R. Vinu and L. J. Broadbelt, Unraveling Reaction Pathways and Specifying Reaction Kinetics for Complex Systems, Annu. Rev. Chem. Biomol. Eng, vol.2012, issue.1, pp.29-54

V. Seshadri and P. R. Westmoreland, Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics, J. Phys. Chem. A, vol.116, pp.11997-12013, 2012.

,

R. Vinu and L. J. Broadbelt, A Mechanistic Model of Fast Pyrolysis of Glucose-Based Carbohydrates to Predict Bio-Oil Composition, Energy Environ. Sci, vol.2012, pp.9808-9826

,

E. Ranzi, P. Eduardo, A. Debiagi, A. Frassoldati, D. Chimica et al., Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note II: Secondary Gas-Phase Reactions and Bio-Oil Formation, ACS Sustain. Chem. Eng, vol.5, pp.2882-2896, 2017.

,

E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca et al., Chemical Kinetics of Biomass Pyrolysis. Energy and Fuels, vol.22, issue.6, pp.4292-4300, 2008.

,

E. Ranzi, P. E. Debiagi, and A. Frassoldati, Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis, ACS Sustain. Chem. Eng, vol.5, pp.2867-2881, 2017.

,

K. Dussan, S. Dooley, and R. Monaghan, Integrating Compositional Features in Model Compounds for a Kinetic Mechanism of Hemicellulose Pyrolysis, Chem. Eng. J, vol.328, pp.943-961, 2017.

,

M. Carrier, M. Windt, B. Ziegler, J. Appelt, B. Saake et al., Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin, vol.10, pp.3212-3224, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01942910

P. R. Patwardhan, R. C. Brown, and B. H. Shanks, Product Distribution from the Fast Pyrolysis of Hemicellulose, ChemSusChem, vol.2011, issue.5, pp.636-643

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu. Rev. Plant Biol, issue.1, pp.263-289, 2010.

J. Ren, R. Sun, and . Hemicelluloses, Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, pp.73-130, 2010.

W. Fiddler, W. E. Parker, A. E. Wasserman, and R. C. Doerr, Thermal Decomposition of Ferulic Acid, J. Agric. Food Chem, vol.15, issue.5, pp.757-761, 1967.

K. Werner, L. Pommer, and M. Broström, Thermal Decomposition of Hemicelluloses, J. Anal. Appl. Pyrolysis, vol.110, pp.130-137, 2014.

,

S. Wang, B. Ru, G. Dai, W. Sun, K. Qiu et al., Pyrolysis Mechanism Study of Minimally Damaged Hemicellulose Polymers Isolated from Agricultural Waste Straw Samples, Bioresour. Technol, vol.190, pp.211-218, 2015.

,

G. Lv, W. Shu-bin, and R. Lou, Kinetic Study of the Thermal Decomposition of Hemicellulose Isolated from Corn Stalk, BioResources, vol.2010, issue.2, pp.1281-1291

Y. Y. Peng and S. B. Wu, Fast Pyrolysis Characteristics of Sugarcane Bagasse Hemicellulose, Cellul. Chem. Technol, vol.45, issue.9, pp.605-612, 2011.

S. Wang, B. Ru, H. Lin, and W. Sun, Pyrolysis Behaviors of Four O-Acetyl-Preserved Hemicelluloses Isolated from Hardwoods and Softwoods, Fuel, vol.150, pp.243-251, 2015.

,

D. Chen, J. Zhou, Q. Zhang, and X. Zhu, Evaluation Methods and Research Progresses in Bio-Oil Storage Stability, Renew. Sustain. Energy Rev, vol.40, pp.69-79, 2014.

,

L. K. Park, J. Liu, S. Yiacoumi, A. P. Borole, and C. Tsouris, Contribution of Acidic Components to the Total Acid Number (TAN) of Bio-Oil, pp.171-181, 0200.

,

G. Knothe, Analyzing Biodiesel: Standards and Other Methods. JAOCS, J. Am. Oil Chem. Soc, vol.83, issue.10, pp.823-833, 2006.

J. Laesecke, N. Ellis, P. Kirchen, and . Production, Analysis and Combustion Characterization of Biomass Fast Pyrolysis Oil -Biodiesel Blends for Use in Diesel Engines, vol.199, pp.346-357, 2017.

C. E. Greenhalf, D. J. Nowakowski, .. B. Harms, J. O. Titiloye, and . Bridgwater, A Comparative Study of Straw, Perennial Grasses and Hardwoods in Terms of Fast Pyrolysis Products, Fuel, vol.108, pp.216-230, 2013.

,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

A. D. Becke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, issue.6, pp.3098-3100, 1988.

,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

C. Eckart, The Penetration of a Potential Barrier by Electrons, Phys. Rev, vol.35, issue.11, pp.1303-1309, 1930.

J. C. Lizardo-huerta, B. Sirjean, R. Bounaceur, and R. Fournet, Intramolecular Effects on the Kinetics of Unimolecular Reactions of ?-HOROO and HOQOOH Radicals, Phys. Chem. Chem. Phys, vol.2016, issue.17, pp.12231-12251
URL : https://hal.archives-ouvertes.fr/hal-01309238

,

J. Pfaendtner, X. Yu, and L. J. Broadbelt, The 1-D Hindered Rotor Approximation, Theor. Chem. Acc, vol.118, issue.5-6, pp.881-898, 2007.

,

M. Pauly and K. Keegstra, Cell-Wall Carbohydrates and Their Modification as a Resource for, Biofuels. Plant J, vol.54, issue.4, pp.559-568, 2008.

,

D. O. Usino and . Supriyanto,

P. Ylitervo, A. Pettersson, and T. Richards, Influence of Temperature and Time on Initial Pyrolysis of Cellulose and Xylan, J. Anal. Appl. Pyrolysis, vol.2020

S. Wang, B. Ru, G. Dai, W. Sun, K. Qiu et al., Pyrolysis Mechanism Study of Minimally Damaged Hemicellulose Polymers Isolated from Agricultural Waste Straw Samples, Bioresour. Technol, vol.190, pp.211-218, 2015.

,

J. B. Paine, Y. B. Pithawalla, J. D. Naworal, and C. E. Thomas, Carbohydrate Pyrolysis Mechanisms from Isotopic Labeling Part 1: The Pyrolysis of Glycerin: Discovery of Competing Fragmentation Mechanisms Affording Acetaldehyde and Formaldehyde and the Implications for Carbohydrate Pyrolysis, J. Anal. Appl. Pyrolysis, vol.80, pp.297-311, 2007.

,

J. B. Paine, Y. B. Pithawalla, and J. D. Naworal, Carbohydrate Pyrolysis Mechanisms from Isotopic Labeling Part 2. The Pyrolysis of D-Glucose: General Disconnective Analysis and the Formation of C1 and C2 Carbonyl Compounds by Electrocyclic Fragmentation Mechanisms, J. Anal. Appl. Pyrolysis, vol.82, pp.10-41, 2008.

,

J. B. Paine, Y. B. Pithawalla, and J. D. Naworal, Carbohydrate Pyrolysis Mechanisms from Isotopic Labeling Part 3. The Pyrolysis of D-Glucose: Formation of C3 and C4 Carbonyl Compounds and a Cyclopentenedione Isomer by Electrocyclic Fragmentation Mechanisms, J. Anal. Appl. Pyrolysis, vol.82, pp.42-69, 2008.

,

J. B. Paine, Y. B. Pithawalla, and J. D. Naworal, Carbohydrate Pyrolysis Mechanisms from Isotopic Labeling Part 4. The Pyrolysis of D-Glucose: The Formation of Furans, J. Anal. Appl. Pyrolysis, vol.83, pp.37-63, 2008.

,

M. R. Nimlos, S. J. Blanksby, X. Qian, M. E. Himmel, and D. K. Johnson, Mechanisms of Glycerol Dehydration, J. Phys. Chem. A, issue.18, pp.6145-6156, 2006.

D. K. Shen, S. Gu, and A. V. Bridgwater, Study on the Pyrolytic Behaviour of Xylan-Based Hemicellulose Using TG-FTIR and Py-GC-FTIR, J. Anal. Appl. Pyrolysis, vol.87, issue.2, pp.199-206, 2010.

,

P. I. Nagy, W. J. Dunn, G. Alagona, and C. Ghio, Theoretical Calculations on 1,2-Ethanediol. 2. Equilibrium of the Gauche Conformers with and without an Intramolecular Hydrogen Bond in Aqueous Solution, J. Am. Chem. Soc, vol.114, issue.12, pp.4752-4758, 1992.

C. Branca, P. Giudicianni, and C. Di-blasi, GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood, Ind. Eng. Chem. Res, vol.42, issue.14, pp.3190-3202, 2003.

,

D. J. Nowakowski and J. M. Jones, Uncatalysed and Potassium-Catalysed Pyrolysis of the Cell-Wall Constituents of Biomass and Their Model Compounds, J. Anal. Appl. Pyrolysis, vol.83, issue.1, pp.12-25, 2008.

M. K. Beyer, The Mechanical Strength of a Covalent Bond Calculated by Density Functional Theory, J. Chem. Phys, vol.112, pp.7307-7312, 2000.

A. M. Verma, K. Agrawal, H. D. Kawale, and N. Kishore, Quantum Chemical Study on Gas Phase Decomposition of Ferulic Acid, Mol. Phys, vol.116, issue.14, pp.1895-1907, 2018.

,

K. J. Laidler, Chemical Kinetics; Pearson, 1987.