T. R. Pacioni, D. Soares, M. Domenico, . Di, M. F. Rosa et al., Bio-syngas production from agroindustrial biomass residues by steam gasification, Waste Manag, 2016.

Y. Shen, Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification, Renew. Sustain. Energy Rev, vol.43, pp.281-295, 2015.

L. M. Romero-millan, S. Vargas, F. E. Nzihou, and A. , Catalytic effect of inorganic elements on steam gasification biochar properties from agrowastes, Energy & Fuels, vol.33, pp.8666-8675, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02263649

K. Weber and P. Quicker, Properties of biochar, Fuel, vol.217, pp.240-261, 2018.

J. S. Cha, S. H. Park, S. Jung, C. Ryu, J. Jeon et al., Production and utilization of biochar: A review, J. Ind. Eng. Chem, vol.40, pp.1-15, 2016.

F. R. Oliveira, A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu et al., Environmental application of biochar: current status and perspectives, Bioresour. Technol, vol.246, pp.110-122, 2017.

T. L. Oldfield, N. Sa-sikirica, C. Mondini, G. L. Opez, P. J. Kuikman et al., Biochar, compost and biocharcompost blend as options to recover nutrients and sequester carbon, J. Environ. Manage, vol.218, pp.465-476, 2018.

J. Yuan, R. Xu, and H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol, vol.102, pp.3488-3497, 2011.

H. Li, X. Dong, E. B. Da-silva, L. M. De-oliveira, Y. Chen et al., Mechanisms of metal sorption by biochars: biochar characteristics and modifications, Chemosphere, vol.178, pp.466-478, 2017.

R. Shi, Z. Hong, J. Li, J. Jiang, . Abdulaha-al et al., Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars, J. Agric. Food Chem, vol.65, pp.8111-8119, 2017.

R. Shi, Z. Hong, J. Li, J. Jiang, M. A. Kamran et al., Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study, J. Environ. Manage, vol.210, pp.171-179, 2018.

, , 2018.

N. Teutscherova, J. Hou?ka, M. Navas, A. Masaguer, M. Benito et al., Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study, Geoderma, vol.323, pp.136-145, 2018.

H. Cheng, D. L. Jones, P. Hill, M. S. Bastami, and C. Tu, long: influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching, Arch. Agron. Soil Sci, p.45, 2017.

B. Zhao, D. O'connor, J. Zhang, T. Peng, Z. Shen et al., Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Clean. Prod, vol.174, pp.977-987, 2018.

N. Shukla, D. Sahoo, and N. Remya, Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment, J. Clean. Prod, vol.235, pp.1073-1079, 2019.

D. Ferreira, S. Manera, C. Paulo-silvestre, W. Fernandes-pauletti, G. Roberto-altafini et al., Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment, Waste Biomass Valorizat, vol.10, pp.3089-3100, 2019.

C. Banik, M. Lawrinenko, S. Bakshi, and D. A. Laird, Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars, J. Environ. Qual, vol.47, pp.452-461, 2018.

M. Laghari, M. Saffar-mirjat, Z. Hu, S. Fazal, B. Xiao et al., Effects of biochar application rate on sandy desert soil properties and sorghum growth, Catena, vol.135, pp.313-320, 2015.

C. E. Brewer, R. Unger, K. Schmidt-rohr, and R. C. Brown, Criteria to select biochars for field studies based on biochar chemical properties, Bioenergy Res, vol.4, pp.312-323, 2011.

M. Uchimiya, S. Chang, and K. T. Klasson, Screening biochars for heavy metal retention in soil: role of oxygen functional groups, J. Hazard. Mater, vol.190, pp.432-441, 2011.

M. Smith, S. Ha, J. E. Amonette, I. Dallmeyer, and M. Garcia-perez, Enhancing cation exchange capacity of chars through ozonation, Biomass Bioenergy, vol.81, pp.304-314, 2015.

L. P. Padhye, Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water, Chemosphere, vol.184, pp.532-547, 2017.

M. Ko?towski, I. Hilber, T. D. Bucheli, B. Charmas, and J. P. Oleszczuk, Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils, Chem. Eng. J, vol.310, pp.33-40, 2017.

M. Ko?towski, I. Hilber, T. D. Bucheli, and P. Oleszczuk, Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils, Environ. Sci. Pollut. Res, vol.23, pp.11058-11068, 2016.

N. Borchard, A. Wolf, V. Laabs, R. Aeckersberg, H. W. Scherer et al., Physical activation of biochar and its meaning for soil fertility and nutrient leaching-a greenhouse experiment. Soil Use Manag, vol.28, pp.177-184, 2012.

J. W. Lee, B. Hawkins, M. K. Kidder, B. R. Evans, A. C. Buchanan et al., Characterization of biochars produced from peanut hulls and pine wood with different pyrolysis conditions Background, 2016.

M. Naeem, A. A. Ansari, and S. Singh, Essential Plant Nutrients. Uptake, Use efficiency, and Management, 2017.

S. T. Barber, J. Yin, K. Draper, and T. A. Trabold, Closing nutrient cycles with biochar-from filtration to fertilizer, J. Clean. Prod, vol.197, pp.1597-1606, 2018.

L. M. Romero-millán, S. Vargas, F. E. Nzihou, and A. , Steam gasification behavior of tropical agrowaste: A new modeling approach based on the inorganic composition, Fuel, vol.235, pp.45-53, 2019.

L. M. Romero-millan, S. Vargas, F. E. Nzihou, and A. , Kinetic analysis of tropical lignocellulosic agrowaste pyrolysis, BioEnergy Res, vol.10, pp.832-845, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581811

M. J. Denyes, M. A. Parisien, A. Rutter, and B. A. Zeeb, Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites video link, J. Vis. Exp, vol.93, pp.1-12, 2014.

T. Mahmood, A. Naeem, M. Hamayun, M. Aslam, and R. Ali, Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology, Process Saf. Environ. Prot, vol.109, pp.548-563, 2017.

D. Laird and P. Fleming, Analysis of Layer Charge, Cation and Anion Exchange Capacities, and Synthesis of Reduced Charge Clays, Methods of Soil Analysis. Part 5. Mineralogical Methods, pp.485-508, 2008.

J. Zhou, Z. Sui, J. Zhu, P. Li, D. Chen et al., Characterization of surface oxygen complexes on carbon nanofibers by TPD XPS and FT-IR, Carbon, vol.45, pp.785-796, 2007.

S. Ferreira, J. Junges, G. Reginato, I. Lazzarotto, E. Osorio et al., Investigation of the structure of the biochar obtained by slow pyrolysis of elephant grass during its steam gasification, Chem. Eng. Technol, vol.42, pp.2546-2555, 2019.

Y. Bai, S. Zhu, K. Luo, M. Gao, L. Yan et al., Coal char gasification in H 2 O/CO 2: release of alkali and alkaline earth metallic species and their effects on reactivity, Appl. Therm. Eng, vol.112, pp.156-163, 2017.

K. Froment, F. Defoort, C. Bertrand, J. M. Seiler, J. Berjonneau et al., Thermodynamic equilibrium calculations of the volatilization and condensation of inorganics during wood gasification, Fuel, vol.107, pp.269-281, 2013.

P. Sun, S. Hui, Z. Gao, Q. Zhou, H. Tan et al., Experimental investigation on the combustion and heat transfer characteristics of wide size biomass co-firing in 0.2 MW circulating fluidized bed, Appl. Therm. Eng, vol.52, pp.284-292, 2013.

H. Yu, W. Zou, J. Chen, H. Chen, Z. Yu et al., Biochar amendment improves crop production in problem soils: a review, J. Environ. Manage, vol.232, p.117, 2018.

R. B. Fidel, D. A. Laird, M. L. Thompson, and M. Lawrinenko, Characterization and quantification of biochar alkalinity, Chemosphere, vol.167, pp.367-373, 2017.

J. W. Lee, M. Kidder, A. C. Buchanan, C. T. Garte, and R. Brown, Characterization of biochars produced from cornstovers for soil amendment, Environ. Sci. Technol, vol.44, pp.7970-7974, 2010.

A. Silver, I. Levkovitch, and E. R. Graber, pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications, Environ. Sci. Technol, vol.44, pp.9318-9323, 2010.

L. Zhao, X. Cao, O. Ma?ek, and A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J. Hazard. Mater. 256, vol.257, pp.1-9, 2013.

Y. Zhang, M. Yao, S. Gao, G. Sun, and G. Xu, Reactivity and kinetics for steam gasification of petroleum coke blended with black liquor in a micro fluidized bed, Appl. Energy, vol.160, pp.820-828, 2015.

M. Saleh-shafeeyan, W. M. Wan-daud, A. Houshmand, and A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrolysis, vol.89, pp.143-151, 2010.

P. G. González and Y. B. Pliego-cuervo, Physicochemical and microtextural characterization of activated carbons produced from water steam activation of three bamboo species, J. Anal. Appl. Pyrolysis, vol.99, pp.32-39, 2013.

M. Molina-sabio, M. T. Gonzalez, F. Rodriguez-reinoso, and A. Sepiijlveda-escribano, Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, Carbon, vol.34, pp.505-509, 1996.

Y. Zhang, Z. Xing, Z. Duan, and Y. Wang, Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste, Appl. Surf. Sci, vol.315, pp.279-286, 2014.

K. Y. Chan, A. Downie, S. Joseph, and A. Cowie, Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility, Plant Soil, vol.327, pp.235-246, 2010.

J. H. Yuan and R. K. Xu, The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag, vol.27, pp.110-115, 2011.

. Rk, . Xu, A. Z. Zhao, J. H. Yuan, and J. Jiang, pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars, J. Soils Sediments, vol.12, pp.494-502, 2012.

A. García-ocampo, Fertility and soil productivity of Colombian soils under different soil management practices and several crops, Arch. Agron. Soil Sci, vol.58, pp.55-65, 2012.

F. Qi, Z. Dong, D. Lamb, R. Naidu, N. S. Bolan et al., Effects of acidic and neutral biochars on properties and cadmium retention of soils

, Chemosphere, vol.180, pp.564-573, 2017.

A. Venegas, A. Rigol, and M. Vidal, Viability of organic wastes and biochars as amendments for the remediation of heavy metalcontaminated soils, Chemosphere, vol.119, pp.190-198, 2015.

X. Xu, Y. Zhao, J. Sima, L. Zhao, O. Ma?ek et al., Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review, Bioresour. Technol, vol.241, pp.887-899, 2017.

K. W. Goulding, Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag, vol.32, pp.390-399, 2016.

L. M. Jurki?, I. Cepanec, S. K. Paveli?, and K. Paveli?, Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy, Nutr. Metab, vol.10, pp.1-12, 2013.

B. Tubaña and J. R. Heckman, Silicon in Soils and Plants, Silicon and Plant Diseases, pp.1-148, 2015.

Y. Ding, Y. Liu, S. Liu, Z. Li, X. Tan et al., Biochar to improve soil fertility A review
URL : https://hal.archives-ouvertes.fr/hal-01532485

, Agron. Sustain. Dev, vol.36, p.36, 2016.

Z. Kong, S. B. Liaw, X. Gao, Y. Yu, and H. Wu, Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass, Fuel, vol.128, pp.433-441, 2014.

H. Wu, K. Yip, Z. Kong, C. Li, D. Liu et al., Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching, Ind. Eng. Chem. Res, vol.50, pp.12143-12151, 2011.

S. P. Soh and T. E. Angst, Establishing release dynamics for plant nutrients from biochar, GCB Bioenergy, vol.5, pp.221-226, 2013.

E. A. Pilon-smits, C. F. Quinn, W. Tapken, M. Malagoli, and M. Schiavon, Physiological functions of beneficial elements, Curr. Opin. Plant Biol, vol.12, pp.267-274, 2009.

J. Major, Guidelines on Practical Aspects of Biochar Application to Field Soil in Various Soil Management Systems, 2010.

, Western Canada 2001: Nutrient uptake and removal by field crops, 1998.

B. Bar-yosef, Advances in fertigation, Adv. Agron, vol.65, issue.08, pp.60910-60914, 1999.

M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan et al., Biochar as a sorbent for contaminant management in soil and water: a review, Chemosphere, 2014.

X. Cao and W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation, Bioresour. Technol, vol.101, pp.5222-5228, 2010.

L. Ye, J. Zhang, J. Zhao, Z. Luo, S. Tu et al., Properties of biochar obtained from pyrolysis of bamboo shoot shell, J. Anal. Appl. Pyrolysis, vol.114, pp.172-178, 2015.

Z. Wang, G. Liu, H. Zheng, F. Li, H. Hao-ngo et al., Investigating the mechanisms of biochar's removal of lead from solution Complexation with functional groups Pb 2+-? interaction, Bioresource, vol.177, pp.308-317, 2015.

V. Hansen, D. Müller-stöver, J. Ahrenfeldt, J. K. Holm, U. B. Henriksen et al., Gasification biochar as a valuable by-product for carbon sequestration and soil amendment, Biomass and Bioenergy, vol.72, pp.300-308, 2015.

D. Kalderis, G. Papameletiou, and K. Berkant, Assessment of orange peel hydrochar as a soil amendment: impact on clay soil physical properties and potential phytotoxicity, Waste Biomass Valorizat, vol.10, pp.3471-3484, 2019.