W. Boulaiche, B. Hamdi, and M. Trari, Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies, Appl. Water Sci, 2019.

H. Li, Z. Wang, H. Zhang, and Z. Pan, Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance, Polymers (Basel), 2018.

S. Gopi, R. Kargl, K. S. Kleinschek, A. Pius, and S. Thomas, Chitin nanowhisker-inspired electrospun PVDF membrane for enhanced oil-water separation, J. Environ. Manag, 2018.

A. T. Paulino, J. I. Simionato, J. C. Garcia, and J. Nozaki, Characterization of chitosan and chitin produced from silkworm crysalides, Carbohydr. Polym, 2006.

W. Liu, K. Liu, L. Zhu, W. Li, K. Liu et al., Liquid crystalline and rheological properties of chitin whiskers with different chemical structures and chargeability, Int. J. Biol. Macromol, 2020.

H. Musarurwa and N. T. Tavengwa, Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments, Carbohydr. Ploym, 2020.

S. Nikolov, H. Fabritius, M. Petrov, M. Friák, L. Lymperakis et al., Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations, J. Mech. Behav. Biomed. Mater, 2011.

A. Anitha, S. Sowmya, P. T. Kumar, S. Deepthi, K. P. Chennazhi et al., Chitin and chitosan in selected biomedical applications, Prog. Polym. Sci, vol.39, issue.9, pp.1644-1667, 2014.

P. Singh and R. Nagendran, A comparative study of sorption of chromium (III) onto chitin and chitosan, Appl. Water Sci, 2016.

H. El-knidri, R. Belaabed, A. Addaou, A. Laajeb, and A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan, Int. J. Biol. Marcomol, vol.120, pp.1181-1189, 2018.

E. S. Abdou, K. S. Nagy, and M. Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol, 2008.

P. Gonil and W. Sajomsang, Applications of magnetic resonance spectroscopy to chitin from insect cuticles, Int. J. Biol. Marcomol, vol.51, issue.4, pp.514-522, 2012.

A. Abdulkarim, M. T. Isa, S. Abdulsalam, A. J. Muhammad, and A. O. Ameh, Extraction and characterization of chitin and chitosan from mussel shell, Civ. Env. Res, 2013.

W. Arbia, L. Adour, A. Amrane, and H. Lounici, Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology. Food Hydrocoll, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917924

M. Samar, M. El-kalyoubi, M. H. Khalaf, M. M. , A. El-razik et al., Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique, Ann. Agric. Sci, 2013.

B. E. Abdelmalek, A. Sila, A. Haddar, A. Bougatef, and M. A. Ayadi, ?-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice, Int. J. Biol. Macromol, 2017.

S. Ifuku, Chitin and chitosan nanofibers: preparation and chemical modifications, Molecules, vol.19, issue.11, pp.18367-18380, 2014.

S. Kumari and P. K. Rath, Extraction and characterization of chitin and chitosan from (Labeo rohit) Fish Scales, Procedia Mater. Sci, 2014.

N. Khalaf, T. Ahamad, M. Naushad, N. Al-hokbany, S. I. Al-saeedi et al., Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor, Int. J. Biol. Macromol, 2020.

A. Aljawish, I. Chevalot, J. Jasniewski, J. Scher, and L. Muniglia, Enzymatic synthesis of chitosan derivatives and their potential applications, J. Mol. Catal. B, vol.112, pp.25-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01267381

M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci, vol.31, issue.7, pp.603-632, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305792

F. Ding, X. Qian, Q. Zhang, H. Wu, Y. Liu et al., Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release, New J. Chem, 2015.

P. Sahariah and M. Másson, Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship, Biomacromol, vol.18, issue.11, pp.3846-3868, 2017.

M. A. Surat, S. Jauhari, and K. R. Desak, A brief review: microwave assisted organic reaction, Appl. Sci. Res, vol.4, issue.1, pp.645-661, 2012.

A. Safavy, K. P. Raisch, S. Mantena, L. L. Sanford, S. W. Sham et al., Design and development of watersoluble curcumin conjugates as potential anticancer agents, J. Med. Chem, 2007.

H. El-knidri, R. El-khalfaouy, A. Laajeb, A. Addaou, and A. Lahsini, Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation, Process Saf. Environ. Prot, 2016.

Z. Su, M. Zhang, Z. Lu, S. Song, Y. Zhao et al., Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability, Cellulose, 2018.

A. Podgórski, A. Ba?azy, and L. Grado?, Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters, Chem. Eng. Sci, 2006.

S. Gopi, A. Pius, R. Kargl, K. S. Kleinschek, and S. Thomas, Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants, Polym. Bull, 2019.

E. S. De-alvarenga, Characterization and properties of chitosan, Biotechnology of Biopolymers, 2011.

M. Kaya, A. M. Salaberria, M. Mujtaba, J. Labidi, T. Baran et al., An inclusive physicochemical comparison of natural and synthetic chitin films, Int. J. Biol. Macromol, 2018.

I. Leceta, P. Guerrero, and K. De-la-caba, Functional properties of chitosan-based films, Carbohydr. Polym, vol.93, pp.339-346, 2013.

S. H. Chang, H. T. Lin, G. J. Wu, and G. J. Tsai, pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan, Carbohydr. Polym, 2015.

O. Ortona, G. D'errico, G. Mangiapia, and D. Ciccarelli, The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution, Carbohydr. Polym, 2008.

Y. Kato, J. Kaminaga, R. Matsuo, and A. Isogai, TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan, Carbohydr. Polym, 2004.

X. Sun, J. Zhu, Q. Gu, and Y. You, Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(II), Colloids Surf. A, 2018.

S. Botelho-da-silva, M. Krolicka, L. A. Van-den-broek, A. E. Frissen, and C. G. Boeriu, Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system, Carbohydr. Polym, 2018.

F. G. Borsagli and A. Borsagli, Chemically modified chitosan bio-sorbents for the competitive complexation of heavy metals ions: a potential model for the treatment of wastewaters and industrial spills, J. Polym. Environ, 2019.

K. Kurita, S. Mori, Y. Nishiyama, and M. Harata, N-alkylation of chitin and some characteristics of the novel derivatives, Polym. Bull, 2002.

W. Liu, S. J. Sun, X. Zhang, and K. D. Yao, Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug, J. Biomater. Sci. Polym. Ed, 2003.

Y. Zou and E. Khor, Preparation of sulfated-chitins under homogeneous conditions, Carbohydr. Polym, 2009.

S. Sabar, H. Aziz, N. H. Yusof, S. Subramaniam, K. Y. Foo et al., Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution, React. Funct. Polym, 2020.

J. Huang, Y. Liu, L. Yang, and F. Zhou, Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus, Int. J. Biol. Macromol, 2019.

D. R. Khanal, Y. Okamoto, K. Miyatake, T. Shinobu, Y. Shigemasa et al., Protective effects of phosphated chitin (P-chitin) in a mice model of acute respiratory distress syndrome (ARDS), Carbohydr. Polym, issue.00, pp.216-218, 2001.

P. Ramasamy, N. Subhapradha, V. Shanmugam, and A. Shanmugam, Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885), Int. J. Biol. Macromol, 2014.

S. S. Kahu, A. Shekhawat, D. Saravanan, and R. M. Jugade, Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents, Carbohydr. Polym, 2016.

A. Shanmugam, K. Kathiresan, and L. Nayak, Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885), Biotechnol. Rep, 2016.

V. R. Sinha, A. K. Singla, S. Wadhawan, R. Kaushik, R. Kumria et al., Chitosan microspheres as a potential carrier for drugs, Int. J. Pharm, vol.274, issue.1-2, pp.1-33, 2004.

C. Chen, D. Li, H. Yano, and K. Abe, Bioinspired hydrogels: quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation, Carbohydr. Polym, vol.12, p.7, 2018.

A. H. Chen, C. Y. Yang, C. Y. Chen, C. Y. Chen, and C. W. Chen, Ni(II) and Pb(II) ions in aqueous medium, The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), 2009.

L. Zhou, C. Shang, Z. Liu, G. Huang, and A. A. Adesina, Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins, J. Colloid Interface Sci, 2012.

T. T. Hanh, H. T. Huy, and N. Q. Hien, Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water, Radiat. Phys. Chem, 2015.

S. Ifuku, M. Iwasaki, M. Morimoto, and H. Saimoto, Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water, Carbohydr. Polym, 2012.

G. Z. Kyzas, D. N. Bikiaris, and N. K. Lazaridis, Low-swelling chitosan derivatives as biosorbents for basic dyes, Langmuir, 2008.

A. J. Al-karawi, Z. H. Al-qaisi, H. I. Abdullah, A. M. Al-mokaram, and D. T. Al-heetimi, Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper(II) ions from water, Carbohydr. Polym, 2011.

Z. Wang, F. Yan, H. Pei, K. Yan, Z. Cui et al., Environmentally-friendly halloysite nanotubes@chitosan/ polyvinyl alcohol/non-woven fabric hybrid membranes with a uniform hierarchical porous structure for air filtration, J. Membr. Sci, 2020.

K. Desai, K. Kit, J. Li, P. Michael-davidson, S. Zivanovic et al., Nanofibrous chitosan non-wovens for filtration applications, Polymer (Guildf, 2009.

B. Zhang, Z. G. Zhang, X. Yan, X. X. Wang, H. Zhao et al., Chitosan nanostructures by in situ electrospinning for high-efficiency PM2.5 capture, Nanoscale, 2017.

V. Lekshmi-mohan, S. M. Shiva-nagendra, and M. P. Maiya, Photocatalytic degradation of gaseous toluene using self-assembled air filter based on chitosan/activated carbon/TiO 2, J. Environ. Chem. Eng, 2019.

Y. C. Chen, C. H. Liao, W. T. Shen, C. Su, Y. C. Wu et al., Effective disinfection of airborne microbial contamination in hospital wards using a zerovalent nano-silver/TiO 2 -chitosan composite, Indoor Air, 2019.

L. Wang, C. Zhang, F. Gao, and G. Pan, Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration, 2016.

Y. Ren, H. A. Abbood, F. He, H. Peng, and K. Huang, Magnetic EDTA-modified chitosan/SiO 2 /Fe 3 O 4 adsorbent: preparation, characterization, and application in heavy metal adsorption, Chem. Eng. J, 2013.

X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu et al., Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites, J. Colloid Interface Sci, 2015.

Y. Zhu, J. Hu, and J. Wang, Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energy, 2014.

S. Gopi, A. Pius, and S. Thomas, Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell, J. Water Process Eng, 2016.

H. Y. Zhu, R. Jiang, and L. Xiao, Adsorption of an anionic azo dye by chitosan/kaolin/?-Fe 2 O 3 composites, Appl. Clay Sci, 2010.

R. Darvishi-cheshmeh-soltani, A. R. Khataee, M. Safari, and S. W. Joo, Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions, Int. Biodeterior. Biodegrad, 2013.

C. Wang, F. Yang, and H. Zhang, Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria, Sep. Purif. Technol, 2010.

S. Gopi, P. Balakrishnan, A. Pius, and S. Thomas, Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine, Carbohydr. Polym, 2017.

J. L. Davila-rodriguez, V. A. Escobar-barrios, and J. R. Rangel-mendez, Removal of fluoride from drinking water by a chitin-based biocomposite in fixed-bed columns, J. Fluor. Chem, vol.140, pp.99-103, 2012.

R. Karthik and S. Meenakshi, Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions

, Int. J. Biol. Macromol, 2015.

R. Yang, Y. Su, K. B. Aubrecht, X. Wang, H. Ma et al., Thiol-functionalized chitin nanofibers for As(III) adsorption, Polymer (Guildf, 2015.

S. J. Santosa, D. Siswanta, S. Sudiono, and R. Utarianingrum, Chitin-humic acid hybrid as adsorbent for Cr(III) in effluent of tannery wastewater treatment, Appl. Surf. Sci, 2008.

A. Labidi, A. M. Salaberria, S. C. Fernandes, J. Labidi, and M. Abderrabba, Adsorption of copper on chitin-based materials: kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01600450

M. G. Casteleijn, D. Richardson, P. Parkkila, N. Granqvist, A. Urtti et al., Spin coated chitin films for biosensors and its analysis are depended on chitin-surface interactions, Colloids Surf. A, 2018.

A. F. Abu-hani, Y. E. Greish, S. T. Mahmoud, F. Awwad, and A. I. Ayesh, Low-temperature and fast response H 2 S gas sensor using semiconducting chitosan film, Sens. Actuators B, 2017.

R. Borgohain, P. Kumar-boruah, and S. Baruah, Heavy-metal ion sensor using chitosan capped ZnS quantum dots, 2016.

R. Kumar, H. Rahman, S. Ranwa, A. Kumar, and G. Kumar, Development of cost effective metal oxide semiconductor based gas sensor over flexible chitosan/PVP blended polymeric substrate, Carbohydr. Polym, 2020.

F. Nazari, S. M. Ghoreishi, and A. Khoobi, Bio-based Fe 3 O 4 /chitosan nanocomposite sensor for response surface methodology and sensitive determination of gallic acid, Int. J. Biol. Macromol, 2020.

J. H. Hwang, P. Pathak, X. Wang, K. L. Rodriguez, J. Park et al., A novel Fe-chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate, Sens. Actuators B, 2019.

J. Wu, H. Li, X. Lai, Z. Chen, and X. Zeng, Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor, Chem. Eng. J, 2020.

H. Dai, N. Feng, J. Li, J. Zhang, and W. Li, Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film, Sens. Actuators B, 2019.

,

T. W. Chen, S. Chinnapaiyan, S. M. Chen, M. Ali, M. S. Elshikh et al., Facile synthesis of copper ferrite nanoparticles with chitosan composite for highperformance electrochemical sensor, Ultrason. Sonochem, 2020.

K. Sadani, P. Nag, and S. Mukherji, LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg(II) in water, soil and food samples, Biosens. Bioelectron, 2019.

P. Qi, T. Zhang, J. Shao, B. Yang, T. Fei et al., A QCM humidity sensor constructed by graphene quantum dots and chitosan composites, Sens. Actuators A, 2019.

H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper, Adv. Mater, 2008.

Y. Shen, H. F. Zhang, L. M. Wang, L. H. Xu, and Y. Ding, Fabrication of electromagnetic shielding polyester fabrics with carboxymethyl chitosan-palladium complexes activation. Fibers Polym, 2014.

J. Liu, H. B. Zhang, Y. Liu, Q. Wang, Z. Liu et al., Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding, Compos. Sci. Technol, 2017.

S. W. Li, H. He, R. J. Zeng, and G. P. Sheng, Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells, 2017.

Z. He, J. Liu, Y. Qiao, C. M. Li, T. T. Tan et al., Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell, Carbohydr. Polym, 2012.

V. Vijayalekshmi and D. Khastgir, Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications, J. Membr. Sci, 2017.

C. Gong, S. Zhao, W. C. Tsen, F. Hu, F. Zhong et al., Hierarchical layered double hydroxide coated carbon nanotube modified quaternized chitosan/polyvinyl alcohol for alkaline direct methanol fuel cells, J. Power Sources, 2019.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, F. S. Majedi, K. Kabiri, N. Mokarram et al., Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications, Chem. Commun, 2010.

M. M. Hasani-sadrabadi, E. Dashtimoghadam, N. Mokarram, F. S. Majedi, and K. I. Jacob, Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application, Polymer (Guildf, 2012.

H. Wu, W. Hou, J. Wang, L. Xiao, and Z. Jiang, Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix, J. Power Sources, 2010.

Z. Jiang, X. Zheng, H. Wu, and F. Pan, Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells, J. Power Sources, 2008.

V. V. Binsu, R. K. Nagarale, V. K. Shahi, and P. K. Ghosh, Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane, React. Funct. Polym, 2006.

Y. Xiang, M. Yang, Z. Guo, and Z. Cui, Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell, J. Membr. Sci, 2009.

E. Dashtimoghadam, M. M. Hasani-sadrabadi, and H. Moaddel, Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation, Polym. Adv. Technol, 2010.

P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang et al., Graphene-based nitrogen selfdoped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors, Nano Energy, 2015.

L. Cao, M. Yang, D. Wu, F. Lyu, Z. Sun et al., Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage, Chem. Commun, 2017.

P. Jiang, C. Chen, and D. Li, Polypyrrole-decorated, milled carbon fibers-inserted chitin nanofibers/multiwalled carbon nanotubes flexible free-standing film for supercapacitors, Polym. Compos, 2019.

S. Anandhavelu, V. Dhanasekaran, V. Sethuraman, and H. J. Park, Chitin and chitosan based hybrid nanocomposites for super capacitor applications, J. Nanosci. Nanotechnol, 2017.

N. R. Aswathy, A. K. Palai, A. Ramadoss, S. Mohanty, and S. K. Nayak, Fabrication of cellulose acetate-chitosan based flexible 3D scaffold-like porous membrane for supercapacitor applications with PVA gel electrolyte, Cellulose, 2020.

S. Zhong, M. Kitta, and Q. Xu, Hierarchically porous carbons derived from metal-organic framework/chitosan composites for high-performance supercapacitors, Chem. Asian J, 2019.

L. Qian, Y. Fan, H. Song, X. Zhou, and Y. Xiong, Poly(ionic liquid)/carboxymethyl chitosan complex-derived nitrogen and sulfur codoped porous carbon for high-performance supercapacitors, Ionics (Kiel), 2019.

M. G. Hosseini and E. Shahryari, Synthesis, characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor, J. Mater. Sci. Technol, 2016.

R. B. Suneetha, P. Selvi, and C. Vedhi, Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for supercapacitor application, Vacuum, 2019.

N. S. Punde, S. P. Karna, and A. K. Srivastava, Supercapacitive performance of a ternary nanocomposite based on carbon nanofibers with nanostructured chitosan and cobalt particles, Mater. Chem. Phys, 2019.

A. Gopalakrishnan, N. Vishnu, and S. Badhulika, Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: a versatile electrode material for stable supercapacitor and sensing applications, J. Electroanal. Chem, vol.12, p.51, 2018.

K. Zhang, R. Xu, W. Ge, M. Qi, G. Zhang et al., Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells, Nano Energy, 2017.

M. H. Buraidah, L. P. Teo, C. M. Au-yong, S. Shah, and A. K. Arof, Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell, Opt. Mater. (Amst), 2016.

L. Zhang, L. Chai, Q. Qu, L. Zhang, M. Shen et al., Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries, Electrochim. Acta, 2013.

K. Prasanna, T. Subburaj, Y. N. Jo, W. J. Lee, and C. W. Lee, Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries, ACS Appl. Mater. Interfaces, 2015.

H. Zhong, A. He, J. Lu, M. Sun, J. He et al., Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO 4 cathode in lithium ion batteries, J. Power Sources, 2016.

T. W. Zhang, B. Shen, H. B. Yao, T. Ma, L. L. Lu et al., Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries, Nano Lett, 2017.

J. K. Kim, D. H. Kim, S. H. Joo, B. Choi, A. Cha et al., Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries, ACS Nano, 2017.

K. Xu, G. Du, T. Zhong, D. Chen, X. Lin et al., Green sustainable, facile nitrogen self-doped porous carbon derived from chitosan/cellulose nanocrystal biocomposites as a potential anode material for lithium-ion batteries, J. Taiwan Inst. Chem. Eng, 2020.