C. T. Pinheiro, V. R. Ascensão, C. M. Cardoso, M. J. Quina, and L. M. Gando-ferreira, An overview of waste lubricant oil management system: physicochemical characterization contribution for its improvement, J. Clean. Prod, vol.150, pp.301-308, 2017.

A. Kupareva, P. Mäki-arvela, and D. Y. Murzin, Technology for rerefining used lube oils applied in Europe: a review, J. Chem. Technol. Biotechnol, vol.88, pp.1780-1793, 2013.

A. Tabasová, J. Kropá?, V. Kermes, A. Nemet, and P. Stehlík, Waste-to-energy technologies: impact on environment, Energy, vol.44, pp.146-155, 2012.

A. Singhabhandhu and T. Tezuka, The waste-to-energy framework for integrated multi-waste utilization: waste cooking oil, waste lubricating oil, and waste plastics, Energy, vol.35, pp.2544-2551, 2010.

H. Mensah-brown, Re-refining and recycling of used lubricating oil: an option for foreign exchange and natural resource conservation in Ghana, ARPN J. Eng. Appl. Sci, vol.10, pp.797-801, 2015.

S. Submilch, One's Waste, Another's Treasure. Hydrocarbon Engineering, pp.141-143, 2019.

P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Appl. Catal. A Gen, vol.407, pp.1-19, 2011.

T. Dickerson and J. Soria, Catalytic fast pyrolysis: a review. Energies, vol.6, pp.514-538, 2013.

A. Nzihou, B. Stanmore, N. Lyczko, and D. P. Minh, The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review, Energy, vol.170, p.174, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01969554

R. Khan, I. Ahmad, H. Khan, M. Ismail, and K. Gul, Production of diesel-like fuel from spent engine oil by catalytic pyrolysis over natural magnetite, J. Anal. Appl. Pyrolysis, vol.120, pp.493-500, 2016.

I. Ahmad, R. Khan, M. Ishaq, H. Khan, M. Ismail et al., Valorization of spent lubricant engine oil via catalytic pyrolysis: Influence of barium-strontium ferrite on product distribution and composition, J. Anal. Appl. Pyrolysis, 2016.

K. A. Tripathi, D. K. Ojha, and R. Vinu, Selective production of valuable hydrocarbons from waste motorbike engine oils via catalytic fast pyrolysis using zeolites, J. Anal. Appl. Pyrolysis, vol.114, pp.281-292, 2015.

G. Lagaly, M. Ogawa, and I. Dekany, Clay mineral organic interactions, Handbook of Clay Science, pp.309-377, 2006.

F. Bergaya, A. Aouad, and T. Mandalia, Pillared clays and clay minerals, Handbook of Clay Science, pp.393-421, 2006.

B. K. Theng, Clay Mineral Catalysis of Organic Reactions, LLC, 2018.

I. G. Hakeem, F. Aberuagba, and U. Musa, Catalytic pyrolysis of waste polypropylene using, Ahoko kaolin from Nigeria. Appl. Petrochemical Res, vol.8, pp.203-210, 2018.

M. Sulman, Y. Kosivtsov, E. Sulman, V. Alfyorov, Y. Lugovoy et al., Influence of aluminosilicate materials on the peat low-temperature pyrolysis and gas formation, Chem. Eng. J, vol.154, pp.355-360, 2009.

A. M. Elfadly, I. F. Zeid, F. Z. Yehia, M. M. Abouelela, and A. M. Rabie, Production of aromatic hydrocarbons from catalytic pyrolysis of lignin over acid-activated bentonite clay, Fuel Process. Technol, vol.163, pp.1-7, 2017.

Y. Kar, Catalytic cracking of pyrolytic oil by using bentonite clay for green liquid hydrocarbon fuels production, Biomass Bioenerg, vol.119, p.14, 2018.

A. Veses, M. Aznar, J. M. López, M. S. Callén, R. Murillo et al., Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials, Fuel, vol.141, pp.17-22, 2015.

C. Belviso, F. Cavalcante, A. Lettino, and S. Fiore, A and X-type zeolites synthesised from kaolinite at low temperature, Appl. Clay Sci, pp.162-168, 2013.

N. M. Musyoka, R. Missengue, M. Kusisakana, and L. F. Petrik, Conversion of South African clays into high quality zeolites

, Appl. Clay Sci, vol.97, pp.182-186, 2014.

J. Q. Wang, Y. X. Huang, Y. Pan, and J. X. Mi, New hydrothermal route for the synthesis of high purity nanoparticles of zeolite y from kaolin and quartz, Microporous Mesoporous Mater, vol.232, pp.77-85, 2016.

L. Ayele, J. Pérez-pariente, Y. Chebude, and I. Díaz, Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin

, Appl. Clay Sci, 2016.

E. Mohiuddin, Y. M. Isa, M. M. Mdleleni, N. Sincadu, D. Key et al., Synthesis of ZSM-5 from impure and beneficiated Grahamstown kaolin: effect of kaolinite content, crystallisation temperatures and time, Appl. Clay Sci, vol.119, pp.213-221, 2016.

E. B. Johnson and S. E. Arshad, Hydrothermally synthesized zeolites based on kaolinite: a review, Appl. Clay Sci. 97, vol.98, pp.215-221, 2014.

J. Yuan, J. Yang, H. Ma, C. Liu, and C. Zhao, Hydrothermal synthesis of analcime and hydroxycancrinite from K-feldspar in Na 2 SiO 3 solution: characterization and reaction mechanism, RSC Adv, vol.6, pp.54503-54509, 2016.

J. E. Oh, P. J. Monteiro, S. S. Jun, S. Choi, and S. M. Clark, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers, Cem. Concr. Res, vol.40, pp.189-196, 2010.

M. M. Treacy and J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites, 2001.

X. Ma, J. Yang, H. Ma, C. Liu, and P. Zhang, Synthesis and characterization of analcime using quartz syenite powder by alkalihydrothermal treatment, Microporous Mesoporous Mater, vol.201, pp.134-140, 2015.

T. Abdullahi, Z. Harun, and M. H. Othman, A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process, Adv. Powder Technol, vol.28, pp.1827-1840, 2017.

I. Caballero, F. G. Colina, and J. Costa, Synthesis of X-type zeolite from dealuminated kaolin by reaction with sulfuric acid at high temperature, Ind. Eng. Chem. Res, vol.46, pp.1029-1038, 2007.

M. Niwa, N. Katada, and K. Okumura, Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties, 2010.

A. Charkhi, M. Kazemeini, S. J. Ahmadi, and H. Kazemian, Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties, Powder Technol, vol.231, pp.1-6, 2012.

H. Karge, M. Hunger, and H. Beyer, Characterization of zeolitesinfrared and nuclear magnetic resonance spectroscopy and X-ray diffraction, Catalysis and Zeolites Fundamentals and Applications, pp.198-326, 1999.

S. O. Otieno, F. O. Kengara, J. C. Kemmegne-mbouguen, H. W. Langmi, C. B. Kowenje et al., The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz rich natural clays, Microporous Mesoporous Mater, vol.290, p.109668, 2019.

E. R. Shilpa and V. Gayathri, Encapsulation of Cu(II)[2-(2?-hydroxyphenyl)benzimidazole]2 within zeolite nano-cavity: structural properties and its catalytic activity towards phenol and styrene oxidation, J. Environ. Chem. Eng, vol.4, pp.4194-4206, 2016.

F. Rouquerol, J. Rouquerol, K. S. Sing, P. L. Llewellyn, and G. Maurin, Adsorption by Powders and Porous Solids Principles, Methodology and Applications, 2014.

L. B. Bortolatto, R. A. Boca-santa, J. C. Moreira, D. B. Machado, M. A. Martins et al., Synthesis and characterization of Y zeolites from alternative silicon and aluminium sources, Microporous Mesoporous Mater, vol.248, pp.214-221, 2017.

J. Guimarães, C. Fernandes, D. Melo, S. Peres, L. D. Souza et al., Production of light hydrocarbons from pyrolysis of heavy gas oil and high density polyethylene using pillared clays as catalysts, J. Anal. Appl. Pyrolysis, vol.126, pp.70-76, 2017.

N. Miskolczi, F. Buyong, A. Angyal, P. T. Williams, and L. Bartha, Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude, Bioresour. Technol, vol.101, pp.8881-8890, 2010.

A. De-stefanis, P. Cafarelli, F. Gallese, E. Borsella, A. Nana et al., Catalytic pyrolysis of polyethylene: a comparison between pillared and restructured clays, J. Anal. Appl. Pyrolysis, vol.104, pp.479-484, 2013.

G. Dou and J. L. Goldfarb, In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment, Fuel, vol.195, pp.273-283, 2017.

J. G. Speight and D. I. Exall, Refining Used Lubricating Oils, 2014.

L. R. Rudnick, Lubricant Additives Chemistry and Applications, 2017.

W. Mahari, W. A. Zainuddin, N. F. Chong, C. T. Lee, C. L. Lam et al., Conversion of waste shipping oil into diesel-like oil via microwave-assisted pyrolysis, J. Environ. Chem. Eng, vol.5, pp.5836-5842, 2017.

S. Shiung, R. Keey, C. Kui, and H. A. Chase, Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char

. Catal-b-environ, , vol.176, pp.601-617, 2015.

H. Abrevaya, Cracking of naphtha range alkanes and naphthenes over zeolites, From Zeolites to Porous MOF Materials, pp.1244-1251, 2007.

O. D. Mante, F. A. Agblevor, S. T. Oyama, and R. Mcclung, Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y-zeolite in two reactor configurations, Fuel, vol.117, pp.649-659, 2014.

A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenerg, vol.38, pp.68-94, 2012.

R. Zafar and J. S. Watson, Adsorption of tetradecanoic acid on kaolinite minerals: using flash pyrolysis to characterise the catalytic efficiency of clay mineral adsorbed fatty acids, Chem. Geol, vol.471, pp.111-118, 2017.

J. G. Speight, The Chemistry and Technology of Petroleum, 2014.

A. Ayano?lu and R. Yumruta?, Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis, Energy, vol.103, pp.456-468, 2016.