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a b s t r a c t
In this work a modelling approach for predicting density distribution in the vicinity of two facing grooves on a
parallelepiped compact surface, is developed and results are validated using X-ray tomography. An experimental
hybrid procedure is proposed to calibrate Drucker-Prager Capmodel material parameters which are numerically
validated and considered for FEM compaction simulation of grooved specimen using Arbitrary Lagrangian
Eulerian method (ALE). Results of the predicted density show high values under the groove and low values on
its flanks and shoulders. Similar findings were observed in the literature. Additionally, a strong density gradient
between the facing grooves is predicted and validated, demonstrating that the calibrated model achieved good
agreements with the measurements.
The proposed hybrid calibration procedure could be used for other shape and size die not benefiting from radial
instrumentation. Moreover, the ALE approach demonstrated its robustness in solving die powder compaction in
presence of strong mesh distortions.
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1. Introduction

Powder die compaction is a widely used manufacturing process
either for ceramic, metallic or pharmaceutical powders [1]. This
forming process is particularly useful for the production of complex
shaped compacts. However, the final shape and relative density
gradients in the compact are, among others, dependent on the com-
plex geometry of the punches used, their loading motion [2] and
wall friction [3]. Understanding of the development of stress and
relative density fields in compaction process is thus a crucial step
for improving product quality.

In pharmaceutical applications, various experimental and numerical
studies have examined the impact of thepunch shape surface on the rel-
ative density distribution. Some of themwere particularly conducted on
concave or convex punch surfaces [4–8,10,12]. In their study, Eiliazadeh
et al. [4] investigated the axial and radial movement of powder and the
density distribution using a coloured layer technique and digital image
analysis. Results showed that the tablets produced were highly non-
homogeneous with high density regions in the “top corners” adjacent
to the moving punch surface. In the work of Sinka et al. [5], the non-
destructive technique based on X-ray tomography was developed to
. Alonso Aruffo).
measure density distribution of capsule shape tablets. They showed
high relative density values in the valley of the singularity and low
values on the shoulders demonstrating the complexity of the material
flow in the “died corners”. Later, Djemai et al. [6] investigated the effect
of wall friction and tablet shape on the density distribution using the
nuclear magnetic resonance technique for 3D mapping of the relative
density distribution. This method, which does not require special cali-
bration, as the signal is directly proportional to the porosity for the im-
aging conditions used, was validated by direct comparison with X-ray
computed tomography. The results clearly showed the effect of wall
friction on density distribution by curved faced tablets using clean and
pre-lubricated tooling. Using experimental and finite element model-
ling (FEM), Wu et al. [7], Han et al. [8] and Kadiri et al. [10] examined
the effect of convex punch shape on relative density distribution and
showed that the FE modelling of the density and stress distribution
could be used to analyse and explain the capping and lamination ten-
dency. Krock et al. [12] examined numerically the influence of friction
on the compaction process for the flat-face, flat-face radius edge, and
standard convex tablets highlighting the effects of friction change on
the tablet shape. Analysing the impact of three punch shapes used in in-
dustrial standards, Diarra et al. [13] showed that, flat and convex tablets,
even obtained with the same compaction force, do not have the same
density at the centre of the compact furthermore, the tablets presented
differences in their tensile strength. Again, this result revealed the large
variation of density in tablets compacted with the deepest punch.
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Fig. 2. Geometrical characteristics of grooved punch surface (due to the symmetry, only
one groove is showed).
Other studies were dedicated to the effect of embossed punch fea-
tures on tablet compaction and density distribution [9,11,14]. Han
et al. [9] compared results from 2D-SAXS (small-angle X-ray scattering)
with FE simulations of compacts with complex shapes, including cylin-
drical flat-faced punch and shaped lower punch with different central
protrusions. Variation in compaction behaviour were observed due to
friction against the die walls and the punch shape. Laity [11] studied
the effect of embossed punch features on the compaction behaviour of
cylindrical tablets manufactured with single or double furrows across
the tablet surface. Results of relative density showed higher values at
the furrow base and smaller ones near the furrow's flanks. The case of
double furrows showed smaller density regions around the furrows,
which were prone to cracking and flanking. In their study of modelling
the formation of debossed features on a pharmaceutical tablet,
Swaminathan et al. [14] investigated by FEmodelling and X-ray tomog-
raphy the relative density distribution in the vicinity of a debossed fea-
ture defined by five geometrical parameters. A parametric study on the
compaction behaviour was also proposed. Both measurements and nu-
merical predictions showed the smallest relative density values at the
shoulders of the debossed feature and the largest values at the base of
the valley.

Regarding the FE simulation of debossed tablets in [9,14], the au-
thors considered a modified density-dependent Drucker-Prager Cap
(DPC) model, which was calibrated based on the standard calibration
method [15]. The elastic material properties were also density-
dependent. The FE simulation in [9] was conducted in 2D on cylindrical
compacts of 10mm of diameter and 4.92 and 5.54 mm of height. Cylin-
drical, hemispherical and conical protrusion singularities were consid-
ered at lower punch and the compaction was done with a flat punch
on the powder top. The simulation used an implicit procedure in
Abaqus/Standard and mesh to mesh solution mapping. Opposite to
this, the simulation method in [14] was based on the explicit method
in Abaqus/Explicit using an adaptive mesh algorithm. The simulation
was conducted in 2D on cylindrical compact of 3.5 mm of diameter
and 1.46 mm of height. The upper punch with embossed part of
0.29 mm of stroke width and 0.18 mm of stroke depth indented the
powder during the compaction. The impact of parameters describing
the singularity shape on relative density distribution was also investi-
gated. In these studies, the size and shape of the simulated compacts
was similar to the compacts that were used to calibrate the DPC
parameters.

The present work focuses on the compaction behaviour of powder
using a parallelepiped die with large dimensions (x = 1.56 cm, y =
5.4 cm and z = 4.0 cm) and two facing punches with grooved parts
Fig. 1. Design of parallelepiped die compaction
and chamfers (Figs. 1, 2). This configuration has not been studied yet
due to the die shape, punch surface and powder height, which requires
the simulation of large strain making the implicit computation, com-
monly used for die compaction simulations, inefficient. An alternative
was to develop FE simulations using the ALE explicit method in
Abaqus/Explicit. This method is generally recommended for solving
problems of large distortions as in the rolling compaction process
[16–20]. Regarding material parameters calibration of the DPC model,
a hybrid calibration procedure is proposed as the parallelepiped die
does not benefit from radial instrumentation and DPC data of a cylindri-
cal small compact [23,24] cannot be scaled for the simulation of the
large parallelepiped compact. The obtained data was numerically vali-
dated and used for compaction simulation of the grooved specimen.
The predicted relative density was validated based on measurements
of X-ray tomography.

This paper is organized as follows: Section 2 describes the DPC
model and the proposed hybrid procedure for the calibration ofmaterial
parameters. Elastic behaviour is considered linear, isotropic and
density-dependent. The methodology of its characterization is de-
scribed. Finally, wall friction coefficient and the procedure of its deter-
mination is presented. Section 3 presents results of DPC material
parameters of microcrystalline cellulose powder vivapur®102 (MCC),
elastic properties and wall friction according to relative density. For
this, compaction behaviour of MCC considered both tests in instru-
mented cylindrical die and parallelepiped die as described in the previ-
ous section. At end of this section, X-ray tomography characterization
and mapped relative density are presented. Section 4 details finite ele-
ment simulation of the compaction performed using the ALE explicit
method. Then, numerical validation of DPC material parameters of
MCC is presented in the case of flat punches. For the case study of the
grooved compact, Von-Mises stress and relative density distributions
of the grooved compact are presented and discussed. Thereafter,
system, a) and grooved punch surface, b).



comparison of the predicted and measured relative density distribu-
tions using X-ray tomography is discussed. Section 5 summarizes the
main conclusions.

2. Constitutive model and calibration

2.1. Drucker-Prager/cap model

The DPC model used herein is defined by three surfaces in pressure
and Von-Mises stress space [21] (Fig. 3):

- A linear shear failure surface Fs which is expressed as:

q−ptanβ−d ¼ 0 ð1Þ

Where: β is the material friction angle, d is the material cohesion,

p ¼ 1
3 trace σð Þ is the hydrostatic stress and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 S : Sð Þ

q
is the module

of the deviatoric stress or Von-Mises stress. The deviatoric stress is de-
fined as:

S ¼ σ−pI

where: σ is the stress tensor and I is the identity matrix.

- An elliptical cap surface Fc governing the material densification de-
fined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pað Þ2 þ Rq

1þ α−α=cosβ

� �2s
−R dþ patanβð Þ ¼ 0 ð2Þ

where: R is a material parameter controlling the eccentricity of the cap,
α,is a transition surface radius usually lower than 0.05 and fixed to 0.03
in this work 1þ α− α

cosβ ≅1
� �

. pa is the hydrostatic pressure
representing the abscissa value of the intersection of the cap and the
shear surfaces (or transition surface Ft) (Fig. 3). Its value is calculated
using Eq. (3):

pa ¼
pb−Rd

1þ Rtanβ
ð3Þ

– A transition surface connecting the shear surface Fs and the
cap surface Fc with a smooth transition facilitating numerical
computation.
Fig. 3. DPC yield surfaces in hydrostatic pressure and Von Mises stress space. Three tests
are required for parameters calibration: diametrical failure, axial failure and die
compaction with radial stress measurement.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pað Þ2 þ q− 1−

α
cosβ

� �
dþ patanβð Þ

� �2s
−α dþ patanβð Þ

¼ 0 ð4Þ

In the context of elastic-plastic modelling, the DPC model requires a
hardening law of the cap surface determined by the relation of hydro-
static compression yield stress pb, and the volumetric plastic strain

εplvol, which is related to the material density as:

εplvol ¼ ln
ρ0

ρr

� �
ð5Þ

where ρ0 is the initial relative density (loose material) and ρr is the
current relative density.

For each relative density (or εplvol), within the region limited by the
three yield surfaces, the material can be represented by an isotropic
and elastic behaviour. However, when the stress state reaches the cap
yield surface, the cap can expand as the volumetric plastic strain in-
creases. This is the situation of the die compaction during loading. How-
ever, when the stress state reaches the shear failure surface (unloading),
the material undergoes plastic volumetric increase (known as dilation
mechanism) [22].

2.2. Hybrid procedure for DPC calibration

One of the difficulties of using the DPC model is the number and the
complexity of the experiments required to calibrate its parameters. Five
parameters are required: d and β for shear failure surface and pa, R and
pb for the cap yield surface.

A standard procedure of calibration for cylindrical die compaction
was proposed in [15]. The calibration of shear surface parameters (d,
β) requires at least two tests with distinct failure stress states (i) a dia-
metrical failure test and (ii) an axial failure test of cylindrical compacts.
Both tests demand preparation of cylindrical compacts of different
densities respecting the same experimental conditions (lubrication
and aspect ratio of height to diameter of the compact). However, the
calibration of pa, R and pb requires tests of die compaction and
measurement of radial stress (or radial to axial stress ratio).

2.2.1. Calibration of cap surface (pa, R and pb)
Based on previousworks [23,24], the hydrostatic pressure pa, the cap

eccentricity R and the hydrostatic yield pressure pb are computed as:

pa¼
−3q−4d tanβ þ 9q2 þ 24dqtanβ þ 24pq tan 2β þ 16q2 tan 2β

	 
1=2
4 tan 2β

ð6Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p−pað Þ

3q

s
ð7Þ

pb ¼ pa þ R dþ patanβð Þ ð8Þ

Where: p and q are hydrostatic pressure andVon-Mises stress ((p, q)
belongs to the cap surface (Fig. 3)) are computed from axial pressure σz

and normal pressure, σr using instrumented cylindrical die [25].
Moreover, in die compaction, radial stress is often expressed using a
proportional relationship in loading step (σr = γ(ρr)σz)) and a linear
relationship (σr = a(ρr)σz + b(ρr)) in the unloading [26]. These
relationships were primarily proposed in [27] for a constant density.

In their study of compaction using a cubic die, Zhang et al. [28] con-
sidered a linear relationship betweenσz and normal stress σx (or σy) for
the loading case where the ratio γ ¼ σx

σ z
was considered constant along z

and x directions and independent of the geometry of the die wall. In the
present work, using a parallelepiped die which was not instrumented,



the constants γ and a were determined from the axial stress/radial
stress of loading unloading curve resulting from measurements of
compaction cycle using instrumented cylindrical die. The measured,
data which depend on the relative density, were considered for the
compaction of the parallelepiped die as described below. Mainly, γ
will be used to compute hydrostatic pressure and Von Mises stress
(Eqs. (12) and (13)) from axial stress of the parallelepiped die
compaction and a will be required to compute the elastic properties,
Young Modulus and Poisson ratio (Eqs. (18) and (19)). The resulting
DPC parameters and elastic properties will be numerically validated as
described in the Section 4.

Based on the above considerations the normal stress on the parallel-
epiped die wall, can be expressed as:

For loading:

σx ¼ γσ z ð9aÞ

For unloading:

σx ¼ a σ z þ b ð9bÞ

Where: σz, is the axial pressure of the compaction using the
parallelepiped die.

In the parallelepiped die compaction, hydrostatic pressure and Von
Mises stress can be expressed as [28]:

p ¼ 1
3

σ z þ 2σ xð Þ ð10Þ

q ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σy−σ z
	 
2 þ σ z−σ xð Þ2

q
ð11Þ

Using Eq. (9a) in Eqs. (10) and (11), we obtain:

p ¼ 1
3
σ z 1þ 2γð Þ ð12Þ

q ¼ σ zffiffiffi
2

p 1−γð Þ ð13Þ

Eqs. (9a), (12) and (13) will be used for the calibration of material
model parameters pa, R and pb using Eqs. (6), (7) and (8).

2.2.2. Calibration of shear surface (d,β)
Calibration of shear surface consists of the determination of the co-

hesion d and the internal friction angle β using diametrical failure and
axial failure tests on cylindrical compacts. Because of the simplicity of
the cylindrical geometry, d and β can be determined.

To characterize diametrical strength versus relative density, the dia-
metrical failure force Fd of manufactured cylindrical compacts of MCC
powder (Table 1) using lubricated die, was measured using the Erweka
TBH30 apparatus. The strength was then computed using the Eq. (14).

σd ¼ 2Fd=πDH ð14Þ

Where: D, is the compact diameter and H the compact height.
For axial strength characterization, compacts with an aspect ratio

“height/diameter” ~2 was considered. For that, a set of compacts were
manufactured using a lubricated die of 11.28 mm of diameter and
90 mm of height mounted on an Instron press equipped with a load
force of 30 kN and a LVDT sensor for the displacement of the punch.
Table 1
Basic characteristics of powder MCC vivapur® 102.

Material Average particle size
(μm)

Bulk density
(g/cm3)

True density
(g/cm3)

MCC (vivapur® 102) 130 0.32 1.599 ± 0.0012
The mass was varied to obtain compacts with 22 mm of height. The
resulting relative densities were in the range 0.4–0.9. Themanufactured
compacts were then subjected to an axial fracture test using the Instron
press, paying attention to lubricate the punch and the support with
magnesium stearate to reduce the barrel effect. Then, for each tablet
the axial strength was computed from the axial strength force Fc using
Eq. (15).

σ c ¼ 4Fc=πD2 ð15Þ

In the above equation, D is the compact diameter.
The cohesion, d and internal friction angle, β were computed using

Eqs. (16) and (17) [8,23].

d ¼ σ cσd

σ c þ 2σd

ffiffiffiffiffiffi
13

p
−2

� �
ð16Þ

β ¼ tan−1 3 σ c þ dð Þ
σ c

� �
ð17Þ

From the measured diametrical and axial strength (Eqs. (14) and
(15)), the cohesion and internal friction angle can be computed using
Eqs. (16) and (17) as a function of relative density.

2.3. Elastic properties

The elastic behaviour of the material is considered linear, isotropic
and density-dependent. In the parallelepiped die compaction, elastic
properties (Young modulus, E and Poisson ratio, ν) were expressed as
functions of bulk modulus and shear modulus leading to the following
equations [23,28].

dσ x

dσ z
¼ ν

1−ν
ð18Þ

dσ z

dεz
¼ E 1−νð Þ

1þ νð Þ 1−2νð Þ ð19Þ

Where: dσ z
dεz

is the slope of the unloading curve (εz, σz) of the

compaction using the parallelepiped die and dσ x
dσz

¼ a , is the slope of
the axial stress/radial stress of unloading (instrumented cylindrical die).

Consequently, the Poisson ratio is computed using Eqs. (18) and
(9b) as a function of relative density and the Young modulus is com-
puted using Eq. (19) and the slope of the axial strain/axial stress of
unloading of the compaction cycle using the parallelepiped die.

2.4. Wall friction

Friction between powder and tools (die and punch) influences the
density distribution of the compact [29,30]. The characterization of
die-wall friction coefficient requires measurements of radial stress and
transmitted stress to the lower punch. Different equations to compute
die-wall friction coefficient exist. However, the main ones used are
based on the Janssen-Walker model [31] and on Cedergren's et al.
work [32]. Both equations give similar results.

As previouslymentioned, theparallelepipeddiewasnot instrumented
to measure radial stress and transmitted stress to lower punch. In this
study, die-wall friction coefficient was determined from measurements
of the compression using the instrumented cylindrical die.

Based on this and using the equation proposed in [32], the wall fric-
tion coefficient was then determined as a function of normal pressure,
σr using Eq. (20).

μ ¼ σ z−σ lð ÞπR2

2πRHσ r
ð20Þ



Fig. 4. Compaction cycle of MCC using instrumented cylindrical die.

Fig. 6. Radial stress to axial stress ratio, γ (loading) and a (unloading) versus relative
density.
Where: R=D/2, is the internal radius of the die andH is the compact
height, (σz − σl)πR2 and 2πRHσr are the mean tangential force and the
mean normal force to the cylindrical die wall respectively.
3. Results

3.1. Material parameters of MCC vivapur® 102

In this work, a microcrystalline cellulose powder (vivapur® 102,
from J.S. Retenmaïer) was used asmodelmaterial for the calibration pa-
rameters of the DPC model, elastic properties and wall friction coeffi-
cient. These parameters were calibrated using the hybrid procedure
described in Section 2. The basic characteristics of the powder are sum-
marized in Table 1 [33]. The particle sizewasmeasured by Laser diffrac-
tion using a Mastersizer 2000 (Malvern Instruments, UK). The bulk
density was determined from the measurement of a powder mass and
a known volume of powder using a measuring cell. The true density
was determined by using a helium pycnometer (AccuPyc 1330,
Micromeritics Instrument Corp., USA).
Fig. 5. Radial stress versus axial stress of loading unloading. γ is the slope of the loading
and a is the slope of the unloading.
3.2. Axial stress/radial stress of loading unloading

A cylindrical die of 1cm3 of volume (11.28 mm in diameter and
10 mm in height), instrumented to measure radial stress [25] was
used to determine γ and a (Eq. (9)) from the axial stress/radial stress
of the compaction of MCC. A typical compaction cycle of MCC vivapur®
102 at 110 MPa, is plotted in Fig. 4, showing the pressure on the upper
and lower punch and radial stress. The axial stress/radial stress during
the loading-unloading is shown in Fig. 5.

The slopes γ= dσ r
dσ z

(loading) and a =dσ r
dσz

(unloading) were deter-
mined for compacts manufactured with relative density in the range
0.42–0.84. Before each compaction, the die-wall was manually lubri-
cated with magnesium stearate. Results of γ and a are plotted in Fig. 6
and a linear fit was considered (Eqs. (21) and (22)) with a confidence
of 87% and 76% respectively.

γ ρrð Þ ¼ 0:43 ρr þ 0:38 ð21Þ

a ρrð Þ ¼ 0:47 ρr þ 0:08 ð22Þ

Fig. 7 shows the wall friction coefficient of the compaction without
die lubrication using Eq. (16). Its variation with normal stress, σr

shows a mean value of ca. 0.35 which is in agreement with the data
obtained in [5,7] for similar material behaviour (Avicel PH102).
Fig. 7. Die wall friction coefficient versus normal stress (cylindrical die).



Fig. 8. Diametrical strength vs relative density.

Fig. 10. Computed material cohesion vs relative density (Eq. (16)).
3.3. Cohesion and internal friction angle

Results of the diametrical and axial strength (Eqs. (14) and (15)) are
plotted in Figs. 8, 9 according to the relative density. Thedatawerefitted
using exponential equations shown in the same figures. The cohesion, d
and internal friction angle, β were then computed using Eqs. (16) and
(17) using the fitted equations. The evolution plotted in Figs. 10, 11
shows agreements with the data obtanined in [8] for MCC Avicel PH
101 and in [14] for MCC Avicel PH 200.

3.4. Hardening and cap surface parameters

A parallelepiped die volume of 33.7 cm3 (Lx=1.56 cm, Ly=5.4 cm,
Lz=4.0 cm)was used for the compaction of flat and grooved compacts.
The system is composed of a fixed lower punch, amovable upper punch
and a guiding system to align the active punchwith the die. The set was
fixed to an Instron uniaxial press equipped with a load sensor of 30 kN
(Fig. 1a). The grooved punch and its geometrical surface characteristics
are shown in Fig. 1b and 2.

Using the parallelepiped die and two flat punches, the MCC powder
was compacted at different load forces (5–30 kN). The die and punches
were manually lubricated using magnesium stearate. Compaction cy-
cles at different relative density are shown in Fig. 12. The compacts'
properties are listed in Table 2 showing the characteristics of the
compacted samples. The relative density variation (expansion) after
ejection is also included in the table and is lower than 8%.
Fig. 9. Uniaxial strength vs relative density.
As previously mentioned, the parallelepiped die was not instru-
mented and the ratio of radial stress to axial stress, γ (Eq. (17)) was
used. Based on this, hydrostatic pressure, p and Von-Mises stress, q was
then calculated using Eqs. (12) and (13) and the axial compaction pres-
sure shown in Table 2. Then, the hydrostatic pressure pa, the eccentricity
R, and the hardening yield function pb, were computed using Eqs. (6),
(7) and (8) respectively. Results of pa and R are plotted in Figs. 13 and
14 and the evolution of pb versus plastic volumetric strain, εvolpl is
represented in Fig. 15. Similar results of the eccentricity were obtained
in [8]. However, comparatively to the data of the literature [5,8,14], a
scale effect due to the compact size can be observed for pa and pb.
Indeed, due to the punch surface size and the powder bed height, in
this study, the applied pressure was in the range 5–35 MPa and the vol-
umetric plastic strain in the range 0.69–1.2, whereas for a punch of 1cm2

of surface and a powder bed of 10mmof height, the pressurewould vary
between 50 and 300 MPa and plastic volumetric strain between 1.1 and
2. This is probably one reason explaining why FEM simulations of com-
paction are often performed with the same geometry and size to the
used die for DPC parameters' calibration.

3.5. Elastic properties

Using Eq. (18), the Poisson ratio was computed from the constant
a= dσ r

dσz
in the range 0.42–0.84 of relative density. The results of Poisson
Fig. 11. Computed internal friction angle vs relative density (Eq. (17)).



Fig. 12. Compaction cycles of MCC using lubricated parallelepiped die and flat punches.

Fig. 13. Hydrostatic pressure, pa vs relative density.

Fig. 14. Eccentricity, R vs relative density.
ratio which are plotted in Fig. 16, are in the range 0.19–0.34. Then, using
the Eq. (19), the Young modulus was computed from the determined
Poisson ratio and the slope dσz

dεz
of the unloading curve (εz, σz) shown

in Fig. 17. The resulting Young modulus is plotted in Fig. 18 according
to the relative density and was fitted using the equation E =
0.23e2.55ρr with 96% of confidence. The Poisson ratio varied similarly to
other microcrystalline cellulose data published in the literature,
whereas the Young modulus peaked at 3 GPa for a full dense material,
which was lower in comparison to published data [5,8,14]. This may
also be a scale effect as the Young modulus is measured from stress
and strain.

Based on the above hybrid procedure of DPC parameters calibration
and elastic properties, the obtained data have to be validated. For this,
FEM simulations, using ALE Adaptive meshing (Section 4), of the com-
paction in the parallelepiped die using flat punches were performed
and the predicted compaction force and mean relative density were
compared to the measurements. Results of the DPC parameters valida-
tion are presented in Section 4. Then, simulations of loading and
unloading compaction using grooved punches were developed using
the validated DPC parameters. The predicted results of relative density
are compared to the density distribution resulting from the X-ray
microtomography analysis, described below.

3.6. X-ray microtomography characterization of grooved compact

The X-ray microtomography (XRμCT) characterization technic is
based on the measurement of the energy attenuation, which is propor-
tionally related to the density [34]. This technicwas used to characterize
Table 2
Compaction data of MCC in parallelepiped die and flat punches.

Load
(kN)

Pressure
(MPa)

Mass
(g)

Compact
height
(mm)

Plastic
volumetric
strain

Relative density in
die,
“ρr,in” (g/cm3)

5 5.84 10.45 19.4 0.69 0.420
7 8.17 10.44 17.53 0.79 0.465
10 11.67 10.42 16.06 0.88 0.508
13 15.17 10.43 15.01 0.97 0.553
15 17.51 10.46 14.57 0.99 0.565
18 21.01 10.43 13.77 1.05 0.598
20 23.34 10.50 13.38 1.08 0.620
30 35.02 10.46 11.98 1.20 0.700
the density distribution of a parallelepiped grooved compact of MCC
manufactured at 20kN without die lubrication (Fig. 19). The scan was
performed in the central part of the compact along the “y” axis, repre-
senting a volume of 2.68 cm3 (1.56 × 1.40 × 1.34 cm3). XRμCTmeasure-
ments were carried out using an Easytom 130 tomograph with an
acceleration voltage of 60 kV and an intensity of 133 μA. The resulting
spatial resolution was 17.1 μm. The transmitted X-rays were recorded
for 1440 projections per 360° rotation. These images were collected to
reconstruct the 3D greyscale image of the compact. Image processing
was carried out using the open source software ImageJ [35].
Relative density out of
die
“ρr,out” (g/cm3)

Expansion
(ρr,in-ρr,out)/
ρr,initial

Compact
width, x
(mm)

Compact
depth, y
(mm)

0.398 0.06 15.79 54.26
0.440 0.06 15.80 54.30
0.479 0.06 15.80 54.27
0.514 0.08 15.80 54.28
0.530 0.07 15.81 54.30
0.560 0.07 15.79 54.25
0.580 0.07 15.75 54.28
0.650 0.08 15.78 54.26



Fig. 15. Hydrostatic yield function, pb vs plastic volumetric strain, εvolpl. .
Fig. 17. dσ z

dεz
vs relative density (parallelepiped die).
To map the relative density distribution of the X-ray tomography
image of the grooved compact, a calibration method correlating grey
level values (ranging from 0 to 255) to relative density of cylindrical
compacts was used [36–38]. The section below, details the used proce-
dure.
3.7. Relative density calibration

For a better homogeneity of compact density, MCC powder was
mixed with 0.5% w/w of magnesium stearate in a Turbula mixer (type
T2F Willy A. Bachofen, Basel, Switzerland) at 50 rpm for 5 min. Then,
eight cylindrical compacts of 0.343 ± 0.004 g of mass and 11.28 mm
of diameterweremanufactured at different compaction pressures rang-
ing from 7 MPa to 171 MPa using a uniaxial press (Frogerais® OA,
France). The density of each compact was calculated from the mass
and volume after ejection and ranged from 0.43 to 0.87. X-ray tomogra-
phy images of the compacts were generated by the Easytom 130
tomograph using the same parameters as for the grooved compact ex-
periment. For each compact, the mean grey level value was computed
for 50 slices along the thickness in the central part of the sample. To re-
duce thewall friction effect, a circular section of 11mmof diameter was
considered for each slice. The averaged grey level value of all the slices
representing an equivalent analysed volume of 80.76 mm3, was
Fig. 16. Poisson ratio versus relative density (cylindrical die).
computed. A calibration curve correlating the grey level value to relative
density of the compact is plotted in Fig. 20 and fitted using a linear
equation:

GL ¼ 173:57ρr þ 82:428 ð23Þ

Where: GL represents the grey level value.
To map the relative density of the grooved compact using the X-ray

tomography image, the Eq. (23) will be used.

3.8. Mapped relative density distribution of the grooved compact

Using the X-ray tomography image of the grooved compact shown
in Fig. 19, the density distribution was generated on a 2D section (x,z)
in the middle of the compact along the “y” axis. Each pixel grey level
was associated to a relative density using Eq. (23). The resulting relative
density distribution is plotted in Fig. 21. Other 2D slices located on either
side of themiddle plane and far from the ends showed similar distribu-
tions, indicating a uniform density with respect to the variable y. As the
finite element simulation was performed on a 2D plane (x,z) assuming
plane strain hypothesis, the comparison between predictions and mea-
surements were made in 2D.

It can be observed, in Fig. 21, that the density distribution is high at
the base of the grooves (0.72 under the upper groove and 0.68 above
Fig. 18. Young modulus against relative density (computed from Poisson ratio and dσ z
dεz

).



Fig. 21. Density distribution on a slice of the grooved specimen compacted at 20kN (slice
in the middle of the compact along y axis) at pixel scale.

Fig. 19. Grooved compact manufactured at 20 kN with unlubricated die (mean relative
density = 0.58).
the lower). At the powder-punch and powder-die contacts, the densi-
ties register slightly lower values (0.618–0.622). The central part of
the compact shows a large homogeneous areawith intermediate values
of relative density of 0.55 on average. However, the lowest values are lo-
calized at the shoulders of the grooves (0.49–0.55). This behavioural re-
sult is a consequence of the complex flow around a steep singularity,
which leads to a weak powder filling. The obtained results present sim-
ilar tendencies as in [9,14], particularly around the embossed part of the
punch. However, as the grooves are located, in this case study, close to
the die (instead of the centre of the compact as in [9,14]) with the pres-
ence of chamfers, the resulted relative density is not symmetrical on ei-
ther side of the groove either at the top or the bottom of the compact.

4. Finite element method for compaction simulation

4.1. Description of the simulation procedure using ALE adaptive meshing

The Finite Element Method using Lagrangian approach is largely
used for simulation of die compaction [1–13]. In this approach, in
which elements are always full of a material, the mesh moves and dis-
torts with the physical material and deform as the material deforms.
This solution is particularly suitable for solid-mechanics analysis. How-
ever, large deformations may lead to non-conforming elements due to
Fig. 20. Grey level, GL vs relative density, ρr.
large distortions. This approach is implemented in Abaqus/standard
using implicit analysis, which leads to an accurate solution but with a
large computational cost per increment. In order to reducemesh distor-
tion and thus maintain a high-quality mesh, even under severe defor-
mations, [9,39] used a “mesh to mesh solution mapping”. This solution
consists of results transfer to manually created new mesh between
steps through a restart instruction. However, this procedure is time con-
suming and the transfer of solutions may introduce artificial diffusion,
causing loss of accuracy.

By contrast, in FE simulations using the Eulerian approach, the nodes
are fixed in space involving a control volume and the material flows
through the elements that do not deform. The advantage of the Eulerian
formulation is that no element distortions occur. Thismethod is suitable
for fluid mechanics.

To capture the advantages of Lagrangian and Eulerian approaches,
Arbitrary Lagrangian Eulerian (ALE) method is implemented in
Abaqus/Explicit. In this approach, the finite element mesh is neither at-
tached to the material nor fixed in space. The mesh, in general, has a
motion that is independent of the material. This approach was used in
[14] for simulating the formation of debossed features, in [40] for
metal cutting process and in themain simulations of rolling compaction
processes [16–20]. As for the Lagrangianmethod, largemesh distortions
and contact problems can occur due to the large deformations so that a
convergent solution cannot be achieved. To reduce mesh distortion, an
adaptive meshing procedure is proposed in Abaqus/Explicit during the
step. Some options have to be determined to ensure a convergent solu-
tion, particularly, the remeshing frequency and the sweep, which define
themaximumnumber of remeshing in a step. The advantage of this pro-
cedure is that the adapted mesh is generated by Abaqus and the data
transfer between the degenerated mesh and the created mesh is also
performed in Abaqus, which reduces the intervention time of the user.

In this study, finite element simulation of the compaction was per-
formed using the Arbitrary Lagrangian-Eulerian approach (ALE) imple-
mented in Abaqus/Explicit v6.18. Details on the main data of the
simulation are given below.

All the parameters of DPC for MCC powder were expressed as func-
tions of the relative density and included in the input file. The computa-
tion of the relative density from the plastic volumetric strain was
implemented into a user subroutine VUSDFLD in Abaqus/Explicit.

Simulations of the compaction were conducted using firstly the par-
allelepiped die and flat punches for the validation of DPC parameters.
The validated parameterswere then used for the compaction simulation
of the grooved compact. Finally, the predicted and measured relative
density using X-ray tomography (Fig. 21) were compared. In the simu-
lations, the punches and die were considered as rigid bodies. The initial
volume of the powder was of 1.56 × 5.4 × 4.0 cm3. The resulting initial



Table 3
Minimal, maximal relative density and hydrostatic pressure: sensitivity to mesh
refinement.

Number
of
elements

Minimal
relative
density

Maximal
relative
density

Minimal
pressure
(MPa)

Maximal
pressure
(MPa)

12,194 0.4279 0.7750 0.815 24.70
19,152 0.4199 0.7631 0.685 25.27
25,283 0.3933 0.7405 0.559 25.71
34,048 0.4268 0.7482 0.896 26.79
relative density was of 0.195 (relative density of loose powder). Due to
the large dimension of the compact in the “y” axis, the dependency of
the displacement field on the “y” coordinate is neglected in the main
central part (far from the boundary conditions) and the 3D solution
was approximated by a 2D solution assuming plane strain conditions
in (x,z). A symmetry plane in the “x” directionwas also considered to re-
duce the computation cost. The powder domain was meshed using
plane strain element CPE4R with reduced integration. Fig. 22 and
Fig. 2 show the meshed part and the grooved punch characteristics re-
spectively. To prevent the element distortions resulting from the large
strain, the adaptive meshing algorithm in Abaqus/Explicit was em-
ployed. To check and update themesh, the sweep and the frequency pa-
rameters were fixed at 3 and 5 respectively. For the powder-die and
powder-punch contact model (contact pair in Abaqus/Explicit), the ki-
nematic contact algorithm proposed in Abaqus was considered for the
mechanical constraint. The friction coefficientwas 0. for the compaction
with the flat punches (validation of DPC parameters and elastic proper-
ties) and 0.35 for the compaction with the grooved punches. For both
simulations using flat and grooved punches, the powder compaction
was made by moving the upper punch downward in the z direction
using the samemaximal displacement as in the experiments and by re-
moving it upward to simulate the loading and unloading. Due to numer-
ical convergence difficulties, the ejection did not totally succeed. As
simulation results are mesh-dependent, various simulations were per-
formed by increasing the number of elements (12194, 19152, 25283,
34048). The evolution of maximum and minimum relative density, as
well as the minimum and maximum hydrostatic pressure, are
Fig. 22. Initial mesh.
summarized in Table 3, showing a stable solution with respect to the
usedmesh. The presented results were obtained using 19125 elements.

4.2. Validation of DPC parameters

To validate the DPC parameters and elastic properties, simulations of
loading and unloadingwere conducted using the parallelepiped die and
the flat punches without friction. The predicted “axial displacement-
compaction force cycles” for 10kN, 20kN and 30kN are superimposed
to the experimental cycles in Fig. 23. Themean squared error calculated
between experimental and numerical results is of 0.092 and the stan-
dard deviation of 0.303. As it can be seen in Fig. 23, predictions are in
good agreements with the experiments, confirming that the explicit in-
tegrationmethod usingALE adaptivemeshing procedure allowed to ob-
tain a good prediction of the compaction force. Moreover, for the 20kN
compacted sample, the predicted relative density varied in the range
(0.604–0.616), presenting a spread of 1.9%. The computed average rela-
tive density (0.612) presented a relative deviation of 5% compared to
the measured average relative density (0.58) after ejection of the com-
pact. This deviation is acceptable in regard to the lack of ejection simu-
lation.

4.3. Simulation results using grooved punches

As mentioned previously loading and unloading simulations using
grooved punches were performed using constant die wall friction
(μ= 0.35). The axial upper punch displacement was as in the compac-
tion experiment for 20 kN.

In Fig. 24 (resp. Fig. 25) the isovalues of axial displacement (resp. ra-
dial displacement) after unloading are plotted. The axial displacement
shows deformed bands under the compaction and the impact on their
shapes resulted from the indentation of the powder by the punch
groove. The radial displacement provides information on the powder
Fig. 23. Comparison of numerical and experimental compaction cycle (average relative
density ρr = 0.68 at 30kN, ρr = 0.61 at 20kN and ρr = 0.53 at 10kN).



Fig. 25. Displacement along x axis [m] (unloading).

Fig. 24. Displacement along z axis [m] (unloading).
flow into the vicinity of the upper groove. In fact, when the upper punch
groove indented the material, the powder is forced to flow into either
side of the groove, which lead to a complex powder flow into the
dead zones under the groove shoulders.

The results of Von-Mises stress and relative density distributions for
loading and unloading are plotted in Fig. 26 and Fig. 27 respectively.

For the loading step, Von-Mises stress distributions varied from
1.68 to 51.27 MPa showing high values under the upper groove
(47.1–51.3 MPa) and relatively lower ones on the top of the bottom
groove (30.6–34.7 MPa). Low shear stresses are obtained in the central
part of the compact and on either side of the groove flanks and shoulders
(1.6–9.9MPa). Overall, the steep shape of the groove, its location near the
die, and the presence of chamfer results in a complex shear gradient field
in the vicinity of the grooves. In order to reduce the shear gradient in this
zone, an optimization of the groove's shape and spatial position respect-
ing the end use of the product, constitutes a future challenge.

The elastic recovery after the unloading (Fig. 26) leads to a stress re-
distribution in the sample with a decrease of the shear stress in the vi-
cinity of the grooves. There is also no shear field symmetry on either
side of the groove.

Regarding the relative density distribution (Fig. 27), results show the
highest values under the upper groove (0.73–0.76) and the lowest ones
in the area between the die and the lower groove flank (0.42–0.5). A
large part, which extends from the compact centre to the die has a ho-
mogeneous relative densitywith ameanvalue of 0.58. Themain relative
density gradient is localized between the grooves, in the vicinity of the
grooves and in the closed area between the grooves and the chamfers.
Similar to the shear stress, a low relative density is predicted on the
flanks and the shoulders of the grooves, showing the complex powder
flow around the groove leading to a weak filling of the shoulders. As
can be seen, a poor drop of density was observed during the unloading
phase as the relative density is computed from the plastic volumetric
strain (user subroutine VUSDFLD), which underwent a small variation
during the unloading.

4.4. Comparison with the literature

Comparison to existing numerical works in the literature is always a
tedious matter due to differences in geometry, numerical methods,
model parameters, friction conditions or the boundary conditions that
might influence the comparison. We preferred focalizing the compari-
son on the global tendencies of the material flow around the geometri-
cal singularity of the active punch surface such as the grooves used in
this work, a debossed feature in [14] or a cylindrical protrusion in [9].
As previously presented, the predictions showed results of high and lo-
calized relative densities under the groove with a rapid decay away
from it, and lower densities at the shoulders. Similar tendencies were
also obtained in modelling the formation of debossed features of phar-
maceutical tablets [14]. In that work, the embossed part, having a
shape close to that of a sphere, was at the centre of the cylindrical tablet,
far from the die andwithout a chamfer that strongly influenced thema-
terial flow in the vicinity. Other differences concerned the design of the
groove such as the stroke angle, which was fixed in this study to 10°
(>25° in [14]) leading to a dead area at the shoulders of the groove,
less accessible to powder filling. Results found in [9] also presented sim-
ilarities to the present work, in particular for the density distribution in
the vicinity of the protrusion where the density was higher at the top of
the protrusion and lower on theflanks. In thiswork, the protrusion con-
cerned the lower punch, which was positioned at the compact centre
and the active punch was flat. However, the stroke angle could be con-
sidered as 0° which accentuates the difference of the density at the top
of the protrusion and on the flanks. Another detail concerns the numer-
ical method that can influence the results. Indeed, in [9], the authors
performed an implicit discretization of the boundary problem using
Abaqus/Standard and a ‘mesh-to-mesh solution mapping’ to update
distortedmeshes, while in [14], an explicit procedure in Abaqus/Explicit
was used with an adaptive meshing algorithm to allow the elements to
conform to large deformations. This method seems to be similar to the
ALE approach used in our study, but few details were given for a deeper
comparison.

4.5. Confrontation of FEM predictions and X-ray microtomography
measurements

For the comparison between FEM prediction and XRμCT measure-
ments, regions of interest in the surrounding of the upper and lower



Fig. 26. Von Mises stress [Pa] distribution for loading (left) and unloading (right).

Fig. 27. Relative density distribution after loading (left) and unloading (right).
punch and in the centre of the compact are defined and shown in Fig. 28.
For X-ray measurements, relative density values were computed for
each region corresponding to 10 × 10 pixels equivalent to a surface of
170 μm × 170 μm. This surface corresponded to approximately
6 × 3 = 18 finite elements on which the predicted relative density
was averaged. Table 4 displays results of relative density measured
using X-ray tomography and predicted by FEM simulations.

Results in Table 4 show a good agreement between FEM predictions
and tomography results. However, for regions in the upper and lower
edges (zones 6,7 and 13,14), a deviation is to be noted, varying between
4.6% and 7.7%.
Another zone located between the two facing grooves is also of high
interest because it concentrates the main variations of density and un-
dergoes tension in the unloading step, which can lead to damage initia-
tion. Accurate predictions of relative density in this zone can help, for
future work, to optimize the groove's shape by decreasing the intensity
of the density gradient. The predictions and measurements of relative
density along z axis between the faced grooves are plotted in Fig. 29.
The plot showed a density gradient for both the measurements and
the predictions with high densities at the grooves and lower densities
in the middle. A relative difference of the density between the middle
and the groove base of 23.6% was estimated. As can be seen in Fig. 29,



Fig. 28. Zones localization (numbers in Table 4) for relative density confrontation of FEM
predictions and X-ray tomography results.

Table 4
Relative density values for numerical prediction and X-ray tomography results. (averages
in the different zones defined in Fig. 28).

Zone X ray tomography – relative
density

FEM simulation – relative
density

Relative
deviation (%)

1 0.725 0.712 1.79
2 0.537 0.534 0.55
3 0.595 0.596 0.16
4 0.684 0.665 2.77
5 0.602 0.610 1.32
6 0.609 0.576 5.41
7 0.622 0.577 7.70
8 0.684 0.672 1.75
9 0.522 0.526 0.76
10 0.501 0.487 2.79
11 0.524 0.507 3.24
12 0.493 0.487 1.21
13 0.609 0.580 4.76
14 0.618 0.589 4.69
15 0.591 0.598 1.18
16 0.556 0.577 3.77

Fig. 29. Comparison of relative density distribution along z axis between two facing
grooves.
FEM predictions and measurements of the relative density are in good
agreement. The mean squared error calculated between experimental
and numerical results is of 0.00066 and the standard deviation of
0.0257.

5. Conclusion

This work presents an FEM modelling for predicting density dis-
tribution in the vicinity of two facing grooves and in between, on a
parallelepiped compact with validation of the results using X-ray to-
mography analysis.

An experimental hybrid procedure for the identification of DPC pa-
rameters and elastic properties powder is described. The hybrid proce-
dure combines measurements from instrumented cylindrical die with
radial stress, and compaction cycles of flat parallelepiped compacts.
The obtained properties were numerically validated and then were
used to investigate the development of stress and relative density fields
in the grooved parallelepiped compact. FEM simulations of loading and
unloading were performed using the Arbitrary Lagrangian Eulerian
method (ALE) developed in Abaqus/Explicit. As the DPC material pa-
rameters are density-dependent, a user subroutinewas developed. Fur-
thermore, as simulation results aremesh-dependent, optimizedmeshes
were sought for a stable solution.

Results of the compaction simulation showed a good agreement be-
tween the measured and predicted densities particularly in the vicinity
of the grooves. Analysis of themeasured and predicted density distribu-
tion showed a large variation between the two facing grooveswith high
values at the grooves and lower values in the middle. The resulting
strong density gradient constitutes a fragility in this zone which can
lead to cracking under tension during unloading for brittle materials.

More generally, it was shown that the proposed hybrid calibration
procedure allowed to access to DPC material parameters and elastic
properties for FEM compaction simulation using a large parallelepiped
die not benefiting from radial instrumentation. Its use could be ex-
tended to other die shapes and sizes by considering radialmeasurement
using an instrumented cylindrical die. Moreover, the explicit method
using the ALE approach demonstrated its robustness for solving powder
die compaction problems when strong distortions are inevitable using
an implicit method.
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