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a b s t r a c t 

Purpose: The classic heuristic miner algorithm has received lots of attention in the healthcare sector for 

discovering patient pathways. The extraction of these pathways provides more transparency about patient 

activities. The previous versions of this algorithm receive an event log and discover several process mod- 

els by using manually adjustable thresholds. Then, the expert is left with the difficult task of deciding 

which discovered model can serve as the descriptive reference process model. Such a decision is com- 

pletely arbitrary and it has been seen as a major structural issue in the literature of process mining. This 

paper tackles this problem by proposing a new process discovery algorithm to facilitate patient pathways 

diagnosis. 

Approach: To address this scientific challenge, this paper proposes to consider the statistical stability phe- 

nomenon in an event log, and it introduces the stable heuristic miner algorithm as its contribution. To 

evaluate the applicability of the proposed algorithm, a case study has been presented to monitor patient 

pathways in a medical consultation platform. 

Originality: Thanks to this algorithm, the value of thresholds will be automatically calculated at the statis- 

tically stable limits . Hence, instead of several models, only one process model will be discovered. To the 

best of our knowledge, applying the statistical stability phenomenon in the context of process mining to 

discover a reference process model from location event logs has not been addressed before. 

Findings/Practical implications: The results enabled to remove the uncertainty to determine the threshold 

that represents the common patient pathways and consequently, leaving some room for potential diag- 

nosis of the pathways. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

This research work introduces its practicality by considering 

wo challenges, the business and technical problems. The business 

roblem presents the main objective of this research project. The 

echnical problem explains the focus of this paper. 
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.1. The business problem: how to diagnose deviations in patient 

athways by using a descriptive reference process model? 

Process mining applications for monitoring patient pathways 

ave been seen as a valid solution for such issues ( Garcia et al.,

019; Thiede, Fuerstenau, & Barquet, 2018 ). Researchers in the field 

f process mining are trying to diagnose these operational prob- 

ems by using the indoor location data of patients ( Fernandez- 

latas, Lizondo, Monton, Benedi, & Traver, 2015; Martinez-Millana 

t al., 2019 ). 

We argue that we need a common pathways as a refer- 

nce model in order to diagnose the unexpected deviations in 

ach patient pathway. In practice, this reference model is pro- 

ided by doing interviews with many different domain experts. 
 under the CC BY-NC-ND license 
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Fig. 1. Difference between the results of the heuristic miner algorithm and the stable heuristic miner algorithm presented in this paper. 
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1 The descriptive reference process model of patient pathways. 
2 Data state, Inforamtion State, Awareness, Governance. 
his interview-based approach has its own shortcomings ( Dumas, 

a Rosa, Mendling, Reijers et al., 2013 ). 

Therefore, To diagnose patient pathways, we propose to auto- 

atically discover a descriptive reference process model. By com- 

aring the descriptive reference process model with each patient 

athway, we can detect possible deviations. Extraction of the de- 

criptive reference process model is the main goal of this paper. 

uch a model represents the common pathways of patients in the 

ospital premises. However, there are several scientific obstacles 

hat defy a process discovery algorithm to extract such a model. 

.2. The technical problem: how to discover the descriptive reference 

rocess model? 

Van der Aalst presents a picture in van der Aalst (2016) to show 

he main challenges for the task of discovering a descriptive ref- 

rence process model. Assuming that we are aiming to extract a 

o-called target model from an event log, we have to avoid cer- 

ain outcomes. A “non-fitting” model will not be suitable, as it 

s not able to capture enough volume of information to express 

he main behavior patterns. Also, any process discovery technique 

hould avoid “over-fitting” too. This means that an ideal model 

hould not capture all of the behaviors in the event log. Addi- 

ionally, the “under-fitting” concept is related to models which al- 

ow for the generation of behaviors that do not exist in the event 

og. Given these constraints, it is not clear how to find a trade-off

mong these notions. Under these circumstances, the author indi- 

ates that there is no exact definition of the target model and it is 

ot clear how to respect all the criteria mentioned ( van der Aalst, 

016 ). This is a valid issue in applications that associate ILS and 

rocess mining to extract the common pathways. In the literature 

f process mining Munoz-Gama et al. (2022) , use of wearable de- 

ices (such as localization technologies) are identified as a mean 

o give different views of patients’ activities. These views can be 

nsteady and varying due to the exact technical problem defined 

bove and shown in Fig. 1 . This is a limiting factor for our research

ince we need to find a reference model that could be used for two 

urposes of diagnosing and simulating patients’ pathways. 

For instance, consider the classic heuristic miner algorithm 

hich is mostly used in the healthcare sector ( Rojas, Munoz-Gama, 

epúlveda, & Capurro, 2016 ). This algorithm uses manually ad- 

ustable thresholds to discover the process models. 

As shown in Fig. 1 , these thresholds extract several process 

odels with different levels of information. Therefore, it is de- 
2 
endent on the experience of the domain expert to decide which 

odel corresponds to the common pathways, or as called here the 

escriptive reference process model of patient pathways. Conse- 

uently, this uncertainty for selecting a reference model becomes 

 blocking point for further diagnostic actions. In addition, discov- 

ring a reference model could help us with simulation actions in 

uture to better analyze and improve the processes. The manual 

djustment of these thresholds has been seen as a structural chal- 

enge in the literature of process mining and it is an obstacle for 

he diagnostic and simulation actions ( De Cnudde, Claes, & Poels, 

014; Janssenswillen, 2021 ). Fig. 1 summarizes the mentioned is- 

ues. With this in mind, the scientific question addressed in this 

aper is: 

• How we can discover the common pathways 1 of patients with- 

out making arbitrary changes in the threshold values of the 

process discovery algorithm? 

To answer this question, this paper introduces the Stable 

euristic Miner algorithm as its main contribution. This algorithm 

lters the classic heuristic miner algorithm by applying the crite- 

ia of the statistical stability phenomenon to discover the common 

athways. Consequently, it would no longer be needed to deter- 

ine the values of thresholds in a counter-intuitive way. It is im- 

ortant to mention why the application of statistical stability phe- 

omenon seems to be a suitable solution. The reason is the fact 

hat hospitals and in particular patient pathways are seen as exam- 

les of systems with emergent properties ( Gorban, 2017 ). There- 

ore, in order to represent the common behavior of such systems, 

e need to consider the statistical stability phenomenon in the en- 

emble of patients processes ( Gorban, 2014 ). We elaborate on this 

n Section 2.3 . 

This paper embraces the DIAG 

2 research methodology 

 Namaki Araghi, 2019 ) to apply its method on the location 

ata of patients. With an objective to diagnose and simulate busi- 

ess processes, DIAG methodology clarifies the necessary functions 

o transform raw location data into meaningful information to 

upport decision making actions. Table 1 clarifies the definition of 

ome of the used terms in this paper. 

The remainder of this paper is structured as follows: in the sec- 

nd section—Material and methods—we will discuss similar studies 
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Table 1 

Definition of terms used in this paper. 

Used term Description 

Relation frequency Here it is defined as the number of times that the relation among activities is established. For instance, number of times 

activity ‘c’ is followed by ‘d’. 

Stable behavior It represents behaviors that can be considered as the common behavior of the whole system with emergent properties. It 

is manifested by the statistical stability phenomenon. 

Descriptive reference process model It is used as the common pathways. It represents activities that are expressing the stable behaviors of patients while 

executing their processes. 
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3 https://www.promtools.org/ . 
n process discovery that are presented in the literature by previ- 

us authors. This discussion will be extended to cover the tradi- 

ional approach of the heuristic miner algorithm, before introduc- 

ng the statistical stability phenomenon. After demonstrating the 

cientific gaps, we will present a detailed illustration of the sta- 

le heuristic miner algorithm in the third section. Then, through 

he description of a case study in section four, the results of the 

roposed algorithm will be pragmatically evaluated and it will be 

iscussed in section five. Finally, in the sixth and last section, we 

ill conclude by presenting the strengths and limitations of this 

ethod as well as the future perspectives of this research work. 

. Material and methods 

.1. Related works 

The literature of process discovery methods is extremely vast 

nd rich. Authors in Augusto et al. (2018) provided a complete 

verview of the existing algorithms. Considering this technical 

roblem presented at Section 1.2 , many researchers proposed to 

nd a process model that is easy to visualize Chapela-Campa, 

ucientes, and Lama (2019) ; De San Pedro, Carmona, and Cor- 

adella (2015) ; Vázquez-Barreiros, Mucientes, and Lama (2015) . 

ven-though this is necessary for users to see a process model for 

nderstanding “what is happening”, this does not guarantee that 

he discovered model is showing the reference model . 

Similar works in our area aim to extract a so-called reference 

odel which represents the common behavior pattern recorded 

n event logs. Relevant discovery methods (for mining the refer- 

nce model) in the literature are: model-based, clustering-based 

nd profiling-based approaches ( Li & van der Aalst, 2017 ). We will 

iscuss these approaches in the following. 

An example of model-based approaches is the work of Bezerra 

nd Wainer where they propose the iterative and sampling algo- 

ithms for finding frequent cases and detecting variations. They 

dentified the “dynamic threshold algorithm” for anomaly detec- 

ion of traces in event logs ( Bezerra & Wainer, 2013 ). 

Clustering-based approaches are seen as more suitable than 

odel-based ones for use in unstructured processes like patient 

athways ( Rebuge & Ferreira, 2012 ). However, these methods aim 

o detect clusters of behaviors rather than detecting the deviations 

hat are causing the instability in the processes. Additionally, they 

an be time-consuming ( Li & van der Aalst, 2017 ). 

The model-based and clustering-based methods have been chal- 

enged in Li and van der Aalst (2017) . Authors in Li and van der

alst (2017) have indicated that these methods are either slow or 

naccurate when dealing with complex event logs and unstructured 

rocesses that may contain many activities . Therefore, they pro- 

osed a novel profiling-based approach which creates a “profile”

f cases that are representative of the majority of normal behaviors 

n the event log. Their approach has several steps: first, they sam- 

le all the cases in the event log. Then, based on a defined norm 

unction they gather normal cases and identify them as the main- 

tream cases. Once they have found the mainstream, they compute 

he similarities between the mainstream and other cases. By creat- 

ng the concept of a “profile” they classify cases with mutual fea- 
3 
ures. Then, their method quantifies the similarities based on the 

rofile and identifies the normal cases and deviating cases. By ad- 

usting the “norm function” one could increase (or decrease) the 

robability for sampling of the normal cases. This could be viewed 

s a disadvantage, since the decision to determine the value of the 

orm function could be completely arbitrary. This is the challenge 

e aim to overcome in this paper. 

The Inductive Miner algorithm is one of the appreciated meth- 

ds for discovering process models as well ( Leemans, Fahland, & 

alst, van der, 2014 ). It tries to find the most prominent splits in

vent logs and it detects related operators to describe each split. 

owever, the inductive miner method uses the concept of thresh- 

lds for activities and edges to propose different model. An exam- 

le of this method is the inductive visual miner plugin in ProM 

ool 3 . Again, it is difficult to find which model could be the refer- 

nce model for us. 

Split Miner ( Augusto et al., 2019 ) is another interesting research 

ork with similar objectives to ours. Authors in Augusto et al. 

2019) designed their approach based on a need to answer com- 

lexity in discovered models (so-called spaghetti-like models), low- 

tness and over-generalization . They aim to extract a model that 

hows perfect fitness regarding both activities and edges. The sim- 

larity of their work and ours is in the final goal which is finding 

 reference model. However, their generally-applicable approach is 

o extract a model based on the capacities of activities and edges. 

n the other hand, we are trying a different path to find a refer- 

nce model to represent the common pathways of patients. We ad- 

ress the nature of the healthcare organization which is a complex 

ystem with emergent properties ( Aziz-Alaoui & Bertelle, 2009 ). 

herefore, in order to represent what is the behavior of the whole 

ystem–the common pathways– we need to look for statistical sta- 

ility in location event logs of patients. We will elaborate on this 

n Section 2.3 and develop our approach by considering the logic 

f heuristic miner algorithm as well. 

.2. Classic heuristic miner algorithm 

The motive behind considering heuristic miner algorithm is its 

bility to deal with healthcare processes ( Rojas et al., 2016 ). How- 

ver, it is faced with many structural problems, such as arbitrary 

election of the threshold values, dealing with variations and defin- 

ng ways to filter noisy behaviors. 

Previous authors in ( De Cnudde et al., 2014; van der Aalst, 2016; 

eijters, Maruster, & Aalst, 2004; Weijters & Ribeiro, 2011 ) have 

resented the heuristic miner algorithm by a series of steps to cap- 

ure the behavior according to an event log (c.f. Fig. 2 ). The clas-

ic method contains five main steps in order to extract a process 

odel which represents the behavior of an event log. 

These steps are: (i) identify the footprint matrix, (ii) calculate 

he dependency measures, (iii) devise the graph, (iv) discover the 

plits and joins, and (v) adjust the mining loops with length of 1 

nd 2. This paper presents an alteration at the second step, which 

https://www.promtools.org
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Fig. 2. Basic steps in the classic heuristic miner algorithm ( van der Aalst, 2016 ). 
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h

c

s the core of heuristic miner algorithm. Addressing the last two 

teps is beyond the limit of this paper. 

Authors in Weijters and Ribeiro (2011) define the dependency 

raph as the result of the first 3 steps. This term is identified as 

ollows: 

ependency Graph = { (a, b) | (a ∈ E ∧ b ∈ a �) ∨ (b ∈ E ∧ a ∈ �b) }
(1) 

ere ‘ E’ is defined as a limited set of activities. For this set of

ctivities several events are recorded. ‘ �b’ stands for the activ- 

ties that come before ‘ b’. ‘ a �’ denotes the activities that come 

fter ‘ a ’. Hence, in a dependency graph each activity can have 

nput − out put activities which are presented as a dependency re- 

ation ( a, b). In order to devise the dependency graph, the num- 

er of times that an activity is directly followed by another one is 

resented in the format of a footprint matrix. Previously, heuris- 

ic miner algorithm aimed to define values among relationships 

nown as “dependency measures”. These algorithms ( Weijters & 

an der Aalst, 2003; Weijters & Ribeiro, 2011 ) would present dif- 

erent volumes of information in the process model by manually 

djusting several thresholds within a range of −1 and 1. These val- 

es are calculated by this formula: 

ependency Measure : a ⇒ w 

b = 

| a > w 

b | − | b > w 

a | 
| a > w 

b | + | b > w 

a | +1 

(2) 

here ‘ w ’ represents the event log with ‘ n ’ the number of activities

nd | a > w 

b | the number of times activity ‘ a ’ is followed by ‘ b’.

he dependency measure value helps to determine the relationship 

etween two certain activities. In the current application of these 

lgorithms, experts use multiple thresholds. Since these thresholds 

re determined in an arbitrary way, the validity of the mined pro- 

ess model is dependent on the experience of its users. This is a 

ajor structural challenge for the classic heuristic miner algorithm 

 De Cnudde et al., 2014 ). 

Therefore, in order to solve this issue, we propose to discover 

 state that represents the statistically stable behavior of the event 

og. The objective is to be able to discover a more structured pro- 

ess model and to give the algorithm greater ability to deal with 

omplex processes and noise. This new approach removes the pre- 

ious challenge of counter-intuitively choosing the value of thresh- 

lds. As a result, one can acquire a reference model for the further 

iagnostic actions. The new algorithm presented here has been in- 

pired by the definition provided by Gorban where he declares that 

n order to represent the main behavior of a system with emergent 

roperties such as a hospital, statistical stability needs to be found 

etween the relation frequencies ( Gorban, 2017 ). 

.3. Statistical stability phenomenon 

It is best to illustrate this phenomenon by an example in na- 

ure. Consider a flock of birds in the sky, or a shoal of fishes in

he sea. Their motions can be conceived as shapes. These shapes 

epresent the behaviors of different groups which have emergent 

roperties. The differences in these shapes are due to the different 

roperties of the groups. Such behaviors (shapes) can be revealed 

y the statistical stability phenomenon ( Gorban, 2017 ). 

Important to consider that in each of these groups there are 

ome existing deviating behaviors which at first are not seen by 
4 
he eye of an observer while looking at them from a distance, be- 

ause these behaviors do not represent the stable behavior of their 

ovements. Still, detecting these deviations is feasible. 

The statistical stability of relation frequencies is an important 

roperty for analyzing the common behavior of a system with 

mergent properties such as hospitals. This phenomenon is man- 

fested not only by considering the frequency of mass events, but 

lso by the stability of the averages, the variances, and the stan- 

ard deviations of the samples, and this is a feature that can be 

nherent in the collection of events ( Gorban, 2017 ). 

In essence, the definition of the statistical stability phenomenon 

an be inferred as: 

In a system with emergent properties, there exists a state that 

hows a snapshot of the system behavior that could be seen as a 

ommon and stable representation —model— of the system in which 

he statistical stability is manifested Inspired by this phenomenon, 

his research work proposes a novel method based on the statis- 

ical stability phenomenon to discover the common pathways of 

atients from their movements in hospitals. This would help to re- 

ove the deviating behaviors which do not represent the common 

ehavior of a group of patients and thus capture a descriptive ref- 

rence process model. The next section will present how the sta- 

istical stability can be determined for patient pathways. 

. Theory 

.1. Preliminaries 

Fig. 3 shows the steps in the new algorithm. Accordingly, an 

lteration is made by removing the manually configurable thresh- 

lds and replacing them by an action for statistically determining 

he thresholds from data. 

This new modification would automatically detect–from rela- 

ion frequencies in an event log–the activities that represent the 

tatistically stable behavior while removing any unstable behaviors. 

One of the methods used to demonstrate statistical stability is 

he creation of Shewhart control charts ( Montgomery, 2007 ). These 

ontrol charts must be devised mathematically and discovered 

rom the event log. Eventually, they should indicate the thresholds 

f the statistical stable state. 

Generally, control charts contain a center line that represents 

he average value of a measured characteristic, corresponding to 

he in-control state. Two other thresholds are called Upper Control 

imit (UCL), and Lower Control Limit (LCL). These limits are calcu- 

ated by considering the standard deviations and averages of the 

amples. These two limits (UCL, LCL) are the borders of a statisti- 

ally stable state. As long as the graphed data points fall between 

hese two thresholds the outcomes of the process are in-control . If 

 data point falls outside these limits, it will be considered as a 

ariation of the process outcomes, and the process will no longer 

e considered stable. To apply this notion to discovering a stable 

rocess model, several assumptions and definitions have been con- 

idered. 

.1.1. Assumptions 

Inspired by Shewhart control charts, three main assumptions 

ave been made to find the statistically stable behaviors of pro- 

esses from an event log. 
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Fig. 3. The sequence of actions for applying stable heuristic miner. 

Fig. 4. The sequence of applying calculations for the stable heuristic miner algorithm. 
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1. The first assumption is the normality of the data distribution 

regarding the relation frequencies among registered activities 

in the event log. Most of the statistical methods for investigat- 

ing the data are highly dependent on the distribution of data. If 

the data is not normally distributed, then certain adjustments 

in the method should be considered so as to adapt it to the 

distribution function of the data. This normality assumption is 

made due to the degree of freedom in which that data distribu- 

tion could change. This assumption is authentic and justifiable 

by the Central Limit Theorem ( Barany, Vu et al., 2007 ) and the

statistical process control paradigm ( Montgomery, 2007 ). 

2. The second assumption is the one-sided-stability assumption. 

This means considering and presenting the activities that have 

an average of their relation frequencies greater than UCL. Usu- 

ally, by applying the new method, activities with a high level 

of variations will be outside of UCL, which is mathematically 

correct. These activities are considered as not coming within 

the stable behavior of the log. However, such activities could 

provide information regarding the behaviors that show higher 

levels of variations and are thus the cause of the instability in 

the whole behavior. In order to not ignore these activities, they 

are displayed as “hot zones”, color-coded red. The reason be- 

hind this is that it is extremely rare to extract a pattern from 

an event log that shows all the activities illustrating a stable 

behavior. Therefore, the deviating activities that are causing in- 

stability in a model by a higher level of variations are presented 

in the process model. 

3. In the footprint matrix the last activity will have ‘0’ values, 

since it will not be followed by any other activity. Here, in or- 

der to not avoid the ending zone of the process, the last activity 

will be considered as an “end activity” with one “observation”. 

.1.2. Definitions and the sequence of functions in the algorithm 

Fig. 4 illustrates each step of the algorithm. In the following 

e will elaborate on each step by using an example which is pre- 

ented below as ‘ L ’. 
p

5 
Within this example (eventlog ‘ L ’), each group represents a 

race. Every trace consists of events corresponding to the activi- 

ies. For example, the first trace < a, b, c, d, e, l, m > 

12 shows that

2 cases have followed the same sequence of activities. As shown 

n Fig. 4 , the algorithm needs a footprint matrix as an input to 

xtract and record the number of times one activity is directly fol- 

owed by another activity. This matrix was presented previously in 

an der Aalst (2016) ; Weijters and Ribeiro (2011) . The description 

f a footprint matrix is detailed within the definition 1. 

efinition 1 (Population S). The footprint matrix here is consid- 

red as the “population” in which all of the relation frequencies 

re presented. This matrix represents the direct relations among 

ifferent activities within an event log. 

The matrix below shows the direct relations among all the ac- 

ivities recorded in the eventlog ‘ L ’. For example, this matrix shows 

hat activity ‘ a ’ is followed 26 times by activity ‘ b’. This matrix will

e used as an input to initialize the algorithm. 

 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a b c d e f g h i j k l m 

a 0 26 34 0 0 0 0 0 0 0 0 0 0 

b 0 0 46 0 0 2 0 0 5 0 4 0 0 

c 0 31 0 48 5 9 0 4 10 6 0 0 0 

d 0 0 0 0 14 0 17 0 0 0 0 23 0 

e 0 0 5 4 0 0 0 0 0 0 0 20 0 

f 0 0 15 2 0 0 0 0 0 0 0 0 0 

g 0 0 0 0 1 0 0 5 0 0 0 11 0 

h 0 0 4 0 5 0 0 0 0 0 0 0 0 

i 0 0 9 0 0 6 0 0 0 0 0 0 0 

j 0 0 0 0 0 0 0 0 0 0 0 6 0 

k 0 0 0 0 4 0 0 0 0 0 0 0 0 

l 0 0 0 0 0 0 0 0 0 0 0 0 60 

m 0 0 0 0 0 0 0 0 0 0 0 0 0 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

tep1: Find the number of activities (samples) 

According to Fig. 4 , at first, we need to extract the number of 

amples (activities). 

efinition 2 (Sample s ). Each row ( i = a → m ) in the population

resents a vector that shows the relation frequency of an activity 

eing followed by another one. Therefore, the corresponding vec- 

ors for the activities in the event log are considered as the sam- 

les of the population. 
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Table 2 

The calculation of x̄ , C 4 n , and σ for each sample and the ¯̄x of the population. 

Activities ( ̄x i ) ( σ ) C 4 n 

a x̄ 1 = 

26+34 
2 

= 30 5.65 0.80 

b x̄ 2 = 

46+2+5+4 
4 

= 14 . 25 21.2 0.92 

c x̄ 3 = 

31+48+5+9+4+10+6 
7 

= 16 . 14 16.82 0.96 

d x̄ 4 = 

14+17+23 
3 

= 18 4.5 0.88 

e x̄ 5 = 

5+4+20 
3 

= 9 . 6 8.9 0.88 

f x̄ 6 = 

15+2 
2 

= 8 . 5 9.19 0.80 

g x̄ 7 = 

1+5+11 
3 

= 5 . 6 5.03 0.88 

h x̄ 8 = 

4+5 
2 

= 4 . 5 0.7 0.80 

i x̄ 9 = 

9+6 
2 

= 7 . 5 2.12 0.80 

j x̄ 10 = 

6 
1 

= 6 0 0 

k x̄ 11 = 

4 
1 

= 4 0 0 

l x̄ 12 = 

60 
1 

= 60 0 0 

m x̄ 13 = 

0 
1 

= 0 0 0 

Grand average ( ̄̄x ) = 14 . 22 . 
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For example, in the matrix above there are 13 samples (vectors 

elated to each activity = s , which relates to i = a to m ). This num-

er is identified by ‘ m ’. In this example m = 13 . 

tep2: Find the number of observations which are greater than 0 

efinition 3 (Observations) . The values within the population 

footprint matrix) are considered as the observations. Each obser- 

ation is identified by ‘ x i j ’, where ‘ i ’ stands for the rows in the foot-

rint matrix and ‘ j’ represents the columns. 

These observations present the relation frequencies among ex- 

sting samples. The total number of observations within the popu- 

ation is identified by ‘ N’. For the example shown here, N = 30 + 1 .

he ‘ +1 ’ is an adjustment that has been made based on the third

ssumption, that the “end activity” is not considered as a null sam- 

le. 

tep3: Calculate the average value of observations for each activity 

As the title of this step indicates, we simply measure the aver- 

ge value of observations for each sample (activity). The results are 

epresented within Table 2 under column ( ̄x i ) . 

tep4: Calculate the standard deviation value of observations for each 

ctivity 

As shown in Table 2 , we indicate the value of standard devia- 

ion (σ ) for each activity. 

Eq. (3) shows the basic method for calculating the standard de- 

iation of each sample. Note that x i j is an observation within a 

ample; n i is the size of the sample, and x̄ i is the average of obser-

ations for the i th sample. 

i = 

√ 

(1) 

n i − 1 

m ∑ 

j=1 

(x i j − x̄ i ) 2 (3) 

tep5: Calculate the grand average 

It is very important to note that here the sizes of the samples 

re not necessarily similar. For example, the sample size for activ- 

ty ‘ a ’ is equal to 2 ( n s a = 2 ) and for activity ‘ b’ is ( n s b = 4 ). There-

ore, to make sure about unbiased factor of our analysis we need 

o need to define two important definitions. These definitions are 

he grand average, and the estimated standard deviation. 

efinition 4 (Grand average. ¯̄x ) Since the size of samples is a 

hanging variable, ¯̄x has been defined to express the average of re- 

ation frequencies ( x i j ) within the whole population. Eq. (4) shows 

ow the grand average would be calculated. Note that m is the 
6 
umber of samples and x̄ i stands for the average of the ‘ i th’ sam- 

le. 

¯̄
 = 

∑ m 

i =1 n i ̄x i ∑ m 

i =1 n i 

(4) 

For this example, the grand average of the entire population is 

qual to ‘14.22’. 

tep6: Calculate the estimated standard deviation 

efinition 5 (Estimated Standard deviation. ˆ σ ) Similarly to the 

rand average, the estimated standard deviation ˆ σ has been de- 

ned by Eq. (6) in order to understand how the behavior within 

he population deviates from one sample to another while the 

ample sizes differ. 

To calculate the estimated standard deviation ( ̂  σ ), we need 

o ensure about the unbiased calculation. Therefore, use a factor 

nown as C 4 n ( Montgomery, 2007 ). This factor is dependent on the 

ize of each sample. 

In order to measure the C 4 n factor for each sample, Eq. (5) will 

e used. 

 4 n = 

4(n − 1) 

4 n − 3 

(5) 

or the mentioned example, the values of C 4 n i and σi are presented 

n Table 2 . 

Now by considering these values, the Eq. (6) is used to calculate 

he estimated standard deviation of the population: 

ˆ = 

1 

m 

m ∑ 

i =1 

σi 

C 4 n i 
(6) 

n this example, the value of ˆ σ is equal to ‘6.42’. 

ˆ = 

1 

13 

×
[ 

5 . 65 

0 . 79 

+ 

21 . 20 

0 . 92 

+ 

16 . 82 

0 . 95 

+ 

4 . 5 

0 . 88 

+ 

8 . 96 

0 . 79 

+ 

9 . 19 

0 . 79 

+ 

5 . 03 

0 . 88 

+ 

0 . 70 

0 . 79 

+ 

2 . 12 

0 . 797 

+ 0 + 0 + 0 + 0 

] 
= 6 . 42 

(7) 

After acquiring these metrics, the algorithm can construct the 

ontrol limits (thresholds) required to extract the stable behavior. 

tep7: Calculate the values of thresholds of the statistically stable 

tate 

efinition 6 (Central Line(CL)) . As it’s shown in Eq. (8) , ‘CL’ rep-

esents the most stable behaviors. The activities whose average of 

ecorded observations is close to CL are normally present in most 

races of the log, and they are thus the core activities. 

L = 

¯̄x (8) 

In this example, CL is equal to 14.22. 

On the other hand, in the literature on the subject of deter- 

ining the stable state, a certain distance from the CL is allowed 

 Montgomery, 2007 ). Previously, a distance of 3 σ was used for 

amples with unique sizes. In this paper, since the sample sizes are 

hanging variables, the distance is defined by considering the pop- 

lation estimated standard deviation and two defined constants 

 A 3 ̄n C 4 ̄n ̂  σ ). 

This distance helps to define the two other limits or borders of 

he stable state. 

efinition 7 (Lower Control Limit (LCL)) . This threshold filters the 

ehaviors that do not represent the main and stable behavior of 

he log. The activities with an average ( ̄x i ) lower than LCL will not 

e shown in the process model. 

Therefore, the algorithm will consider the activities that have 

 stronger presence in the behavior within the event log and will 
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Fig. 5. An illustrative example of the algorithm outcome. 
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4 https://research- gi.mines- albi.fr/display/RIOSUITE/R- IOSuite+Home . 
emove the deviations. Eq. (9) will use the previous definitions to 

etermine this threshold. 

CL = 

¯̄x − (A 3 ̄n × C 4 ̄n ̂  σ ) (9) 

ote that A 3 ̄n is a customary constant for considering a previously 

efined distance from CL ( Montgomery, 2007 ). It can be calculated 

y Eq. (10) . 

 3 ̄n = 

n̄ 

C 4 ̄n 
√ 

n̄ 

(10) 

ince the thresholds apply to the whole population, the formula 

ould consider the average of all the sample sizes for calculating 

he A 3 ̄n and C 4 ̄n factors. Therefore: n̄ = A v erage of sample sizes =
N 
m 

which is equal to the total number of observations divided by 

he total number of samples. 

In this example, the value of m is equal to 13. Also, the number

f observations has been indicated: N = 31 . Therefore, n̄ = 

31 
13 ≈ 3 . 

nd, A 3 ̄n = 1 . 94 . 

efinition 8 (Upper Control Limit (UCL)) . As shown in Eq. (11) , the

alue of UCL sets the bar for activities with the maximum amount 

f variations with regard to the whole population. 

CL = 

¯̄x + (A 3 ̄n × C 4 ̄n ̂  σ ) (11) 

As a result, activities with x̄ greater than UCL are considered 

ere as the zones where their behavior causes the process to be 

nstable. This could lead to bottlenecks at these activities while 

xecuting the process. Such activities would generate behaviors 

hat do not normally correspond to the behavior of the whole pop- 

lation. 

Consequently, in this example, these thresholds are equal to: 

• UCL = 14 . 22 + (1 . 94) × (0 . 88) × (6 . 42) ≈ 26 
• CL = 14 . 22 
• LCL = 14 . 22 − (1 . 94) × (0 . 88) × (6 . 42) ≈ 4 

efinition 9 (Statistically stable state) . Finally, Eq. (12) determines 

hich activities express a stable behavior in accordance with the 

hole recorded information in an event log. 

CL < x̄ i < UCL (12) 

ormally, if all of the recorded activities in an event log express 

 stable behavior, no activity will be removed. This could imply 

hat the process is running smoothly. But, if a variation exists in 

he behaviors, it will be detected by means of the two thresholds 

UCL, LCL). 

Definition 10 determines which activities will be considered 

ithin the modeled common behaviors of the event log. 

efinition 10 (Descriptive reference process model P). The de- 

criptive reference process model or the “common behaviors” will 

ontain activities that respect the following conditions: 

[ ∀ A ∃ s ] ∧ [ ∀ s ⊆ S ∃ x̄ s ] 
∴ 

(A ∈ P) → [ LCL < x̄ s < UCL ] ∪ [ UCL ≤ x̄ s ] 
(13) 

Definition 10 states that for each activity ( A ), a vector of rela-

ion frequencies with other activities exists. This vector is defined 

s a sample of the population (footprint matrix). And, for each 

ample there exists a x̄ s which represents the average of relation 

requencies. Therefore, the corresponding activity to the sample ( s ) 

ill be represented in the descriptive reference process model ( P) 

f the average of its relation frequencies is between the two thresh- 

lds (considered as stable behavior) or if it is greater than the UCL 

alue (considered as the hot zones). 

The steps of the stable heuristic miner algorithm could be real- 

zed by the set of algorithms presented in the ( Appendix A : “extract

he thresholds” and Appendix B : “identify the status of activities”). In 

he next section, we will present the final outcome. 
7 
.2. Result of the illustrative example 

Concerning the example in Section 3.1.2 , Fig. 5 illustrates the 

escriptive reference process model for the example log ( L ). This 

odel represents the stable behavior of the example event log ( L ). 

ed activities ( a and l) correspond to high variation in behaviors. 

wo activities ( m and k ) are removed with lower significance level 

or the general behavior. 

. Experimentation and results 

.1. The case study scenario 

During this concrete example, 7 scenarios in 7 departments of 

 living lab of Toulouse hospital university were simulated. The 

election of those departments and patient profiles was mainly 

ased on the possibility and acceptance of the hospital in giving 

s the privilege to use its facilities and resources. The Toulouse 

ospital University is located in south of France with several es- 

ablishments. More than 3900 physicians and 11,600 hospital staff

re welcoming around 280,0 0 0 patients annually. It has been es- 

imated that more than 80 0,0 0 0 medical appointments are being 

egistered each year. Approximately, 400 patients are admitted to 

he emergency department daily. 

This experiment resulted in the generation of location data 

rom the simulated healthcare processes of 261 patients. The sta- 

le heuristic miner algorithm is developed within an application 

nown as R.IO-DIAG, 4 to visualize the results of the experiment. 

There were two objectives for this experiment: first, to obtain 

 descriptive reference process model showing the normal and 

table pathways for all the departments in the hospital. This al- 

ows to visualize the zones that are being occupied by patients 

uring the execution of healthcare processes. Secondly, experts 

ried to evaluate the descriptive reference process model for each 

epartment. 

Several steps were taken prior to begin the experiment. At first, 

he primary information such as the maps, resources, zones infor- 

ation, and required patients’ information were gathered. Then, 

his information was imported into the localization system. Be- 

inning the experiments at this point would have led to a set of 

rimary event logs which are not easily understandable, as they 

ould only contain the location data of objects ( x, y, z). Therefore 

hese event logs needed to be prepared before importing them into 

.IO-DIAG by defining what the objects in the process were and 

hich location data corresponded to which zone. In addition, the 

ctivity that could occur in a zone needed to be defined too. There- 

ore, a primary knowledge was given to the system regarding these 

eeds. This configuration is explained in previous research works 

 Araghi et al., 2018 ). 

Later on, each patient received a tag. Each tag had an identifica- 

ion number corresponding to the different patients. After gather- 

ng the location data, the event logs were interpreted by the R.IO- 

IAG location data interpreter. Meanwhile, the event logs were re- 

https://research-gi.mines-albi.fr/display/RIOSUITE/R-IOSuite+Home
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Fig. 6. A screen shot presenting patient pathways of all of the departments extracted by the classic heuristic miner algorithm. 
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ned. This action was necessary because several cases did not have 

omplete data regarding their processes. 

.2. Process discovery results and discussion of the experiment 

After this step, we asked the domain experts to analyze and di- 

gnose the potential problems in patient pathways by using both 

he classic heuristic miner and the novel stable heuristic miner al- 

orithms. 

.2.1. Analysis of all the departments 

There were 36 activities registered in the main event log. At 

rst, the experts used the classic heuristic miner algorithm. As pre- 

ented in Section 2.2 , this algorithm allows experts to extract sev- 

ral process models that each shows a different version of patient 

athways. For instance, Fig. 6 is one of the outcomes of the classic 

euristic miner algorithm by showing 100% of the registered infor- 

ation and it’s not suitable nor visible for further analyses. 

Other results of the classic heuristic miner algorithm for this 

ase study can be seen online as supplementary materials (which 

re presented within this page 5 ). 

Each model represents different amount of information. After- 

ards, we asked experts to highlight which model represents the 

ommon pathways of patients; so, we can use that model as a 

eference to diagnose potential problems and deviations in pa- 

ient processes. As can be seen in those models (presented as sup- 

lementary online materials), each expert had different opinions 

bout determining the common pathways. In line with what we 

ave observed in the literature, we confirm that such a decision 

s completely dependent on the expert’s experience. Moreover, the 

ecision to select among these process models leads to uncertainty 

or the further diagnostic actions. We asked the experts to high- 

ight (in the model they had chosen) any abnormal behavior that 

ould lead to certain inefficiencies in the process; such as, an in- 

rease in waiting time, or poor resource allocation. The experts 

ailed to reach a decision on these matters by using the results of 

he classic algorithm. 

This observation led us to conclude that the classic heuristic 

iner helps to obtain a rapid illustration of patient pathways with 
5 https://research- gi.mines- albi.fr/display/gindresearch/Classic+Heuristic+Miner+ 

esults 

f

p

t

c

8 
ome flexibility to visualize the present activities in patient pro- 

esses. However, our knowledge to diagnose the patient pathways 

s limited at this point. 

Following these results, we proposed to the experts to use the 

table heuristic miner algorithm. Consequently, the novel method 

epresented one model that is extracted and evaluated by the logic 

f statistical stability phenomenon (c.f. Section 2.3 ). Fig. 7 shows 

his model, which represents the common pathways of patients. 

hanks to the result of this algorithm, the experts observed which 

ctivities are normally present in patient pathways. 

This model permits the experts to detect unstable activities and 

ones in the patient pathways, which was not possible by using 

he classic algorithm. As shown in Table 3 , out of the total number

f 36 activities in the event log, 16 are detected with an instability 

ower than the lower control limit (LCL) and are not shown in the 

escriptive reference process model (c.f. Fig. 7 ). From the 20 re- 

aining activities in the descriptive reference process model, 7 are 

onsidered as hot zones, which impose high instability and varia- 

ion to the normal behavior of the process. 

These hot zones are indicated in red. These are the activities 

hose average behavior values are higher than the upper control 

imit (UCL). This implies that such activities represent unusual and 

ccentric behaviors in the log and this could lead to future prob- 

ems. 

To exemplify these statements, the “waiting_room_5” in 

ig. 7 provides a good illustration. Based on the statistical stability, 

ne can ensure that the probability of receiving the same behav- 

or for this activity is high and all the activities related to “wait- 

ng_room_5” could be regenerated in the future. Therefore, the ex- 

erts can plan and allocate the requirements for running such ac- 

ivities in the future. On the other hand, hot-zone activities such as 

Registration_Normal” indicate that these activities are generating 

ehaviors that are beyond the usual and stable behavior of all the 

ther defined activities. 

As a further illustration, the incoming flow into the “Registra- 

ion_Normal” activity can be considered in Fig. 7 . This activity is 

hown as a “hot zone” imposing high instability into the process. 

he reason is that 193 cases enter this activity, which is higher 

han most of the existing flows in the process. Also, this outgoing 

ow has a high variation in comparison with the outgoing flows 

rom “Registration_Normal”. Therefore, such behaviors could cause 

otential bottlenecks in this activity and consequent instability in 

he process. Similarly, the activity “Waiting_room_Reception” re- 

eives 261 cases and has two outgoing flows with values of 193 

https://research-gi.mines-albi.fr/display/gindresearch/Classic+Heuristic+Miner+results
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Fig. 7. A screen shot presenting the descriptive reference process model (common pathways) of all of the departments extracted by the stable heuristic miner algorithm. 

Table 3 

A comparison between the number of observed behaviors in the event log (of all the departments) 

and the modeled behaviors in the descriptive reference process model. 

Lower than LCL In the stable state Higher than UCL 

Number of activities 16 13 7 

Total number of modeled activities 20 

Total number of observed activities 36 
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nd 68. As shown in Fig. 7 , the variation among these behaviors 

s significant. As a result, the unstable behavior of this activity is 

etected. These are the types of information and analyses that the 

table heuristic miner algorithm promptly provides for the experts 

hat the classic heuristic miner algorithm could not. 

.2.2. Analyzing one department 

To address the second objective of this experiment, the pro- 

esses of each department were investigated individually. As an 

xample, the process model shown in Fig. 8 can be considered. It 

hows the patient pathways for the urology department according 

o the total existing events. This model is extracted by the classic 

euristic miner. Similarly to the example that represented the to- 

al pathway of patients (c.f. Fig. 8 ), it is not clear which level of

nformation represents the stable behavior. 
9 
In order to mine the descriptive reference process model for 

his department, the stable heuristic miner was used. Fig. 9 shows 

he common behavior of patients within the urology department 

f the hospital. From the 14 existing activities in the event log, 

3 of them are shown within the descriptive reference process 

odel of the urology department. Ten of these activities were 

etected as activities with stable behaviors and 3 of them (“En- 

er_consultation”, “Registration_Normal”, and “Exit”) show high in- 

tability in comparison with the total number of recorded behav- 

ors. 

In addition to these analyses, experts assumed that urology pa- 

ients would carry out their administrative activities completely 

ithin the department. Despite this fact, one of the interest- 

ng results here is the absence of the checkout activity (“Check- 

ut_Office_UROLOGY”) at the end of the descriptive reference pro- 
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Fig. 8. The process model presenting patient pathways of the urology department discovered by the classic heuristic miner approach (thresholds set to show 100% of 

registered information). 

Fig. 9. A screen shot presenting the descriptive reference process model of the patients’ pathway in the urology department extracted by the stable heuristic miner algorithm. 

Activities with high instability are indicated by a red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

10 
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Table 4 

A comparison between the number of observed behaviors in the event log of the Urology department 

and the modeled behaviors in the descriptive reference process model. 

Lower than LCL In the stable state Higher than UCL 

Number of activities 1 10 3 

Total number of modeled activities 13 

Total number of observed activities 14 
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ess model. The extracted model by the classic approach (c.f. Fig. 8 ) 

ailed to detect such a shift in the process. But, by analyzing the 

iscovered common pathway (c.f. Fig. 9 ), experts were able to 

ighlight that patients did not often perform their checkout activ- 

ties in this department. This was detected as an odd behavior in 

atient pathways. Such a deviation needed further analysis to find 

ts causes. In this case, the deviation was due to the lack of re-

ources in the other departments. Therefore, patients of other de- 

artments were being asked to perform their checkout in the urol- 

gy department. This caused this zone to become vulnerable, lead- 

ng to an unstable behavior. As a result, waiting time increased for 

his activity and consequently some patients avoided performing it 

ltogether. Table 4 details the differences between the result of an- 

lyzing Urology event log by using both classic heuristic miner and 

he new stable heuristic miner algorithms. 

. Discussion 

Acquiring such diagnoses is only feasible if experts are sure that 

he extracted model does indeed show the descriptive reference 

rocess model of patients within this department. This was not a 

ossible outcome of previous algorithms that used location data of 

atients to discover the common pathways. In this paper, the ap- 

lication of the stable heuristic miner helped experts to detect the 

eviating behaviors automatically and to capture an image of what 

atients do normally, even if the experts did not particularly have 

omplete knowledge of the process. Possessing such information 

llows the healthcare experts to avoid dissatisfying experience for 

atients. Moreover, it helps to detect patients who showed up for 

nscheduled activities. 

There are evident advantages in discovering a descriptive ref- 

rence process model Augusto et al. (2019) ; Estrada-Torres et al. 

2021) ; Leno, Polyvyanyy, Dumas, La Rosa, and Maggi (2020) . With 

n eye on diagnosing patient pathways, it is vital for the overall 

bjective of our research to extract the common pathways of pa- 

ients. Nonetheless, current methods did not satisfy our require- 

ents. We are not only looking at visualizing the patient pathways, 

ut we need to capture a reference model from location event logs 

o we can use them in diagnostic and simulation of patient path- 

ays. 

Indeed it is a difficult task to evaluate such an approach with 

uantified measures. Additionally, there is no common framework 

or evaluating such process discovery algorithms ( De Cnudde et al., 

014; Estrada-Torres et al., 2021 ). Certain research works used con- 

ormance checking methods to evaluate the outcomes of the pro- 

ess discovery algorithms ( Augusto et al., 2018 ). However, applying 

hese methods (such as: precision, generalization, simplicity, recall, 

tness ) for evaluating stable heuristic miner imposed more ambi- 

uity since they are not considering the stability among their eval- 

ation criteria. It is a difficult task to find a trade off among all 

hese criteria. In addition, the stable heuristic miner uses a method 

o evaluate statistical stability in an event log. Challenges regarding 

valuation of process discovery algorithms have been seen in other 

esearch works as well. For instance in Estrada-Torres et al. (2021) , 

he authors tried to extract a reference model so they can use it 

s a simulation model. They have applied Split Miner on multi- 

le event logs in different domains so they can evaluate their ap- 
11 
roach. At the end, they have mentioned the need for an empirical 

valuation since it is not evident how the current quantifiable cri- 

eria can evaluate the goodness of fit of a reference model. Due to 

uch issues, we have used several event logs to discover the com- 

on patient pathways. Evaluating the new algorithm by using ran- 

om available event logs is not a good practice in our case. Since, 

e are required to ensure that the system is an example of sys- 

ems with emergent properties . This is a prerequisite to apply this 

ethod. 

The presented analyses of the case study are due to the fact 

hat we tried to manifest the basic definition of statistical stability 

henomenon within the context of a location event log. Therefore, 

e looked at the event log as a population, and we considered 

ach activity as a sample of the population. Then, we examined 

he statistical stability among relative frequency of events, average 

nd standard deviations of direct relations between each activity. 

ig. 10 , presents a SWOT analysis (strength, weakness, opportunity, 

hreat) Brender (2006) to elaborate on the results of the experi- 

ent while applying the new algorithm. 

It is important to mention that the presented approach in this 

aper is not considered as a solution for an optimization prob- 

em. Previous works have applied meta-heuristic methods to ad- 

ress the challenges of process discovery algorithms ( van der Aalst, 

e Medeiros, & Weijters, 2005 ). In case of our research, it is not 

ossible to define the patient pathways discovery as an optimiza- 

ion problem. This is due to the nature of these processes. Patients 

an make different decisions to change their pathways and modify 

he objectives of a process. 

. Conclusion 

In the context of monitoring and diagnosing patients processes, 

his paper sought a solution to overcome the challenge of auto- 

atically discovering a descriptive process model that could serve 

s the common patient pathways. To do so, the classic heuristic 

iner ( Weijters & Ribeiro, 2011 ) was initially selected in this re- 

earch work due to its abilities in providing satisfactory results for 

onitoring healthcare processes ( Rojas et al., 2016 ). Subsequently, 

n obstacle emerged in selecting a model as a reference. Tradi- 

ionally, this algorithm uses manually configurable thresholds for 

xtracting different levels of information from an event log. Pre- 

iously, this has been mentioned in the literature as an unsolved 

ssue for this algorithm ( De Cnudde et al., 2014 ). To address this is-

ue, this paper applies the statistical stability phenomenon to eval- 

ate the stability within all the existing relationships among activi- 

ies. As a result, the new stable heuristic miner algorithm discovers 

he descriptive reference process model and removes the need to 

anually determine the thresholds. 

We evaluated this algorithm by using an experiment. As men- 

ioned in Sections 4.2.1 and 4.2.2 , the classic approach resulted in 

he need to analyze several complicated models, and there was un- 

ertainty about how to decide which model could be represented 

s the reference of common behaviors according to the total reg- 

stered events. In contrast, the new stable heuristic miner algo- 

ithm directly provided the process which its structure was eval- 

ated based on the statistical stability phenomenon. Moreover, if 
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Fig. 10. A SWOT analysis of the proposed method in this paper. 
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he model was unstable, the algorithm revealed which activities 

ere causing such instabilities. 

.1. General limitations 

Wearable devices have shown many advantages in the health- 

are sector ( Corchado, Bajo, de Paz, & Tapia, 2008; Thibaud, Chi, 

hou, & Piramuthu, 2018; Zhou & Piramuthu, 2010 ). However, simi- 

ar to most process mining applications, the proposed method here 

s also highly dependent on the quality, accuracy and reliability of 

he data. For instance, in a location event log, some cases may have 

isruptions in their data. 

The stable heuristic miner algorithm needs to be improved so 

hat it can discover the decision points (gateways) from the loca- 

ion data. This is a major challenge due to the lack of sufficient in-

ormation in location event logs. It could be achieved by integrat- 

ng other information from the hospital information system. Cur- 

ently, this method considers activities representing the stable be- 

avior of patients. However, it should also examine the statistical 

tability among edges (connections between activities). This limi- 

ation is visible in Fig. 5 , where the edges illustrate a complex be-

avior. Additionally, it is important to evaluate this method outside 

he context of healthcare. However, as it was mentioned earlier in 

he introduction, the current method is addressing one challenge 

f a bigger research question in diagnosing patient pathways. 

The true nature of statistical stability phenomenon is still some- 

ow unclear. Nevertheless, lack of a clear comprehension of a 
12 
hysical phenomenon is not a barrier for constructing theories to 

anifest them ( Gorban, 2017 ). 

.2. Future perspective 

It is important to devise a quantifiable evaluation method for 

iscovering statistical stability in an event log. We have also made 

n assumption that data is normally distributed. The distribution 

f data can be at a constant change, which is valid for any dy- 

amic systems with emergent properties. As a result, we believe 

t is necessary to adjust the algorithm to adapt its metrics with 

ifferent distributions as well. Future works may also include ap- 

lying stability for evaluating edges behavior, and finding the dis- 

ance between the descriptive reference process model and the in- 

ividual patient pathways. This could be useful for diagnosing the 

auses behind the detected deviations. Furthermore, integrating 

ospital information systems with location data for extracting the 

ecision points could be a valid target for future research works. 

his would help to extract an executable semantic which could be 

sed for the simulation of patient pathways as business process 

odels. 
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ppendix A 

Algorithm 1: Stable heuristic miner. 

Result : The statistically stable state: UC L, LC L, C L, Sample.At t r 

Input F oot print .Mat rix ; m = length(Activity.Set) 

Total.Observations = sum(rowSums(Footprint.Matrix != 0)) 

n̄ = (T otal.Observ ations/m ) � average size of the 

population 

� get the size and mean of each activity 

for i in Footprint.Matrix[1:n] do 

Sample.Attr = data.frame 

(size=rowSums(Footprint.Matrix[i,j] !=0, 

x̄ i = rowMeans(Footprint.Matrix[i,j] !=0, 

σ = rowStandardDeviations(Footprint.Matrix[i,j]!=0); 

mutate(Sample.Attr, C 4 n ) � Eq. 5 

end 

Sample.Attr[ size, σ, C 4 n , ̄x i ] � structure of Sample.Attr 

for i in Sample.Attr$ ̄x i do 

¯̄x = (sum(Sample.Attr[ size ∗ x̄ i ])/ sum (size ) ) 

end 

for i in Sample.Attr[1:n] do 

mutate(Sample.Attr, σi /C 4 n i ) 

end 

for i in Sample.Attr[1:n] do 

ˆ σ = ((1 /m ) ∗ sum (σi /C 4 n i )) � Eq. 6 

end 

A 3 ̄n = 3 /C 4 ̄n ∗ sqrt( ̄n ) 

CL = 

¯̄x � devise the thresholds 

UCL = 

¯̄x + (A 3 ̄n ∗ C 4 ̄n ∗ ˆ σ ) 

LCL = 

¯̄x − (A 3 ̄n ∗ C 4 ̄n ∗ ˆ σ ) 

ppendix B 

Algorithm 2: Stable heuristic miner. 

Result : Descriptive reference process model (as a directed 

graph) 

Input UC L, LC L, C L , Sample.At t r, Act i v it y.Set 

� considering the average of relative frequencies for each 

sample 

for i in Sample.Attr[ ̄x i ] do 

Unstable.Activities = x̄ i ≤ LCL ; 

Stable.Activities = LCL < x̄ i < UCL ; 

Hot.Zones = UCL ≤ x̄ i 
end 

� select the nodes 

Stable.Nodes = match(Stable.Activities, Activity.Set) 

Hot.Nodes = match(Hot.Zones, Activity.Set, Color.Attr= “red”) 

All.Nodes = combine(Stable.Nodes, Hot.Nodes) 

� select the edges and devise the graph 

edges = match(Footprint.Matrix, All.Nodes) 

devise.graph(All.Nodes, edges) 
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