The EliXR [6] tool seeks to analyse 
natural language text to create a formal representation. 
However, although such notations are useful for 
communicating EC in an unambiguous way, they are currently 
not sufficient to compute patients’ eligibility from repositories 
of clinical facts. This is partly due to the fact that they are not 
restricted to information that is likely to be recorded by EHR 
systems in a structured format. Furthermore, just because a 
concept can be formalised and rendered into a machine-
readable notation does not necessarily mean that there exists 
an algorithm for computing it against structured data.  

This paper defines an approach for expressing and 
computing EC from databases of clinical data with both 
relative and absolute temporal semantics comprising three 
components: 

1. A data-source independent model of EC based on
the capabilities of existing query generators. 

2. A mechanism for extracting the relevant data from
the data source and rendering it into a form that can 
be subsequently processed against complex 
temporal criteria. 

3. An algorithm that takes the modelled EC and
extracted data and calculates the set of eligible 
patients in O(n log(n)) time where n is the number 
of clinical facts. 

Our motivation for constructing this model was to 
develop a platform that enables a non-technical user to create 
a query at a remote workbench and then distribute this query 
to a number of remote sites to be computed over diverse 
patient data repositories and receive counts of eligible 
patients. For reasons of governance, any processing requiring 
access to sensitive patient data should be performed locally 
within the clinical site firewall so that only counts are 
returned to the researcher working outside the institution. It 
will also require secure communication technologies to link 
the user interface operated remotely by the researcher to 
components of the system lying within the clinical site’s 
firewall. Although these communication technologies are 
beyond the scope of this paper, we do address the issue of 
expressing the query in a serialised form that these 
technologies would require.  A key requirement is to ensure 
that computation of ECs is done efficiently. Thus, the 
approach was evaluated against a set of databases of varying 
sizes to determine its time efficiency. 

The rest of the paper is organised as follows, section II 
reviews related work, section III describes the proposed 



approach, section IV presents evaluation results, sections V 
and VI discuss and conclude the paper.  

II. RELATED WORK

Researchers have also pragmatically constructed working 
systems, which we shall term query generators that compute 
only a subset of all possible EC, specifically those that may be 
computed from the clinical data available. Such systems often 
provide a graphical user interface (GUI) e.g., FARSITE [7], 
VISAGE [8], PatternFinder [9], i2b2 [10], STRIDE [11], 
ePCRN [12], TRANFoRm [13, 25, 26] and Trial DB [14]. 
However, the DXtractor [15] system is purely textual. Two 
further technologies are also relevant here: Chronus II [16] 
and CLEF [17, 23, 24, 27]. Chronus II is an extension to SQL 
to allow temporal queries but is proposed for use in encoding 
EC. CLEF is a programming interface that allows the 
construction of queries in Java code. Table 1 shows a 
summary of the key features of each system. The ECs 
supported by these generators and related technologies are 
constrained in two ways:  

• They must relate to information that is actually
captured in the EHR systems in a structured format.

• Any criterion must be capable of being computed
against that information without human intervention.

We note that these technologies may also be used to 
answer research questions other than how many patients are 
eligible for a trial. 

TABLE I. KEY FEATURES OF QUERY GENERATORS REVIEWED  

Name Technology Type 

Temporal 

semantics 

STRIDE 
Graphical query 
generator 

absolute time, age at 
event 

FARSITE 
Graphical query 
generator 

time interval 
between actual date 
and event date 

(Extended) 
TrialDB 

Graphical query 
generator with text 
output 

Subset of Allen's 
operators 

PatternFinder 
Graphical query 
generator Allen's operators 

i2b2 
Graphical query 
generator same visit as  

Visage 
Graphical query 
generator 

same visit as, 
absolute time 

e-PCRN 
Graphical query 
generator last, absolute time 

DXtractor Textual query generator 
first, last, before, 
after, equals 

CLEF Java Libraries 

before or after 3 
anchors: birth, prior 
event or now, first, 
last  

Chronus II Query Language Allen’s operators 

We argue that the ultimate aim of such work is to 
construct a system for automatically computing EC against 
patient data in general. However, there is an important 
limitation to this aspiration. Natural language criteria as 
expressed in clinical trials are often subjective, require some 
degree of clinical judgment or require information not 

generally held in patient records, at least as structured data. 
At best, for automatic EC computation to work with complete 
accuracy, it can only apply objective criteria to structured 
patient data. Therefore, there is a theoretical limitation to 
which EC can be computed. Nevertheless, such a system is 
still useful in that it can automatically create a shortlist of 
patients to whom the incomputable criteria can be applied 
manually.  

The most general framework for temporal reasoning is 
provided by Allen’s interval algebra [18]. This assumes that 
any clinical fact to be represented as an event associated with 
a (contiguous) time interval. Allen’s algebra provides 13 
different relations, which include before, meets, overlaps, 
starts, finishing, equals and the inverse of these relations. 
Arguably this provides far more expressive power than would 
be necessary for the EC routinely drafted by researchers or 
for the clinical data that would typically be found in EHR 
systems. The implementation of temporal semantics in the 
query generators cited above varies considerably, as shown 
in TABLE I. We distinguish here between absolute and 
relative temporal semantics. Absolute temporal semantics 
relate the date of a patient event, such as diagnoses, 
procedures, medications and lab test results to a specified 
time point, which may be an explicit date or implicitly the 
time at which the query submitted. Relative temporal 
semantics relate two or more events that apply to a specific 
patient such as a particular procedure performed at most one 
year after the first diagnosis of a (related) condition.  

FARSITE, i2b2, VISAGE and ePCRN express only 
limited temporal semantics. In FARSITE only the time 
interval of a clinical event compared to the date on which the 
query is executed can be specified. ePCRN also supports only 
absolute time defined against the current time. Since the 
XML-based repository is a snapshot of a particular patient’s 
details, it will contain only the most recent measurements of 
vital signs and lab tests. In i2b2 and VISAGE the only 
temporal constraint is that two clinical facts apply to the same 
encounter/visit. This is a limited example of relative temporal 
semantics since events in different encounters cannot be 
related.  

In CLEF, constraints for clinical characteristics are 
defined first (any, first, most recent, all). Temporal relations 
can then be defined via temporal anchors. Two types of 
anchors are supported, an age-anchor and an event anchor. 
The age-anchor specifies a clinical event as basis for the age 
calculation, e.g., age at the time of diagnosis. Clinical 
characteristics may be defined relative to an anchor event 
described by the time interval, e.g., start of treatment with 
drug Y within a month from diagnosis. It should be noted that 
the implementation of the temporal semantics results in issues 
of time efficiency. As the authors concede “performance was 
a problem” [17].  

In PatternFinder temporal queries are constructed via 
sentinel events (index event). The sentinel event is linked to 
an event in the past (baseline) and/or in the future (follow-on) 
using the relations: after, before, within x prior, within Y 
following and equal. A user interface to define sentinel, 
baseline and follow-on events and temporal relations has 
been implemented. Not clear whether this approach is 
restricted to link a maximum of three events via temporal 
relations or linked as a sub query in another query (e.g. 
Boolean link to other characteristics). However, Lam [9] does 
evaluate its time efficiency and point out that when using a 



temporal condition of one event after (or before) another, the 
query can take hours to process. TRANSFoRm supports a 
similar approach, although no results of its query generator 
have been reported.  

Trial DB (or strictly speaking an extension to Trial DB) 
specifies temporal relations via temporal operators linking 
two clinical characteristics. The temporal operators cover a 
subset of Allen’s relations, including before, after and during. 
In addition, events can be characterized by start, end and 
duration. To support users, a graphical tool allows users to 
select the appropriate Allen operator when expressing 
temporal conditions. The restriction to temporal relations 
between two characteristics is a limitation, which may inhibit 
the intuitive creation of more complicated queries. 

In STRIDE, filtering with temporal constraints can be 
performed for pairs of events. In a first step, operations are 
performed on the time-stamps of an event to select from three 
options: any, earliest, most recent (similar to CLEF). In the 
next step two events are set in relative order with three 
options: follows, precedes or precedes or follows. Then the 
range for comparison sets the time between two events and 
has three options: less than, greater than and between two 
values. For each criterion an age-anchor can be set. Again, 
the restriction to temporal relations between two 
characteristics is a limitation similar to Trial DB. 

The DXtractor approach uses rules to define sets of 
patients satisfying each rule and then imposes further 
temporal constraints on each set of patients. Boolean and 
temporal operations can be performed by defining new sets 
operating on the existing sets. Similar to other approaches the 
earliest or latest event can be specified in case an event has 
several instances. Nigrin and Kohane [15] argue 
convincingly that by modelling all clinical facts as zero-
duration events gives sufficient richness to express the 
temporal queries that would be required in the clinical 
domain. Where events are given a zero-duration time stamp, 
the 13 Allen operators collapse to just five: before and after 
(with optionally some specified interval of time), equals 
(simultaneous with), first and last. This approach is both 
elegant and generic since it is not restricted to relations 
between pairs of events (STRIDE) or triples of events 
(PatternFinder). However, no recent implementation of this 
approach could be identified. 

Chronus II is a superset of SQL that allows temporal 
constraints using a ‘WHEN’ clause. Thus, it is not restricted 
to clinical data but was designed with this purpose in mind. 
Chronus II adopts a valid-time temporal model and supports 
states (interval time-stamps), events (instant time-stamps) 
and non-temporal tables. It implements all of Allen’s 13 
relations. Chronus II adapts TSQL2 [19] temporal query 
language to extend the standard relational model and the SQL 
query language to support temporal queries that include 
temporal projection, joins, granularity conversion and 
coalescing. It was not possible to derive the status of 
implementation and practical use of Chronus II from the 
literature or indeed its time efficiency.  

Lam [9] identifies the fundamental problem with 
implementation of relative temporal semantics. If applied to 
a database of clinical facts it requires joins, and often self 
joins, across very large tables. Yet the problem of computing 
time is not inherently O(n2) but the problem of time efficiency 
arises when attempting to compute the criteria using a 

general-purpose query language such as SQL. To this end we 
propose the creation of a data-source independent Eligibility 
Criteria Model (ECM) that separates the computation of the 
ECs with temporal semantics from the extraction of data from 
the data source.  

III. PROPOSED ELIGIBILITY MODEL

The Eligibility Criteria Model (ECM) was designed to be 
used on two different warehouses of clinical data where, 
except for demographic data (age, gender and death), each row 
represents an event with a simple time stamp. The two data 
warehouses were constructed with distinct schemata: the i2b2 
schema [10] and a purpose-built native schema based on the 
HL7 Reference Information Model (RIM) [20]. However, we 
note the wide applicability of the single-timestamp approach 
since Deshpande et al. [14] and Nigrin and Kohane [15] 
observe that most clinical data is stored in this way. 
Furthermore, where an event has time stored as an interval (a 
two-timestamp approach) it can be represented as two one-
timestamp events, namely the beginning and end of the 
activity. 

A. Definition of Non-temporal Capabilities 

The non-temporal capabilities of the query generators 
reviewed above all combine a set of rules where each rule 
applies to one patient attribute. These rules are linked with 
Boolean operators, logical operators, such as conjunction 
(AND) or disjunction (OR) to construct a set of EC. Each rule 
addresses a particular patient attribute e.g., age, gender, 
HBA1c results or diagnosis of a particular cancer. Therefore, 
each rule would be computed against a particular type of 
clinical fact e.g., dates of birth, recorded gender, lab tests and 
diagnoses respectively. Although natural language EC may 
make reference to several patient attributes in one criterion 
e.g., “Male patients over 18 with lung cancer,” this would
count as three rules for gender, age and diagnosis respectively. 
The terms ‘atomic queries’ [1] and ‘simple criterion’ [15] are 
also used in the literature as synonyms for rule.  

Fig. 1. ECM-Generic Temporal Model  

The proposed ECM supports three types of predicate 
types: existential, numeric and categorical. There are certain 
ordinal scales such as the ECOG scale of ambulatory status 
that may express its value in either a numerical or coded value. 
For these data elements both categorical and numerical 
predicates were permitted. 

B. Definition of Temporal Capabilities 

The ECM assumes zero-duration events and each rule 
specified whether the event used in the predicate is the first or 



last for that patient except for certain unique events such as 
birth where this qualifier is not needed. Any rule may have at 
most one temporal constraint relating the event in the 
predicate to one of three anchors. The ECM supports three 
temporal anchors: now (the time of the query), a rule-based 
anchor using the time of the event used in a previous rule and 
a birth anchor using the patient’s date of birth. This means that 
age is not explicitly queried but expressed as a temporal 
constraint on the birth (being x years before the now anchor). 
Gender is determined by a gender identification event 
assumed to occur at birth. Thus, the ECM treats all clinical 
facts as zero-duration events making no distinction between 
demographic and other data. Fig. 1 shows the high-level object 
representation of the ECM 

C. Interoperability 

The ECM was defined to be independent of both the 
structure (database schema) and semantic representation 
(clinical coding systems used). Furthermore, where a rule 
applies to physical quantity and a unit of measurement is 
specified, it does not require that the repository use the same 
unit as the query. This is particularly important for lab tests 
when measuring the concentration of some substance in a 
urine or blood sample (e.g., liver function tests) where either 
mass or molarity per unit volume are routinely used. 

The ECM contains an evaluation algorithm, which 
operates independently of the syntactic and semantic 
representation of the data repository. This approach requires a 
mechanism to extract the clinical facts needed to compute a 
particular rule and render them into a standard representation. 
Thus, to connect with each data repository, a set of adaptors 
was constructed [21] for each different repository type. This 
setup is shown in Fig. 2. The advantage of this approach is that 
the adaptors are lightweight when compared to the ECM and 
its evaluation algorithm and can rapidly be assembled for new 
types of repositories. 

Fig. 2. System Architecture incorporating ECM 

D. Eligibility Criteria Evaluation Algorithm 

Each rule has a predicate that refers to clinical facts of 
some type e.g., a diagnosis for type II diabetes or 
administration of the drug metformin. The evaluation 
algorithm has three distinct steps:  

1. For each rule we determine the set of patients that
meet this criterion alone ignoring for the moment any
NOT operators. This is achieved by running through
each patient in turn and using the clinical facts
related to that rule to determine if the patient is
included in the set. Note that an absence of facts
about a patient leads to exclusion.

2. We compute the Boolean operators linking the rules,
AND, OR and NOT, by applying the respective
operations intersection, union and set subtraction on
the subsets of patients yielded by each rule. This is

how the NOT operator is able to convert an inclusion 
criterion into an exclusion criterion.  

3. Where counts rather than a list of patients are
required, we determine the cardinality of the
resultant subset.

In the first step, patients are computed for inclusion in the 
resultant set using the following steps: 

a. The facts related to a single patient for a given rule
are identified. So, for a rule including all patients
with most recent BMI reading within 3 months is
greater than 23, all BMI readings for that patient are
considered

b. The temporal constraint is used to filter the facts,
removing those that fall outside the specified time
window. If there is no temporal constraint no facts
are filtered out. In the example, all BMI readings
more than 3 months old are excluded.

c. The first or last fact is selected, according to what is
specified in the rule. In our example we select the
last.

d. This single fact is used to compute the truth-value of
the predicate to determine if the patient is in the
resultant subset or not.  The actual BMI reading is
compared to the value 23. If it exceeds this then
predicate is true and the patient is included. If the
value is less than or equal to 23 or no reading exists
then the predicate is false.

Note that for existential predicates, the mere presence of 
the fact makes the predicate true. 

E. ECLECTIC Notation 

A human-readable notation called ECLECTIC (Eligibility 
Criteria Language for European Clinical Trial Investigation 
and Construction) [22] was devised to give users of the system 
a clear and unambiguous description of the query. A set of 
ECs, which together form the query, is expressed as a list of 
consecutively numbered rules. Each rule defines the clinical 
event used to express the predicate. This may be existential or 
else value-based in which case there is an ‘in’ clause to specify 
the reference range. Except for demographic events, such as 
born, gender and deceased, which are, by definition, unique 
events, there is also a first or last qualifier prefixing each 
event. Each rule may have a temporal constraint in which one 
of the temporal operators before, after and contemp is 
followed by one of the three anchors: now, birth or a rule 
specified by its number. The notation is intended to be 
readable by clinicians and is logged when any user queries a 
particular data repository, for governance reasons. Fig. 3 
shows an example. 

Fig. 3. Example of ECLECTIC 

IV. EVALUATION AND RESULTS 

The model was validated by showing that an 
implementation was possible that was independent of either 
the GUI and the repository used to hold clinical facts. Such an 
implementation was shown to be compatible with a GUI 
created subsequently and was also shown to be able to access 



diverse clinical data repositories. Benchmarking was 
performed by running a query with temporal constraints on a 
series of databases of increasing size to show that the observed 
relationship of time with database size is O(n log(n)). 

A. Implementation of EHR4CR Platform 

An implementation of the ECM has been constructed as 
part of the EHR4CR platform for computing eligibility 
criteria. This platform enables a user to compose a set of 
eligibility criteria at the workbench and then launch a 
federated query to obtain patient counts from nominated 
clinical sites. The query is accepted by the orchestrator and 
then sent on the nominated clinical sites, in this case hospitals. 
Each hospital contains an endpoint, which executes the query 
on the respective data warehouse that has been populated from 
the hospitals’ EHR systems. It derives counts, which are sent 
back to the workbench, from which the query originated, via 
the orchestrator. The ECM represent both within the 
workbench and the endpoint. In the workbench it is used to 
express the composed query. It is then serialised and sent to 
the endpoint where it is de-serialised. Here the query is used 
to generate the SQL queries and the results are processed by 
the evaluation algorithm. Under construction is a variant that 
enables users at a single site to produce a list of eligible 
patients.   

The EHR4CR currently uses two database designs: one 
developed in the project (the native database) and the i2b2 
database (without the i2b2 query generator). Four i2b2 data 
warehouses and three data warehouses using the native 
database schema were populated using an ETL (extract-
transform-load) process from hospital EHR (electronic 
healthcare systems). Multiple local terminologies were used. 
They have been queried by researchers working at eight 
Pharma sites.  

A query expressed in the implementation of the ECM is a 
hierarchy of Java objects. This can be readily serialised and 
communicated via the Internet to remote data sources. Since 
the query is de-serialised within the firewall of the clinical site 
the evaluation algorithm is executed within the firewall. Thus 
for feasibility only these counts are returned to the workbench 
and the user at the workbench has no direct access to sensitive 
clinical data. 

B. Benchmarking of Evaluation Algorithm 

To demonstrate that the evaluation algorithm was (at 
worst) O(n log(n)), a query with temporal constraints was run 
on a series of databases each an order of magnitude larger than 
the last. Times for the extraction of data from the database and 
the evaluation of the algorithm were measured to show that 
these times did not increase by more than an order of 
magnitude. Real clinical data from 100 diabetic patients was 
obtained and this was used to populate a database. This data 
was then replicated 10, 100, times etc.  A query was 
constructed so that it would make use of all three types of 
temporal anchor and would also yield a non-zero number of 
eligible patients. 

Fig. 4 shows the ECLECTIC for the benchmarking. The 
first rule uses a now anchor to include patients over 50 years 
old. The second uses a birth anchor to include patients who 
were first diagnosed with type II diabetes after their fortieth 
birthday. The third rule tests on the most recent BMI reading. 
The fourth rule tests on a BMI reading at least 6 months prior 
to the event used in rule 3.  The experiment was run on a 
standalone version of the software. Instead of using the 

workbench, the query was hard coded. No remote 
communication across the Internet was used. It should be 
noted that the size of the query and results of counts would not 
be affected by the size of the database used. The databases 
were held in Microsoft SQL Server running on a virtual server 
with 4 virtual CPUs and GB of RAM, on a Zen Server. 
Database tables were indexed to improve efficiency.    The 
SQL queries were launched from a Mac Book with a 2.4 Ghz 
processor and 4GB of RAM, which was also used to perform 
the evaluation algorithm. The two were connected by a local 
network. For each database the query was run 10 times and 
the mean time was calculated. 

Fig. 4. ECELECTIC Used for the Benchmarking  

TABLE II.  shows the number of seconds taken to perform 
the database queries and also to perform the evaluation 
algorithm as well as the total time for both. The factor 
increases in the times as the database increase with size is also 
shown. Fig. 5 represents the data in graphical form. To be 
consistent with an O(n log(n)) algorithm, the factor increase 
in time for an order of magnitude increase in the database size 
should, at worst, barely exceed 10. In reality it never exceeded 
10. Since the experiment shows an increase of 4 orders of
magnitude, any part of the algorithm that was O(n2) or higher 
would manifest itself with factor increases greater than 10. 

TABLE II. RESULTS OF BENCHMARKING  

Database 
Size 

(Patients)

Database 
Size 

(Clinical 
Facts) 

Running 
DB 

Queries 
(sec) 

Factor 

increase

Evaluation 

Algorithm 
ECM-(sec) 

Factor 

increase

Combined Factor 

increase 

100 8.8K 0.4 - 1.8 - 2.2 - 

1K 88K 0.7 1.8 2.3 1.3 3.0 1.4 

10K 880K 2.3 3.3 3.5 1.5 5.8 1.9 

100K 8.8M 8.8 3.8 11.7 3.3 20.5 3.5 

1M 88M 82.7 9.4 103.2 8.8 185.9 9.1 

V. DISCUSSION  

The only query generator that mentions the algorithmic 
complexity of temporal reasoning explicitly is PatternFinder 
[9], which is O(n2) time for one event before or after another 
event. Profiling of PatternFinder showed that queries could 
take hours to perform.  This is due to a self-join on a (typically 
large) database table holding clinical facts. It is reasonable to 
assume that if other implementations, addressed the temporal 
semantics at the SQL level, they would also suffer a similar 
problem. To express four cycles of chemotherapy, that is four 
events each after the other, the complexity becomes O(n4) 
making the approach not scalable to typical data warehouses 
holding >108 clinical facts.  The algorithm used in the ECM 
avoids this problem by transferring the problem to an 
application programming language, where unlike SQL - a 
declarative language, there is explicit control of the algorithm. 

VI. CONCLUSION 

The ECM expresses queries in the form of a set of ECs 
with temporal constraints and supports both absolute and 
relative temporal semantics. The ECM and its associated 



implementation are able to support federated queries from a 
workbench to multiple clinical sites with diverse data 
warehouses differing in both structural and semantic 
representation. This is made possible by separating the query 
model and its evaluation algorithm from the data sources 
holding the clinical data. The use of a Java object model 
means that the query may be serialised to enable 
communication between the workbench used by the 
researcher and the clinical sites to be queried. The evaluation 
algorithm has been shown to run in O(n log(n)) time and thus 
addresses the performance issues that have beset other 
attempts in implementing temporal semantics. 

Fig. 5. Execution Time Against Database size (number of patients)  
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