L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez et al., Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science, J. Mater. Res. Technol, vol.1, pp.42-54, 2012.

B. P. Conner, G. P. Manogharan, A. N. Martof, L. M. Rodomsky, C. M. Rodomsky et al., Making sense of 3-D printing: Creating a map of additive manufacturing products and services, Add. Manuf, vol.1, pp.64-76, 2014.

W. E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform, vol.23, pp.1917-1928, 2014.

W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen et al., The status, challenges, and future of additive manufacturing in engineering, Comput. Aided Des, vol.69, pp.65-89, 2015.

A. Gisario, M. Kazarian, F. Martina, and M. Mehrpouya, Metal additive manufacturing in the commercial aviation industry: A review, J. Manuf. Sys, vol.53, pp.124-149, 2019.

T. Debroy, H. L. Weia, J. S. Zubacka, T. Mukherjee, J. W. Elmer et al., Additive manufacturing of metallic components-Process, structure and properties, Prog. Mater. Sci, vol.92, pp.112-224, 2018.

J. L. Bartlett and X. Li, An overview of residual stresses in metal powder bed fusion, Add. Manuf, vol.27, pp.131-149, 2019.

G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J. W. Lee et al., Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion, Mater. Sci. Eng. A, vol.729, pp.64-75, 2018.

J. W. Lee, M. Terner, S. Y. Jun, H. U. Hong, E. Copin et al., Heat treatments design for superior high-temperature tensile properties of Alloy 625 produced by Selective Laser Melting, Mater. Sci. Eng, vol.2020, 139720.
URL : https://hal.archives-ouvertes.fr/hal-02863894

G. Marchese, S. Parizia, M. Rashidi, A. Saboori, D. Manfredi et al., The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion, Mater. Sci. Eng

H. L. Eiselstein and D. J. Tillack, The invention and definition of Alloy 625, Proceedings of the Superalloys 718, 625 and Various Derivatives, pp.1-14, 1991.

S. Floreen, G. E. Fuchs, and W. J. Yang, The metallurgy of Alloy 625, Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, pp.13-37, 1994.

G. D. Smith, D. J. Tillack, and S. J. Patel, Alloy 625-Impressive past/significant presence/awesome future, Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, pp.35-46, 2001.

L. E. Shoemaker, Alloys 625 and 725: Trends in properties and applications, Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, pp.409-418, 2005.

W. D. Callister and G. G. Rethwisch, Materials Science and Engineering: An Introduction, pp.235-239, 2018.

F. Yan, W. Xiong, E. Faierson, and G. B. Olson, Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion, Scripta Mater, vol.155, pp.104-108, 2018.

D. Kong, X. Ni, C. Dong, L. Zhang, C. Man et al., Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett, vol.235, pp.1-5, 2019.

N. Kalentics, K. Huang, M. Ortega-varela-de-seijas, A. Burn, V. Romano et al., Laser shock peening: A promising tool for tailoring metallic microstructures in selective laser melting, J. Mater. Process. Technol, vol.266, pp.612-618, 2019.

F. Yan, W. Xiong, and E. J. Faierson, Grain Structure Control of Additively Manufactured Metallic Materials, Materials, vol.10, 1260.

X. Li, J. J. Shi, G. H. Cao, A. M. Russell, Z. J. Zhou et al., Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process, Mater. Des, vol.180, 2019.

K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo et al., Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Mater, vol.60, pp.2229-2239, 2012.

F. Liu, X. Lin, C. Huang, M. Song, G. Yang et al., The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718, J. Alloys Compd, vol.509, pp.4505-4509, 2011.

P. Kanagarajah, F. Brenne, T. Niendorf, and H. J. Maier, Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading, Mater. Sci. Eng. A, vol.588, pp.188-195, 2013.

H. Wu, D. Zhang, B. Yang, C. Chen, Y. Li et al., Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting, J. Mater. Sci. Technol, vol.46, pp.7-17, 2020.

B. Song, S. Dong, Q. Liu, H. Liao, and C. Coddet, Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior, Mater. Des, vol.54, pp.727-733, 2014.

C. L. Li, J. W. Won, S. W. Choi, J. H. Choe, S. Lee et al., Simultaneous achievement of equiaxed grain structure and weak texture in pure titanium via selective laser melting and subsequent heat treatment, J. Alloys Compd, vol.803, pp.407-412, 2019.

A. Kreitcberg, V. Brailovski, and S. Turenne, Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion, Mater. Sci. Eng. A, vol.689, pp.1-10, 2017.

P. Wang, B. Zhang, C. C. Tan, S. Raghavan, Y. F. Lim et al., Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting, Mater. Des, vol.112, pp.290-299, 2016.

G. Lindwall, C. E. Campbell, E. A. Lass, F. Zhang, M. R. Stoudt et al., Simulation of TTT Curves for Additively Manufactured Inconel 625, Metall. Mater. Trans. A, vol.50, pp.457-467, 2019.

G. Marchese, X. G. Colera, F. Calignano, M. Lorusso, S. Biamino et al., Characterization and Comparison of Inconel 625 Processed by Selective Laser Melting and Laser Metal Deposition, Adv. Eng. Mater, vol.19, 2016.

K. N. Amato, J. Hernandez, L. E. Murr, E. Martinez, S. M. Gaytan et al., Comparison of Microstructures and Properties for a Ni-Base Superalloy (Alloy 625) Fabricated by Electron and Laser Beam Melting, J. Mater. Sci. Res, vol.1, pp.3-41, 2012.

T. Keller, G. Lindwall, S. Ghosh, L. Ma, B. M. Lane et al., Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys, Acta Mater, vol.139, pp.244-253, 2017.

G. Marchese, E. Bassini, S. Parizia, D. Manfredi, D. Ugues et al., Role of the chemical homogenization on the microstructural and mechanical evolution of prolonged heat-treated laser powder bed fused Inconel 625, Mater. Sci. Eng, vol.2020, p.140

Z. Tian, C. Zhang, D. Wang, W. Liu, X. Fang et al., A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy, Appl. Sci, vol.2020, p.81

S. I. Wright, M. M. Nowell, and D. P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal, vol.17, pp.316-329, 2011.

P. M. Mignanelli, N. G. Jones, E. Pickering, O. Messe, C. M. Rae et al., A. gamma-gamma prime-gamma double prime dual-superlattice superalloys. Scripta Mater, vol.136, pp.136-140, 2007.

M. Terner, J. W. Lee, J. H. Kim, and H. U. Hong, First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy, Int. J. Mater. Res, vol.109, pp.803-810, 2018.

K. Zhao, L. H. Lou, Y. H. Ma, and Z. Q. Hu, Effect of minor niobium addition on microstructure of a nickel-base directionally solidified superalloy, Mater. Sci. Eng. A, vol.476, pp.372-377, 2008.

X. J. Liu, H. H. Hu, J. J. Han, Y. Lu, and C. P. Wang, Assessment of the diffusional mobilities in fcc Ni-Nb and fcc Ni-Mo alloys, vol.38, pp.140-145, 2012.