S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, vol.488, p.294, 2012.

U. Administration, International energy outlook, 2017.

M. Patel, X. Zhang, and A. Kumar, Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review, Renew Sustain Energy Rev, vol.53, pp.1486-99, 2016.

I. E. Agency, Annual report IEA bioenergy, 2017.

A. Bridgwater, Principles and practice of biomass fast pyrolysis processes for liquids, J Anal Appl Pyrol, vol.51, pp.3-22, 1999.

F. Abnisa and W. Daud, A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil, Energy Convers Manag, vol.87, pp.71-85, 2014.

A. Bridgwater and G. Peacocke, Fast pyrolysis processes for biomass, Renew Sustain Energy Rev, vol.4, pp.1-73, 2000.

M. Van-der-stelt, H. Gerhauser, J. Kiel, and K. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: a review, Biomass Bioenergy, vol.35, pp.3748-62, 2011.

F. Xue, D. Li, Y. Guo, X. Liu, X. Zhang et al., Technical progress and the prospect of low-rank coal pyrolysis in China, Energy Technol, vol.5, pp.1897-907, 2017.

, Crude Oil Prices -70 Year Historical Chart, p.10, 2020.

A. Demirba?, Sustainable cofiring of biomass with coal, Energy Convers Manag, vol.44, pp.1465-79, 2003.

S. Institute, Appraisal of implementation of fossil fuel and renewable energy hybrid technologies in South Africa, 2017.

N. T. Weiland, N. C. Means, and B. D. Morreale, Product distributions from isothermal copyrolysis of coal and biomass, Fuel, vol.94, pp.563-70, 2012.

Z. Yang, Y. Wu, Z. Zhang, H. Li, X. Li et al., Recent advances in cothermochemical conversions of biomass with fossil fuels focusing on the synergistic effects, Renew Sustain Energy Rev, vol.103, pp.384-98, 2019.

R. M. Soncini, N. C. Means, and N. T. Weiland, Co-pyrolysis of low rank coals and biomass: product distributions, Fuel, vol.112, pp.74-82, 2013.

C. Quan and N. Gao, Co-pyrolysis of biomass and coal: a review of effects of copyrolysis parameters, product properties, and synergistic mechanisms, BioMed Res Int, vol.2016, pp.1-11, 2016.

H. Hassan, J. Lim, and B. Hameed, Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil, Bioresour Technol, vol.221, pp.645-55, 2016.

F. Mushtaq, R. Mat, and F. N. Ani, A review on microwave assisted pyrolysis of coal and biomass for fuel production, Renew Sustain Energy Rev, vol.39, pp.555-74, 2014.

J. Jones, M. Kubacki, K. Kubica, A. Ross, and A. Williams, Devolatilisation characteristics of coal and biomass blends, J Anal Appl Pyrol, vol.74, pp.502-513, 2005.

J. Meng, J. Park, D. Tilotta, and S. Park, The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil, Bioresour Technol, vol.111, pp.439-485, 2012.

M. Sharifzadeh, M. Sadeqzadeh, M. Guo, T. N. Borhani, N. M. Konda et al., The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions, Prog Energy Combust Sci, vol.71, pp.1-80, 2019.

B. Ru, S. Wang, G. Dai, and L. Zhang, Effect of torrefaction on biomass physicochemical characteristics and the resulting pyrolysis behavior, Energy Fuels, vol.29, pp.5865-74, 2015.

B. Acharya, I. Sule, and A. Dutta, A review on advances of torrefaction technologies for biomass processing, Biomass Conversion and Biorefinery, vol.2, pp.349-69, 2012.

J. Chew and V. Doshi, Recent advances in biomass pretreatment-Torrefaction fundamentals and technology, Renew Sustain Energy Rev, vol.15, pp.4212-4234, 2011.

Z. Chen, M. Wang, E. Jiang, D. Wang, K. Zhang et al., Pyrolysis of torrefied biomass, Trends Biotechnol, vol.36, issue.12, pp.1287-98, 2018.

L. Dai, Y. Wang, Y. Liu, R. Ruan, C. He et al., Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review, Renew Sustain Energy Rev, vol.107, pp.20-36, 2019.

L. D. Mafu, H. W. Neomagus, R. C. Everson, M. Carrier, C. A. Strydom et al., Structural and chemical modifications of typical South African biomasses during torrefaction, Bioresour Technol, vol.202, pp.192-199, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01942898

D. G. Levine, R. H. Schlosberg, and B. G. Silbernagel, Understanding the chemistry and physics of coal structure (A Review), National Acad Sciences, 1982.

S. V. Vassilev, C. G. Vassileva, and V. S. Vassilev, Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview, Fuel, vol.158, pp.330-50, 2015.

C. Sheng and J. Azevedo, Estimating the higher heating value of biomass fuels from basic analysis data, Biomass Bioenergy, vol.28, pp.499-507, 2005.

J. Vargas-moreno, A. Callejón-ferre, J. Pérez-alonso, and B. Velázquez-martí, A review of the mathematical models for predicting the heating value of biomass materials, Renew Sustain Energy Rev, vol.16, pp.3065-83, 2012.

A. T. Masiá, B. Buhre, R. Gupta, and T. Wall, Characterising ash of biomass and waste, Fuel Process Technol, vol.88, pp.1071-81, 2007.

S. ?-ensöz and M. Can, Pyrolysis of pine (Pinus brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields, Energy Sources, vol.24, pp.347-55, 2002.

M. Garcia-perez, T. T. Adams, J. W. Goodrum, D. P. Geller, and K. Das, Production and fuel properties of pine chip bio-oil/biodiesel blends, Energy Fuels, vol.21, pp.2363-72, 2007.

R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, Spanish biofuels heating value estimation. Part II: Proximate analysis data, Fuel, vol.117, pp.1139-1186, 2014.

R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, Spanish biofuels heating value estimation. Part I: ultimate analysis data, Fuel, vol.117, pp.1130-1138, 2014.

D. A. Tillman, Biomass cofiring: the technology, the experience, the combustion consequences, Biomass Bioenergy, vol.19, pp.365-84, 2000.

A. Lunguleasa, C. Spirchez, and T. Griu, Effects and modeling of sawdust torrefaction for beech pellets, BioResources, vol.10, pp.4726-4765, 2015.

P. R. Wander, C. R. Altafini, and R. M. Barreto, Assessment of a small sawdust gasification unit, Biomass Bioenergy, vol.27, pp.467-76, 2004.

T. R. Miles, M. Jr, T. Baxter, L. Bryers, R. Jenkins et al., Alkali deposits found in biomass power plants: a preliminary investigation of their extent and nature, vol.1, 1995.

N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique, J Anal Appl Pyrol, vol.78, pp.265-71, 2007.

Y. Huang, P. Chiueh, C. Shih, S. Lo, L. Sun et al., Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture, Energy, vol.84, pp.75-82, 2015.

S. Li, X. Chen, A. Liu, L. Wang, and G. Yu, Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor, Bioresour Technol, vol.155, pp.252-259, 2014.

H. Sutcu, Pyrolysis by thermogravimetric analysis of blends of peat with coals of different characteristics and biomass, J Chin Inst Chem Eng, vol.38, pp.245-254, 2007.

H. Sutcu, Pyrolysis of peat: product yield and characterization, Kor J Chem Eng, vol.24, pp.736-777, 2007.

Y. Güldogan, T. Durusoy, and T. Ö. Bozdemir, Pyrolysis kinetics of blends of Tuncbilek lignite with Denizli peat, Thermochim Acta, vol.332, pp.75-81, 1999.

E. M. Suuberg, W. A. Peters, and J. B. Howard, Product composition and kinetics of lignite pyrolysis, Ind Eng Chem Process Des Dev, vol.17, pp.37-46, 1978.

L. Méndez, A. Borrego, M. Martinez-tarazona, and R. Menendez, Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity?, Fuel, vol.82, pp.1875-82, 2003.

S. M. Gouws, H. W. Neomagus, D. G. Roberts, J. R. Bunt, and R. C. Everson, The effect of carbon dioxide partial pressure on the gasification rate and pore development of Highveld coal chars at elevated pressures, Fuel Process Technol, vol.179, pp.1-9, 2018.

L. Cuiping, W. Chuangzhi, and H. Haitao, Chemical elemental characteristics of biomass fuels in China, Biomass Bioenergy, vol.27, pp.119-149, 2004.

J. Van-dyk, M. Keyser, and M. Coertzen, Syngas production from South African coal sources using Sasol-Lurgi gasifiers, Int J Coal Geol, vol.65, pp.243-53, 2006.

A. Arenillas, F. Rubiera, and J. Pis, Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behaviour of different rank coals, J Anal Appl Pyrol, vol.50, pp.31-46, 1999.

K. Bratek, W. Bratek, I. Gerus-piasecka, S. Jasie?ko, and P. Wilk, Properties and structure of different rank anthracites, Fuel, vol.81, pp.97-108, 2002.

D. K. Seo, S. S. Park, J. Hwang, and T. Yu, Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species, J Anal Appl Pyrol, vol.89, pp.66-73, 2010.

T. Damartzis, D. Vamvuka, S. Sfakiotakis, and A. Zabaniotou, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA), Bioresour Technol, vol.102, pp.6230-6238, 2011.

S. A. El-sayed and M. Mostafa, Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG), Energy Convers Manag, vol.85, pp.165-72, 2014.

W. Chen and P. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy, vol.35, pp.2580-2586, 2010.

M. Carrier, A. Loppinet-serani, D. Denux, J. Lasnier, F. Ham-pichavant et al., Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass, Biomass Bioenergy, vol.35, pp.298-307, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00679431

N. Vhathvarothai, J. Ness, and Q. J. Yu, An investigation of thermal behaviour of biomass and coal during copyrolysis using thermogravimetric analysis, Int J Energy Res, vol.38, pp.1145-54, 2014.

S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen et al., Thermal behaviour and kinetic study for woody biomass torrefaction and torrefied biomass pyrolysis by TGA, Biosyst Eng, vol.116, pp.420-426, 2013.

T. Doddapaneni, J. Konttinen, T. I. Hukka, and A. Moilanen, Influence of torrefaction pretreatment on the pyrolysis of Eucalyptus clone: a study on kinetics, reaction mechanism and heat flow, Ind Crop Prod, vol.92, pp.244-54, 2016.

J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass, J Anal Appl Pyrol, vol.92, pp.99-105, 2011.

K. Lu, W. Lee, W. Chen, and T. Lin, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Appl Energy, vol.105, pp.57-65, 2013.

J. E. White, W. J. Catallo, and B. L. Legendre, Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies, J Anal Appl Pyrol, vol.91, pp.1-33, 2011.

A. Collot, Y. Zhuo, D. Dugwell, and R. Kandiyoti, Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors, Fuel, vol.78, pp.667-79, 1999.

J. Wang, Q. Yan, J. Zhao, Z. Wang, J. Huang et al., Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor, J Therm Anal Calorim, vol.118, pp.1663-73, 2014.

Y. Mao, L. Dong, Y. Dong, W. Liu, J. Chang et al., Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer, Bioresour Technol, vol.181, pp.155-62, 2015.

B. Moghtaderi, C. Meesri, and T. F. Wall, Pyrolytic characteristics of blended coal and woody biomass, Fuel, vol.83, pp.745-50, 2004.

S. Li, X. Chen, L. Wang, A. Liu, and G. Yu, Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor, Bioresour Technol, vol.148, pp.24-33, 2013.

L. Zhang, S. Xu, W. Zhao, and S. Liu, Co-pyrolysis of biomass and coal in a free fall reactor, Fuel, vol.86, pp.353-362, 2007.

Z. Wu, S. Wang, J. Zhao, L. Chen, and H. Meng, Product distribution during co-pyrolysis of bituminous coal and lignocellulosic biomass major components in a drop-tube furnace, Energy Fuels, vol.29, pp.4168-80, 2015.

L. Wei, L. Zhang, and S. Xu, Effects of feedstock on co-pyrolysis of biomass and coal in a free-fall reactor, J Fuel Chem Technol, vol.39, pp.728-762, 2011.

C. Quan, S. Xu, Y. An, and X. Liu, Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor, J Therm Anal Calorim, vol.117, pp.817-840, 2014.

S. Yuan, Z. Dai, Z. Zhou, X. Chen, Y. Wang et al., Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char, Bioresour Technol, vol.109, pp.188-97, 2012.

S. Krerkkaiwan, C. Fushimi, A. Tsutsumi, and P. Kuchonthara, Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal, Fuel Process Technol, vol.115, pp.11-19, 2013.

M. Y?lg?n, N. D. Duranay, and D. Pehlivan, Co-pyrolysis of lignite and sugar beet pulp, Energy Convers Manag, vol.51, pp.1060-1064, 2010.

M. Guo and J. Bi, Characteristics and application of co-pyrolysis of coal/biomass blends with solid heat carrier, Fuel Process Technol, vol.138, pp.743-752, 2015.

Y. Song, A. Tahmasebi, and J. Yu, Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor, Bioresour Technol, vol.174, pp.204-215, 2014.

A. O. Aboyade, M. Carrier, E. L. Meyer, H. Knoetze, and J. F. Görgens, Slow and pressurized co-pyrolysis of coal and agricultural residues, Energy Convers Manag, vol.65, pp.198-207, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01942816

H. Zhao, Q. Song, S. Liu, Y. Li, X. Wang et al., Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism, Energy Convers Manag, vol.161, pp.13-26, 2018.

D. K. Park, S. D. Kim, S. H. Lee, and J. G. Lee, Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor, Bioresour Technol, vol.101, pp.6151-6157, 2010.

X. Yang, C. Yuan, J. Xu, and W. Zhang, Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor, Bioresour Technol, vol.173, pp.1-5, 2014.

M. Wang, J. Tian, D. G. Roberts, L. Chang, and K. Xie, Interactions between corncob and lignite during temperature-programmed co-pyrolysis, Fuel, vol.142, pp.102-110, 2015.

C. Meesri and B. Moghtaderi, Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes, Biomass Bioenergy, vol.23, pp.55-66, 2002.

Ö. Onay, E. Bayram, and Ö. Koçkar, Copyrolysis of seyitömer? lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization, Energy Fuels, vol.21, pp.3049-56, 2007.

S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-maqueda, C. Popescu et al., ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim Acta, vol.520, pp.1-19, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01350051

Y. G. Pan, E. Velo, and L. Puigjaner, Pyrolysis of blends of biomass with poor coals, Fuel, vol.75, pp.412-420, 1996.

E. Biagini, F. Lippi, L. Petarca, and L. Tognotti, Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation, Fuel, vol.81, pp.1041-50, 2002.

E. Kastanaki, D. Vamvuka, P. Grammelis, and E. Kakaras, Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization, Fuel Process Technol, vol.77, pp.159-66, 2002.

D. Vamvuka, E. Kakaras, E. Kastanaki, and P. Grammelis, Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite?, Fuel, vol.82, pp.1949-60, 2003.

H. B. Vuthaluru, Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Process Technol, vol.85, pp.141-55, 2003.

E. Biagini, F. Barontini, and L. Tognotti, Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique, Ind Eng Chem Res, vol.45, pp.4486-93, 2006.

T. Sonobe, N. Worasuwannarak, and S. Pipatmanomai, Synergies in co-pyrolysis of Thai lignite and corncob, Fuel Process Technol, vol.89, pp.1371-1379, 2008.

A. K. Sadhukhan, P. Gupta, T. Goyal, and R. K. Saha, Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis, Bioresour Technol, vol.99, pp.8022-8028, 2008.

C. A. Ulloa, A. L. Gordon, and X. A. García, Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust, Fuel Process Technol, vol.90, pp.583-90, 2009.

S. S. Idris, A. Rahman, N. Ismail, K. Alias, A. B. et al., Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA), Bioresour Technol, vol.101, pp.4584-92, 2010.

D. Nola, G. De-jong, W. Spliethoff, and H. , TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen, Fuel Process Technol, vol.91, pp.103-118, 2010.

H. Haykiri-acma and S. Yaman, Interaction between biomass and different rank coals during co-pyrolysis, Renew Energy, vol.35, pp.288-92, 2010.

J. Wang, S. Zhang, X. Guo, A. Dong, C. Chen et al., Thermal behaviors and kinetics of pingshuo coal/biomass blends during copyrolysis and cocombustion, Energy Fuels, vol.26, pp.7120-7126, 2012.

A. O. Aboyade, M. Carrier, E. L. Meyer, J. H. Knoetze, and J. F. Görgens, Model fitting kinetic analysis and characterisation of the devolatilization of coal blends with corn and sugarcane residues, Thermochim Acta, vol.530, pp.95-106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01942835

C. Chen, X. Ma, and Y. He, Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA, Bioresour Technol, vol.117, pp.264-73, 2012.

F. Ferrara, A. Orsini, A. Plaisant, and A. Pettinau, Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis, Bioresour Technol, vol.171, pp.433-474, 2014.

M. S. Masnadi, R. Habibi, J. Kopyscinski, J. M. Hill, X. Bi et al., Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel, vol.117, pp.1204-1218, 2014.

Z. Wu, S. Wang, J. Zhao, L. Chen, and H. Meng, Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during Copyrolysis, Energy Fuels, vol.28, pp.1792-801, 2014.

H. M. Jeong, M. W. Seo, S. M. Jeong, B. K. Na, S. J. Yoon et al., Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions, Bioresour Technol, vol.155, pp.442-447, 2014.

G. Agarwal and B. Lattimer, Physicochemical, kinetic and energetic investigation of coal-biomass mixture pyrolysis, Fuel Process Technol, vol.124, pp.174-87, 2014.

S. Li, X. Chen, A. Liu, L. Wang, and G. Yu, Co-pyrolysis characteristic of biomass and bituminous coal, Bioresour Technol, vol.179, pp.414-434, 2015.

H. Meng, S. Wang, L. Chen, Z. Wu, and J. Zhao, Thermal behavior and the evolution of char structure during co-pyrolysis of platanus wood blends with different rank coals from northern China, Fuel, vol.158, pp.602-613, 2015.

Y. Guan, Y. Ma, K. Zhang, H. Chen, G. Xu et al., Co-pyrolysis behaviors of energy grass and lignite, Energy Convers Manag, vol.93, pp.132-172, 2015.

M. G. Montiano, E. Diaz-faes, and C. Barriocanal, Kinetics of co-pyrolysis of sawdust, coal and tar, Bioresour Technol, vol.205, pp.222-231, 2016.

Z. Wu, S. Wang, J. Zhao, L. Chen, and H. Meng, Thermochemical behavior and char morphology analysis of blended bituminous coal and lignocellulosic biomass model compound co-pyrolysis: effects of cellulose and carboxymethylcellulose sodium, Fuel, vol.171, pp.65-73, 2016.

Y. Zhang, D. Fan, and Y. Zheng, Comparative study on combined co-pyrolysis/ gasification of walnut shell and bituminous coal by conventional and congruentmass thermogravimetric analysis (TGA) methods, Bioresour Technol, vol.199, pp.382-387, 2016.

M. Saikia, A. A. Ali, R. C. Borah, M. S. Bezbarua, B. K. Saikia et al., Effects of biomass types on the co-pyrolysis behaviour of a sub-bituminous high-sulphur coal, Energy, Ecology and Environment, vol.3, pp.251-65, 2018.

S. Qiu, S. Zhang, X. Zhou, Q. Zhang, G. Qiu et al., Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis, Renew Energy, vol.136, pp.308-324, 2019.

M. Grønli, M. J. Antal, and G. Varhegyi, A round-robin study of cellulose pyrolysis kinetics by thermogravimetry, Ind Eng Chem Res, vol.38, pp.2238-2282, 1999.

R. Narayan and M. J. Antal, Thermal lag, fusion, and the compensation effect during biomass pyrolysis, Ind Eng Chem Res, vol.35, pp.1711-1732, 1996.

V. Sr and . Th, Thermokinetic investigation of cellulose pyrolysis, 2002.

Q. He, L. Ding, Y. Gong, W. Li, J. Wei et al., Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis, Bioresour Technol, vol.280, pp.104-115, 2019.

S. Völker and T. Rieckmann, Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results, J Anal Appl Pyrol, vol.62, pp.165-77, 2002.

D. Granados, F. Chejne, and P. Basu, A two dimensional model for torrefaction of large biomass particles, J Anal Appl Pyrol, vol.120, pp.1-14, 2016.

M. G. Grønli and M. C. Melaaen, Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions, Energy Fuels, vol.14, pp.791-800, 2000.

P. Rousset, P. Perré, and P. Girard, Modification of mass transfer properties in poplar wood (P. robusta) by a thermal treatment at high temperature, Holz als Roh-und Werkstoff, vol.62, pp.113-122, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02680182

L. D. Mafu, H. W. Neomagus, R. C. Everson, C. A. Strydom, M. Carrier et al., Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis, Bioresour Technol, vol.243, pp.941-949, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01942915

M. Antal and G. Varhegyi, Cellulose pyrolysis kinetics: the current state of knowledge, Ind Eng Chem Res, vol.34, pp.703-720, 1995.

D. Pyle and C. Zaror, Heat transfer and kinetics in the low temperature pyrolysis of solids, Chem Eng Sci, vol.39, pp.147-58, 1984.

D. Blasi and C. , Kinetic and heat transfer control in the slow and flash pyrolysis of solids, Ind Eng Chem Res, vol.35, pp.37-46, 1996.

J. Lédé and O. Authier, Temperature and heating rate of solid particles undergoing a thermal decomposition. Which criteria for characterizing fast pyrolysis?, J Anal Appl Pyrol, vol.113, pp.1-14, 2015.

P. Mason, L. Darvell, J. Jones, and A. Williams, Comparative study of the thermal conductivity of solid biomass fuels, Energy Fuels, vol.30, pp.2158-63, 2016.

J. Shen, C. Igathinathane, M. Yu, and A. K. Pothula, Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry, Bioresour Technol, vol.185, pp.89-98, 2015.

T. Larraín, M. Carrier, and L. R. Radovic, Structure-reactivity relationship in pyrolysis of plastics: a comparison with natural polymers, J Anal Appl Pyrol, vol.126, pp.346-56, 2017.

Q. He, Q. Guo, L. Ding, Y. Gong, J. Wei et al., Co-pyrolysis behavior and char structure evolution of raw/torrefied rice straw and coal blends, Energy & Fuels, 2018.

A. O. Aboyade, J. F. Görgens, M. Carrier, E. L. Meyer, and J. H. Knoetze, Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues, Fuel Process Technol, vol.106, pp.310-330, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01942809

A. H. Stiller, D. B. Dadyburjor, J. Wann, D. Tian, and J. W. Zondlo, Co-processing of agricultural and biomass waste with coal, Fuel Process Technol, vol.49, pp.167-75, 1996.

P. R. Solomon, M. A. Serio, and E. M. Suuberg, Coal pyrolysis: experiments, kinetic rates and mechanisms, Prog Energy Combust Sci, vol.18, pp.133-220, 1992.

Y. Wang, Y. H. Sun, Y. Jiang, J. Jiang, J. Gao et al., Co-pyrolysis characteristics of torrefied pine sawdust with different rank coals, BioResources, vol.8, pp.5169-83, 2013.

S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, and T. J. Morgan, An overview of the organic and inorganic phase composition of biomass, Fuel, vol.94, pp.1-33, 2012.

M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy Environ Sci, vol.5, pp.7797-809, 2012.

V. Mamleev, S. Bourbigot, L. Bras, M. Yvon, and J. , The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps, J Anal Appl Pyrol, vol.84, pp.1-17, 2009.

K. Raveendran, A. Ganesh, and K. C. Khilar, Influence of mineral matter on biomass pyrolysis characteristics, Fuel, vol.74, pp.1812-1834, 1995.

Y. He, Y. Zhai, C. Li, F. Yang, L. Chen et al., The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures, Environ Technol, vol.31, pp.567-74, 2010.

P. R. Patwardhan, J. A. Satrio, R. C. Brown, and B. H. Shanks, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresour Technol, vol.101, pp.4646-55, 2010.

K. Weber and P. Quicker, Properties of biochar, Fuel, vol.217, pp.240-61, 2018.

A. Trubetskaya, J. J. Leahy, E. Yazhenskikh, M. Müller, P. Layden et al., Characterization of woodstove briquettes from torrefied biomass and coal, Energy, vol.171, pp.853-65, 2019.

Y. Kim, S. Lee, H. Lee, and J. Lee, Physical and chemical characteristics of products from the torrefaction of yellow poplar

, Bioresour Technol, vol.116, pp.120-125, 2012.

K. Shoulaifar, T. Demartini, N. Zevenhoven, M. Verhoeff, F. Kiel et al., Ash-forming matter in torrefied birch wood: changes in chemical association, Energy Fuels, vol.27, pp.5684-90, 2013.

E. J. Leijenhorst, W. Wolters, L. Van-de-beld, and W. Prins, Inorganic element transfer from biomass to fast pyrolysis oil: review and experiments, Fuel Process Technol, vol.149, pp.96-111, 2016.

Y. Zhang, P. Geng, and R. Liu, Synergistic combination of biomass torrefaction and cogasification: reactivity studies, Bioresour Technol, vol.245, pp.225-258, 2017.

S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen et al., Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts, RSC Adv, vol.4, pp.10731-10738, 2014.

D. Feng, Y. Zhao, Y. Zhang, S. Sun, S. Meng et al., Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2, Chem Eng J, vol.306, pp.422-454, 2016.

F. Collard, M. Carrier, and J. Görgens, Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery, pp.81-101, 2016.

D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gómez-barea, Characterization and prediction of biomass pyrolysis products, Prog Energy Combust Sci, vol.37, pp.611-641, 2011.

M. Garcia-perez, X. S. Wang, J. Shen, M. J. Rhodes, F. Tian et al., Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products, Ind Eng Chem Res, vol.47, pp.1846-54, 2008.

L. Cui, W. Lin, and J. Yoa, Influences of temperature and coal particle size on the flash pyrolysis of coal in a fast-entrained bed, Chem Res Chin Univ, vol.22, pp.103-113, 2006.

P. Morf, P. Hasler, and T. Nussbaumer, Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips, Fuel, vol.81, pp.843-53, 2002.

Y. Song, A. Tahmasebi, and J. Yu, Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor, Bioresour Technol, vol.174, pp.204-215, 2014.

A. Zheng, Z. Zhao, S. Chang, Z. Huang, F. He et al., Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass, Energy Fuels, vol.26, pp.2968-74, 2012.

W. Mok, A. Jr, and M. J. , Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products, Thermochim Acta, vol.68, pp.155-64, 1983.

H. Chen, Z. Luo, H. Yang, F. Ju, and S. Zhang, Pressurized pyrolysis and gasification of Chinese typical coal samples, Energy Fuels, vol.22, pp.1136-1177, 2008.

Y. Huang, N. Wang, Q. Liu, W. Wang, and X. Ma, Co-pyrolysis of bituminous coal and biomass in a pressured fluidized bed, Chin J Chem Eng, vol.27, issue.7, pp.1666-73, 2019.

M. Carrier, T. Hugo, J. Gorgens, and H. Knoetze, Comparison of slow and vacuum pyrolysis of sugar cane bagasse, J Anal Appl Pyrol, vol.90, pp.18-26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01942789

C. Sathe, J. Hayashi, and C. Li, Release of volatiles from the pyrolysis of a Victorian lignite at elevated pressures, Fuel, vol.81, pp.1171-1179, 2002.

A. Wafiq, D. Reichel, and M. Hanafy, Pressure influence on pyrolysis product properties of raw and torrefied Miscanthus: role of particle structure, Fuel, vol.179, pp.156-67, 2016.

Y. Qian, J. Zhang, and J. Wang, Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation, Bioresour Technol, vol.174, pp.95-102, 2014.

F. Collard and J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sustain Energy Rev, vol.38, pp.594-608, 2014.

A. W. Scaroni, M. R. Khan, S. Eser, and L. R. Radovic, Ullmann's encyclopedia of industrial chemistry, pp.719-54, 1986.

W. Chen, K. Lu, and C. Tsai, An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction, Appl Energy, vol.100, pp.318-343, 2012.

R. Azargohar, S. Nanda, J. A. Kozinski, A. K. Dalai, and R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass, Fuel, vol.125, pp.90-100, 2014.

P. Fu, S. Hu, L. Sun, J. Xiang, T. Yang et al., Structural evolution of maize stalk/char particles during pyrolysis, Bioresour Technol, vol.100, pp.4877-83, 2009.

Y. Chen, X. Zhang, W. Chen, H. Yang, and H. Chen, The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance, Bioresour Technol, vol.246, pp.101-110, 2017.

T. Li, L. Zhang, L. Dong, P. Qiu, S. Wang et al., Changes in char structure during the low-temperature pyrolysis in N2 and subsequent gasification in air of Loy Yang brown coal char, Fuel, vol.212, pp.187-92, 2018.

L. Brech, Y. Raya, J. Delmotte, L. Brosse, N. Gadiou et al., Characterization of biomass char formation investigated by advanced solid state NMR, Carbon, vol.108, pp.165-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01599591

A. Anca-couce, Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis, Prog Energy Combust Sci, vol.53, pp.41-79, 2016.

Z. Wu, W. Yang, L. Chen, H. Meng, J. Zhao et al., Morphology and microstructure of co-pyrolysis char from bituminous coal blended with lignocellulosic biomass: effects of cellulose, hemicellulose and lignin, Appl Therm Eng, vol.116, pp.24-32, 2017.

D. M. Keown, X. Li, J. Hayashi, and C. Li, Characterization of the structural features of char from the pyrolysis of cane trash using Fourier Transform? Raman spectroscopy, Energy Fuels, vol.21, pp.1816-1837, 2007.

S. Zhang, B. Hu, L. Zhang, and Y. Xiong, Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon, J Anal Appl Pyrol, vol.119, pp.217-240, 2016.

D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions, 1984.

L. Wang, E. Barta-rajnai, Ø. Skreiberg, R. Khalil, Z. Czégény et al., Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark, Appl Energy, vol.227, pp.137-185, 2018.

Y. Chen, B. Liu, H. Yang, Q. Yang, and H. Chen, Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity, Fuel, vol.137, pp.41-50, 2014.

H. Chen, X. Chen, Y. Qin, J. Wei, and H. Liu, Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: pore structure, aromaticity and gasification activity, Bioresour Technol, vol.228, pp.241-250, 2017.

N. Jendoubi, F. Broust, J. Commandre, G. Mauviel, M. Sardin et al., Inorganics distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols, J Anal Appl Pyrol, vol.92, pp.59-67, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00776846

A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy, vol.38, pp.68-94, 2012.

G. Lyu, S. Wu, and H. Zhang, Estimation and comparison of bio-oil components from different pyrolysis conditions, Frontiers in Energy Research, vol.3, p.28, 2015.

W. Cai, Q. Liu, D. Shen, and J. Wang, Py-GC/MS analysis on product distribution of twostaged biomass pyrolysis, J Anal Appl Pyrol, vol.138, pp.62-71, 2019.

Q. Zhang, J. Chang, T. Wang, and Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Convers Manag, vol.48, pp.87-92, 2007.

Y. Chen, H. Yang, Q. Yang, H. Hao, B. Zhu et al., Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation, Bioresour Technol, vol.156, pp.70-77, 2014.

A. C. Louwes, L. Basile, R. Yukananto, J. Bhagwandas, E. A. Bramer et al., Torrefied biomass as feed for fast pyrolysis: an experimental study and chain analysis, Biomass Bioenergy, vol.105, pp.116-142, 2017.

A. V. Bridgwater, Upgrading biomass fast pyrolysis liquids, Environ Prog Sustain Energy, vol.31, pp.261-269, 2012.

A. Boateng and C. Mullen, Fast pyrolysis of biomass thermally pretreated by torrefaction, J Anal Appl Pyrol, vol.100, pp.95-102, 2013.

D. Fardhyanti and A. Damayanti, Analysis of coal tar compositions produced from subbituminous kalimantan coal tar. World academy of science, engineering and technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol.9, pp.1022-1027, 2015.

P. Mellin, E. Kantarelis, and W. Yang, Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme, Fuel, vol.117, pp.704-719, 2014.

Q. Xue, T. Heindel, and R. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed reactors, Chem Eng Sci, vol.66, pp.2440-52, 2011.

S. Vyazovkin and C. A. Wight, Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int Rev Phys Chem, vol.17, pp.407-440, 1998.

S. R. Naqvi, Z. Hameed, R. Tariq, S. A. Taqvi, A. I. Niazi et al., Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network, Waste Manag, vol.85, pp.131-171, 2019.

Z. Wang, K. Wan, J. Xia, Y. He, Y. Liu et al., Pyrolysis characteristics of coal, biomass, and coal-biomass blends under high heating rate conditions: effects of particle diameter, fuel type, and mixing conditions, Energy Fuels, vol.29, pp.5036-5082, 2015.

G. Varhegyi, M. J. Jr, E. Jakab, and P. Szabó, Kinetic modeling of biomass pyrolysis, J Anal Appl Pyrol, vol.42, pp.73-87, 1997.

M. Alonso, D. Alvarez, A. Borrego, R. Menéndez, and G. Marbán, Systematic effects of coal rank and type on the kinetics of coal pyrolysis, Energy Fuels, vol.15, pp.413-441, 2001.

J. Cai, W. Wu, and R. Liu, An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass, Renew Sustain Energy Rev, vol.36, pp.236-282, 2014.

D. Shen, S. Gu, J. B. Fang, and M. , Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods, Bioresour Technol, vol.102, pp.2047-52, 2011.

J. Yan, M. Liu, Z. Feng, Z. Bai, H. Shui et al., Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model, Fuel, vol.261, p.116359, 2020.

X. Chen, L. Liu, L. Zhang, Y. Zhao, Z. Zhang et al., Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks, Thermochim Acta, vol.659, pp.59-65, 2018.

E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca et al., Chemical kinetics of biomass pyrolysis, Energy Fuels, vol.22, pp.4292-300, 2008.

Q. Bach, T. N. Trinh, K. Tran, and N. Thi, Pyrolysis characteristics and kinetics of biomass torrefied in various atmospheres, Energy Convers Manag, vol.141, pp.72-80, 2017.

S. M. Stark, M. Neurock, and M. T. Klein, Strategies for modelling kinetic interactions in complex mixtures: Monte Carlo algorithms for MIMD parallel architectures, Chem Eng Sci, vol.48, pp.4081-96, 1993.

Y. Lin, Y. Tian, Y. Xia, S. Fang, Y. Liao et al., General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge, Bioresour Technol, vol.273, pp.545-55, 2019.

L. Zhang, R. Liu, R. Yin, and Y. Mei, Upgrading of bio-oil from biomass fast pyrolysis in China: a review, Renew Sustain Energy Rev, vol.24, pp.66-72, 2013.

A. K. Mostafazadeh, O. Solomatnikova, P. Drogui, and R. D. Tyagi, A review of recent research and developments in fast pyrolysis and bio-oil upgrading, Biomass Conversion and Biorefinery, vol.8, pp.739-73, 2018.

P. Harmsen, W. Huijgen, L. Bermudez, and R. Bakker, Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, 2010.

J. Y. Zhu, X. Pan, and R. S. Zalesny, Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance, Appl Microbiol Biotechnol, vol.87, pp.847-57, 2010.

F. Carvalheiro, L. C. Duarte, and F. M. Gírio, Hemicellulose biorefineries: a review on biomass pretreatments, J Sci Ind Res, pp.849-64, 2008.

S. Nanda, J. Mohammad, S. N. Reddy, J. A. Kozinski, and A. K. Dalai, Pathways of lignocellulosic biomass conversion to renewable fuels, Biomass Conversion and Biorefinery, vol.4, pp.157-91, 2014.

P. Alvira, E. Tomás-pejó, M. Ballesteros, and M. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresour Technol, vol.101, pp.4851-61, 2010.

M. Phanphanich and S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour Technol, vol.102, pp.1246-53, 2011.

M. Peksa, P. Dolzan, A. Grassi, J. Heinimö, H. Junginger et al., Global wood pellets markets and industry: policy drivers, market status and raw material potential, 2007.

R. Samuelsson, M. Thyrel, M. Sjöström, and T. A. Lestander, Effect of biomaterial characteristics on pelletizing properties and biofuel pellet quality, Fuel Process Technol, vol.90, pp.1129-1163, 2009.

M. J. Stolarski, S. Szczukowski, J. Tworkowski, M. Krzy?aniak, P. Gulczy?ski et al., Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass, Renew Energy, vol.57, pp.20-26, 2013.

M. Kaltschmitt and M. Weber, Markets for solid biofuels within the EU-15, Biomass Bioenergy, vol.30, pp.897-907, 2006.

J. K. Holm, W. Stelte, D. Posselt, J. Ahrenfeldt, and U. B. Henriksen, Optimization of a multiparameter model for biomass pelletization to investigate temperature dependence and to facilitate fast testing of pelletization behavior, Energy Fuels, vol.25, pp.3706-3717, 2011.

S. B. Saleh, K. Dam-johansen, P. A. Jensen, and B. B. Hansen, Torrefaction of biomass for power production, 2013.

J. Cai, Y. He, X. Yu, S. W. Banks, Y. Yang et al., Review of physicochemical properties and analytical characterization of lignocellulosic biomass, Renew Sustain Energy Rev, vol.76, pp.309-331, 2017.

A. Bychkov, E. Podgorbunskikh, E. Bychkova, and O. Lomovsky, Current achievements in the mechanically pretreated conversion of plant biomass, Biotechnology and bioengineering, 2019.

W. Chen, J. Peng, and X. T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renew Sustain Energy Rev, vol.44, pp.847-66, 2015.

L. Nunes, J. Matias, and J. Catalão, A review on torrefied biomass pellets as a sustainable alternative to coal in power generation, Renew Sustain Energy Rev, vol.40, pp.153-60, 2014.

B. Arias, C. Pevida, J. Fermoso, M. Plaza, F. Rubiera et al., Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process Technol, vol.89, pp.169-75, 2008.

J. S. Tumuluru, C. T. Wright, R. D. Boardman, N. A. Yancey, and S. Sokhansanj, A review on biomass classification and composition, co-firing issues and pretreatment methods, American Society of Agricultural and Biological Engineers, p.1, 2011.

P. Adams, J. Shirley, and M. Mcmanus, Comparative cradle-to-gate life cycle assessment of wood pellet production with torrefaction, Appl Energy, vol.138, pp.367-80, 2015.

A. Koekemoer and A. Luckos, On the sphericity of coal and char particles, S Afr J Chem Eng, vol.19, pp.62-71, 2014.

J. S. Tumuluru, S. Sokhansanj, J. R. Hess, C. T. Wright, and R. D. Boardman, A review on biomass torrefaction process and product properties for energy applications, Ind Biotechnol, vol.7, pp.384-401, 2011.

M. Jahirul, M. Rasul, A. Chowdhury, and N. Ashwath, Biofuels production through biomass pyrolysis-a technological review, Energies, vol.5, pp.4952-5001, 2012.

J. Lede, Biomass fast pyrolysis reactors: a review of a few scientific challenges and of related recommended research topics. Oil & Gas Science and Technology-Revue d, IFP Energies nouvelles, vol.68, pp.801-815, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858514

M. Tripathi, J. N. Sahu, and P. Ganesan, Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review, Renew Sustain Energy Rev, vol.55, pp.467-81, 2016.

S. Beis, . Onay, and Ö. Koçkar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions, Renew Energy, vol.26, pp.21-32, 2002.

A. E. Pütün, . Ep, and E. Pütün, Fixed-bed pyrolysis of cotton stalk for liquid and solid products, Fuel Process Technol, vol.86, pp.1207-1226, 2005.

J. Encinar, J. Gonzalez, and J. Gonzalez, Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions, Fuel Process Technol, vol.68, pp.209-231, 2000.

S. Kern, M. Halwachs, G. Kampichler, C. Pfeifer, T. Pröll et al., Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant-Influence of pyrolysis temperature on pyrolysis product performance, J Anal Appl Pyrol, vol.97, pp.1-10, 2012.

F. Fantozzi, D. 'alessandro, B. Bidini, and G. , IPRP (Integrated-Pyrolysis Regenerated Plant): gas turbine and externally heated rotary-kiln pyrolysis as a biomass and waste energy conversion system. Influence of thermodynamic parameters, Proc IME J Power Energy, vol.217, pp.519-546, 2003.

S. Li, Q. Yao, Y. Chi, J. Yan, and K. Cen, Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor, Ind Eng Chem Res, vol.43, pp.5133-5178, 2004.

J. D. Martínez, R. Murillo, T. García, and A. Veses, Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor, J Hazard Mater, vol.261, pp.637-682, 2013.

J. N. Brown, Development of a lab-scale auger reactor for biomass fast pyrolysis and process optimization using response surface methodology, 2009.

J. Solar, D. Marco, I. Caballero, B. Lopez-urionabarrenechea, A. Rodriguez et al., Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor, Biomass Bioenergy, vol.95, pp.416-439, 2016.

H. V. Ly, S. Kim, H. C. Woo, J. H. Choi, D. J. Suh et al., Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production, Energy, vol.93, pp.1436-1482, 2015.

R. Xu, L. Ferrante, C. Briens, and F. Berruti, Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed, J Anal Appl Pyrol, vol.86, pp.58-65, 2009.

S. Lee, M. Eom, K. Yoo, N. Kim, J. Park et al., The yields and composition of bio-oil produced from Quercus Acutissima in a bubbling fluidized bed pyrolyzer, J Anal Appl Pyrol, vol.83, pp.110-114, 2008.

A. Lappas, M. Samolada, D. Iatridis, S. Voutetakis, and I. Vasalos, Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals, Fuel, vol.81, pp.2087-95, 2002.

T. P. Thomsen, Z. Sárossy, B. Gøbel, P. Stoholm, J. Ahrenfeldt et al., Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: process performance and gas product characterization, Waste Manag, vol.66, pp.123-156, 2017.

S. Rodjeen, L. Mekasut, P. Kuchontara, and P. Piumsomboon, Parametric studies on catalytic pyrolysis of coal-biomass mixture in a circulating fluidized bed, Kor J Chem Eng, vol.23, pp.216-239, 2006.

W. Zuo, J. B. Huang, Y. Sun, Y. Li, R. Jia et al., Pyrolysis of high-ash sewage sludge in a circulating fluidized bed reactor for production of liquids rich in heterocyclic nitrogenated compounds, Bioresour Technol, vol.127, pp.44-52, 2013.

T. Ding, S. Li, J. Xie, W. Song, J. Yao et al., Rapid pyrolysis of wheat straw in a bench-scale circulating fluidized-bed downer reactor, Chem Eng Technol, vol.35, pp.2170-2176, 2012.

C. Dupont, J. Commandre, P. Gauthier, G. Boissonnet, S. Salvador et al., Biomass pyrolysis experiments in an analytical entrained flow reactor between 1073 K and 1273 K, Fuel, vol.87, pp.1155-64, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01847582

S. Sun, H. Tian, Y. Zhao, R. Sun, and H. Zhou, Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor, Bioresour Technol, vol.101, pp.3678-84, 2010.

M. E. Morgan and R. G. Jenkins, Pyrolysis of a lignite in an entrained flow reactor: 1. Effect of cations on total weight loss, Fuel, vol.65, pp.757-63, 1986.

R. Westerhout, J. Waanders, J. Kuipers, and W. Van-swaaij, Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene, Ind Eng Chem Res, vol.37, pp.2316-2338, 1998.

A. Janse, A heat integrated rotating cone reactor system for flash pyrolysis of biomass, 1998.

B. Wagenaar, W. Prins, V. Swaaij, and W. , Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification, Chem Eng Sci, vol.49, pp.5109-5135, 1994.

G. Peacocke and A. Bridgwater, Ablative plate pyrolysis of biomass for liquids, Biomass Bioenergy, vol.7, pp.147-54, 1994.

G. Luo, R. J. Eng, P. Jia, and F. L. Resende, Ablative pyrolysis of wood chips: effect of operating conditions, Energy Technol, vol.5, pp.2128-2165, 2017.

G. Luo, D. S. Chandler, L. C. Anjos, R. J. Eng, P. Jia et al., Pyrolysis of whole wood chips and rods in a novel ablative reactor, Fuel, vol.194, pp.229-267, 2017.

J. Dai, H. Cui, and J. R. Grace, Biomass feeding for thermochemical reactors, Prog Energy Combust Sci, vol.38, pp.716-752, 2012.

K. L. Kenney, W. A. Smith, G. L. Gresham, and T. L. Westover, Understanding biomass feedstock variability, Biofuels, vol.4, pp.111-138, 2013.

I. P. Boukis, P. Grammelis, S. Bezergianni, and A. Bridgwater, CFB air-blown flash pyrolysis. Part I: engineering design and cold model performance, Fuel, vol.86, pp.1372-86, 2007.

S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles, AIChE J, vol.18, pp.361-71, 1972.

A. Pandey, T. Bhaskar, M. Stöcker, and R. Sukumaran, Recent advances in thermochemical conversion of biomass, 2015.

G. Peacocke and A. Bridgwater, Advances in thermochemical biomass conversion, pp.1134-50, 1993.

R. C. Brown, Thermochemical processing of biomass: conversion into fuels, chemicals and power, 2019.

R. Venderbosch and W. Prins, Fast pyrolysis technology development, Biofuels, bioproducts and biorefining, vol.4, pp.178-208, 2010.

J. Fei, J. Zhang, F. Wang, and J. Wang, Synergistic effects on co-pyrolysis of lignite and high-sulfur swelling coal, J Anal Appl Pyrol, vol.95, pp.61-68, 2012.

J. Knight, C. Gorton, and R. Kovac, Oil production by entrained flow pyrolysis of biomass, Biomass, vol.6, pp.69-76, 1984.

K. Maniatis, J. Baeyens, H. Peeters, and G. Roggeman, The Egemin flash pyrolysis process: commissioning and initial results, pp.1257-64, 1993.

H. Rüdiger, A. Kicherer, U. Greul, H. Spliethoff, and K. R. Hein, Investigations in combined combustion of biomass and coal in power plant technology, Energy Fuels, vol.10, pp.789-96, 1996.

C. Storm, H. Rüdiger, H. Spliethoff, and K. R. Hein, Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures. In: ASME 1998 international gas turbine and aeroengine congress and exhibition, American Society of Mechanical Engineers, pp.3-05, 1998.

S. Wehlte, D. Meier, and O. Faix, Wood waste management using flash pyrolysis in a fluidised bed, Proc frontiers of pyrolysis workshop, 1995.

J. Knight, C. Gorton, R. Kovac, L. Elston, and D. Hurst, Oil production via entrained flow pyrolysis of biomass, Proceedings of the 13th biomass thermochemical conversion contractors' meeting, pp.27-36, 1981.

S. Papari and K. Hawboldt, A review on condensing system for biomass pyrolysis process, Fuel Process Technol, vol.180, pp.1-13, 2018.

X. Hu and M. Gholizadeh, Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage, Journal of Energy Chemistry, vol.39, pp.109-152, 2019.

G. Perkins, T. Bhaskar, and M. Konarova, Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass, Renew Sustain Energy Rev, vol.90, pp.292-315, 2018.

H. Yun, R. Clift, and X. Bi, Process simulation, techno-economic evaluation and market analysis of supply chains for torrefied wood pellets from British Columbia: impacts of plant configuration and distance to market, Renew Sustain Energy Rev, vol.127, p.109745, 2020.

M. Gouws,