R. Abdullah, B. , A. Ghani, N. A. Vo, and D. , Recent advances in dry reforming of methane over Ni-based catalysts, J Clean Prod, vol.162, pp.170-185, 2017.

A. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahima, H. U. Hambali et al., A review on catalyst development for dry reforming of methane to syngas: recent advances, Renew Sustain Energy Rev, vol.108, pp.175-193, 2019.

S. Alia, M. M. Khader, M. J. Almarri, and A. G. Abdelmoneim, Ni-based nano-catalysts for the dry reforming of methane, Catal Today, vol.343, pp.26-37, 2020.

E. Antunes, M. V. Jacob, G. Brodie, and P. A. Schneider, Microwave pyrolysis of sewage biosolids: dielectric properties, microwave susceptor role and its impact on biochar properties, J Anal Appl Pyrol, vol.129, pp.93-100, 2018.

N. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, Catalyst design for dry reforming of methane: analysis review, Renew Sustain Energy Rev, vol.82, pp.2570-2585, 2018.

S. Aravind, P. S. Kumar, N. S. Kumar, and N. Siddarth, Conversion of green algal biomass into bioenergy by pyrolysis. A review, Environ Chem Lett, vol.18, pp.829-849, 2020.

S. Arora and R. Prasad, An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts, RSC Adv, vol.6, pp.108668-108688, 2016.

J. Atwater and R. Wheeler, Temperature dependent complex permittivities of graphitized carbon blacks at microwave frequencies between 0.2 and 26 GHz, J Mater Sci, vol.39, pp.151-157, 2004.

M. Balajii and S. Niju, Biochar-derived heterogeneous catalysts for biodiesel production, Environ Chem Lett, vol.17, pp.1-23, 2019.

G. V. Barbosa-canovas, A. Ibarz, A. Benedito, B. Galindo, C. Hare et al., Selective heating applications for the processing of polymer-polymer materials, Proceedings of the 15th European conference on composite materials (ECCM-15), pp.117-152, 2012.

R. Benrabaa, A. Löfberg, A. Rubbens, E. Bordes-richard, R. N. Vannier et al., Structure, reactivity and catalytic properties of nanoparticles of nickel ferrite in the dry reforming of methane, Catal Today, vol.203, pp.188-195, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01736183

J. M. Bermudez, B. Fidalgo, A. Arenillas, and J. A. Menéndez, Mixtures of steel-making slag and carbons as catalyst for microwaveassisted dry reforming of CH 4, Chin J Catal, vol.33, issue.11, pp.60386-60386, 2012.

J. M. Bermudez, D. Beneroso, N. Rey-raap, A. Arenillas, and J. A. Menéndez, Energy consumption estimation in the scaling-up of microwave heating processes, Chem Eng Process Process Intensif, vol.95, pp.1-8, 2015.

A. Bhaskar, T. H. Chang, H. Y. Chang, and S. Y. Cheng, Low-temperature crystallization of sol-gel-derived lead zirconate titanate thin films using 2.45 GHz microwaves, Thin Solid Films, vol.515, pp.2891-2896, 2007.

M. Bhattacharya and T. Basak, A review on the susceptor assisted microwave processing of materials, Energy, vol.97, pp.306-338, 2016.

Z. Bo, J. Yan, X. Li, Y. Chi, and K. Cen, Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion, Int J Hydrog Energy, vol.33, pp.5545-5553, 2008.

, BP Statistical Review of World Energy, vol.15, 2019.

Z. Cao, N. Yoshikawa, and S. Taniguchi, Microwave heating behaviors of Si substrate materials in a single-mode cavity, Mater Chem Phys, vol.124, pp.900-903, 2010.

R. Y. Chein, Y. C. Chen, C. T. Yu, and J. N. Chung, Thermodynamic analysis of dry reforming of CH 4 with CO 2 at high pressures, J Nat Gas Chem, vol.26, pp.617-629, 2015.

M. Q. Chen, J. Wang, M. X. Zhang, M. G. Chen, X. F. Zhu et al., Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating, J Anal Appl Pyrol, vol.82, pp.145-150, 2008.

W. Chen, W. Sheng, F. Cao, and Y. Lu, Microfibrous entrapment of Ni/ Al 2 O 3 for dry reforming of methane: heat/mass transfer enhancement towards carbon resistance and conversion promotion, Int J Hydrog Energy, vol.37, issue.23, pp.18021-18030, 2012.

J. Cheng, R. Roy, and D. Agrawal, Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites, J Mater Sci Lett, vol.20, p.477, 2001.

J. Cheng, R. Roy, and D. Agrawal, Radically different effects on materials by separated microwave electric and magnetic fields, 2002.

, Mater Res Innov, vol.5, pp.170-177

S. M. Chun, Y. C. Hong, and D. H. Choi, Reforming of methane to syn-gas in a microwave plasma torch at atmospheric pressure, J CO2 Util, vol.19, pp.221-229, 2017.

S. M. Chun, D. H. Shin, S. H. Ma, G. W. Yang, and Y. C. Hong, CO 2 Microwave plasma-catalytic reactor for efficient reforming of methane to syngas, Catalysts, vol.9, issue.3, p.292, 2019.

B. De-caprariis, D. Filippis, P. Petrullo, A. Scarsella, and M. , Methane dry reforming over nickel perovsikite catalysts, Chem Eng Trans, vol.43, pp.991-996, 2015.

A. Domínguez, Y. Fernández, B. Fidalgo, J. J. Pis, and J. A. Menéndez, Biogas to syngas by microwave-assisted dry reforming in the presence of char, Energy Fuels, vol.21, pp.2066-2071, 2007.

A. Domínguez, B. Fidalgo, Y. Fernández, J. J. Pis, and J. A. Menéndez, Microwave-assisted catalytic decomposition of methane over activated carbon for CO 2 -free hydrogen production, Int J Hydrog Energy, vol.32, pp.4792-4799, 2007.

M. Dors, T. Izdebski, A. Berendt, and J. Mizeraczyk, Hydrogen production via biomethane reforming in DBD reactor, Int J Plasma Environ Sci Technol, vol.6, pp.93-97, 2012.

T. Durka, T. Van-gerven, and A. Stankiewicz, Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches, Chem Eng Technol, vol.32, pp.1301-1312, 2009.

T. Durka, G. D. Stefanidis, T. Van-gerven, and A. I. Stankiewicz, Microwave-activated methanol steam reforming for hydrogen production, Int J Hydrog Energy, vol.36, pp.12843-12852, 2011.

C. Ellison, M. Mckeown, S. Trabelsi, and D. Boldor, Dielectric properties of biomass/biochar mixtures at microwave frequencies. Energies 10:502, 2017.

C. S. Eskilsson and E. Björklund, Analytical-scale microwaveassisted extraction, J Chromatogr A, vol.902, issue.1, pp.921-924, 2000.

L. Estel, M. Poux, N. Benamara, and I. Polaert, Continuous flowmicrowave reactor: Where are we?, Chem Eng Proc Proc Intensif, vol.113, pp.56-64, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01844762

B. Fidalgo and J. A. Menéndez, Study of energy consumption in a laboratory pilot plant for the microwave-assisted CO 2 reforming of CH 4, Fuel Proc Technol, vol.95, pp.55-61, 2012.

B. Fidalgo and J. A. Menéndez, Syngas production by CO 2 reforming of CH 4 under microwave heating-challenges and opportunities, pp.121-149, 2013.

B. Fidalgo, A. Domínguez, J. Pis, and J. A. Menéndez, Microwave-assisted dry reforming of methane, Int J Hydrog Energy, vol.33, issue.16, pp.4337-4344, 2008.

B. Fidalgo, A. Arenillas, and J. A. Menéndez, Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO 2 reforming of CH 4, Fuel, vol.89, pp.4002-4007, 2010.

B. Fidalgo, A. Arenillas, and J. A. Menéndez, Mixtures of carbon and Ni/Al 2 O 3 as catalysts for the microwave-assisted CO 2 reforming of CH 4, Fuel Proc Technol, vol.92, pp.1531-1536, 2011.

V. F. Fischer and H. Tropsch, Conversion of methane into hydrogen and carbon monoxide, Brennstoff-Chemie, vol.3, issue.9, pp.39-46, 1928.

C. Gabriel, S. Gabriel, E. H. Grant, E. H. Grant, B. Halstead et al., Dielectric parameters relevant to microwave dielectric heating, Chem Soc Rev, vol.27, pp.213-224, 1998.

L. S. Gangurde, G. S. Sturm, T. J. Devadiga, A. I. Stankiewicz, and A. D. Stefanidis, Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors, Ind Eng Chem Res, vol.56, pp.13379-13391, 2017.

L. S. Gangurde, G. Sturm, M. J. Valero-romero, R. Mallada, J. Santamaria et al., Synthesis, characterization, and application of ruthenium-doped SrTiO 3 perovskite catalysts for microwave-assisted methane dry reforming, Chem Eng Proc Proc Intensif, vol.127, pp.178-190, 2018.

R. J. Giguere, T. L. Bray, S. M. Duncan, and G. Majetich, Application of commercial microwave ovens to organic synthesis, Tetrahedron Lett, vol.27, issue.41, pp.85103-85108, 1986.

D. Grouset and C. Ridart, Lowering energy spending and costs for hydrogen transportation and distribution, Azzaro-Pantel C, pp.207-270, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01636158

M. Guler, T. Dogu, and D. Varisli, Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system, Appl Catal B Environ, vol.219, pp.173-182, 2017.

S. Gündüz and T. Dogu, Hydrogen by steam reforming of ethanol over Co-Mg incorporated novel mesoporous alumina catalysts in tubular and microwave reactors, Appl Catal B Environ, vol.168, pp.497-508, 2015.

M. Gupta, E. Leong, . Microwaves, H. Wiley, S. Hamzehlouia et al., Microwave heatingassisted catalytic dry reforming of methane to syngas, Sci Rep, vol.8, p.8940, 2008.

N. Haneishi, S. Tsubaki, M. M. Maitani, E. Suzuki, S. Fujii et al., Electromagnetic and heat-transfer simulation of the catalytic dehydrogenation of ethylbenzene under microwave irradiation, Ind Eng Chem Res, vol.56, pp.7685-7692, 2017.

K. E. Haque, Microwave energy for mineral treatment processes-a brief review, Int J Miner Proc, vol.57, issue.99, pp.9-14, 1999.

Z. Hashisho, M. J. Rood, S. Barot, and J. Bernhard, Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth, Carbon, vol.47, pp.1814-1823, 2009.

N. S. Hassan, A. A. Jalil, C. Hitam, D. Vo, and W. Nabgan, Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review, Environ Chem Lett, 2020.

Y. Hawangchu, D. Atong, and V. Sricharoenchaikul, Enhanced microwave induced thermochemical conversion of waste glycerol for syngas production, Int J Chem React Eng, 2010.

T. Herminio, M. R. Cesário, V. D. Silva, T. A. Simões, E. S. Medeiros et al., CO 2 reforming of methane to produce syngas using anti-sintering carbon-resistant Ni/CeO 2 fibers produced by solution blow spinning, Environ Chem Lett, vol.18, pp.1-9, 2020.

C. Higman, GSTC Syngas Database: 2017 Update. In: Gasification & Syngas Technologies Conference, vol.22, 2017.

P. F. Hogan and T. Mori, Development of a method of continuous temperature measurement for microwave denture processing, Dental Mater J, vol.9, pp.1-11, 1990.

R. Hoogenboom and U. S. Schubert, Microwave-assisted polymer synthesis: Recent developments in a rapidly expanding field of research, Macromol Rapid Commun, vol.28, pp.368-386, 2007.

S. Horikoshi, T. Sumi, and N. Serpone, Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions, J Microw Power Electromagn Energy, vol.46, pp.215-228, 2012.

S. Horikoshi, R. F. Schiffmann, J. Fukushima, and N. Serpone, Microwave chemical and materials processing, 2018.

M. Hotta, M. Hayashi, M. T. Lanagan, D. K. Agrawal, and K. Nagata, Complex permittivity of graphite, carbon black and coal powders in the ranges of X-band frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz, ISIJ Int, vol.51, pp.1766-1772, 2011.

S. Jain, D. Newman, A. Nzihou, H. Dekker, L. Feuvre et al., Global potential of biogas, World Biogas Association, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02280441

M. D. Janezic, N. Paulter, and J. Blendell, Dielectric and conductorloss characterization and measurements on electronic packaging materials, NIST technical note, p.1520, 2001.

W. J. Jang, J. O. Jshim, H. M. Kim, S. Y. Yoo, and H. S. Roh, A review on dry reforming of methane in aspect of catalytic properties, Catal Today, vol.324, pp.15-26, 2019.

D. A. Jones, T. Lelyveld, S. Mavrofidis, S. Kingman, and N. Miles, Microwave heating applications in environmental engineering-a review, Res Conserv Recycl, vol.34, issue.2, p.88, 2002.

D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, Microwave heating applications in environmental engineering-a review, Res Conserv Recycl, vol.34, issue.01, p.88, 2002.

I. Julian, C. M. Pedersen, K. Achkasov, J. L. Hueso, H. L. Hellstern et al., Overcoming stability problems in microwave-assisted heterogeneous catalytic processes affected by catalyst coking, Catalysts, vol.9, p.867, 2019.

Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, Kinetic and mechanistic aspects for CO 2 reforming of methane over Ni based catalysts, Chem Eng J, vol.278, pp.62-78, 2015.

S. M. Kingman, K. Jackson, S. M. Bradshaw, N. A. Rowson, and R. Greenwood, An investigation into the influence of microwave treatment on mineral ore comminution, Powder Technol, vol.146, pp.176-184, 2004.

S. Komarneni, R. Roy, and Q. H. Li, Microwave-hydrothermal synthesis of ceramic powders, Mater Res Bull, vol.27, pp.1393-1405, 1992.

J. M. Lavoie, Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation, Front Chem, vol.2, pp.1-17, 2014.

Y. Li, Y. Wang, X. Zhang, and Z. Mi, Thermodynamic analysis of autothermal steam and CO 2 reforming of methane, Int J Hydrog Energy, vol.33, pp.2507-2514, 2008.

L. Li, Z. Song, Z. Li, X. Zhao, and C. Ma, Microwave-assisted reforming of CH 4 with CO 2 over activated carbon, Asia-Pacific power and energy engineering conference, pp.1-4, 2011.

L. Li, X. Jiang, H. Wang, J. Wang, Z. Song et al., Methane dry and mixed reforming on the mixture of bio-char and nickel-based catalyst with microwave assistance, J Anal Appl Pyrol, vol.125, pp.318-327, 2017.

L. Li, J. Chen, K. Yan, X. Qin, T. Feng et al., Methane dry reforming with microwave heating over carbonbased catalyst obtained by agriculture residues pyrolysis, J CO2 Util, vol.28, pp.41-49, 2018.

L. Li, Z. Yang, J. Chen, X. Qin, X. Jiang et al., Performance of bio-char and energy analysis on CH 4 combined reforming by CO 2 and H 2 O into syngas production with assistance of microwave, Fuel, vol.215, pp.655-664, 2018.

L. Li, K. Yan, J. Chen, T. Feng, F. Wang et al., Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide, Sci Total Environ, vol.657, p.97, 2018.

M. S. Lim and Y. N. Chun, Biogas to syngas by microwave-assisted reforming in the presence of char, Energy Fuels, vol.31, pp.13761-13768, 2017.

K. Liu, C. Song, and V. Subramani, Hydrogen and syngas production and purification technologies, 2009.

S. Liu, Y. Zhang, K. Tuo, L. Wang, and G. Chen, Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal, Fuel Proc Technol, vol.178, pp.139-147, 2018.

E. C. Lovell, J. Scott, and A. R. , Ni-SiO 2 catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis, Molecules, vol.20, pp.4594-4609, 2015.

V. Mandal, Y. Mohan, and S. Hemalatha, Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research, Pharmacogn Rev, vol.1, issue.1, pp.7-18, 2007.

P. Mcmillan and G. Partridge, The dielectric properties of certain ZnO-Al 2 O 3 -SiO 2 glass-ceramics, J Mater Sci, vol.7, pp.847-855, 1972.

E. Meloni, M. Martino, and V. Palma, A short review on Ni based catalysts and related engineering issues for methane steam reforming, Catalysts, vol.10, issue.3, p.352, 2020.

J. A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta et al., Microwave heating processes involving carbon materials, Fuel Proc Technol, vol.91, pp.1-8, 2010.

R. Meredith, A. C. Metaxas, and R. J. Meredith, Industrial microwave heating. IET, London Mingos DMP, Baghurst DR (1991) Applications of microwave dielectric heating effects to synthetic problems in chemistry, microwave-enhanced chemistry, Chem Soc Rev, vol.20, p.1, 1983.

F. Motasemi and M. T. Afzal, A review on the microwave-assisted pyrolysis technique, Renew Sustain Energy Rev, vol.28, pp.317-330, 2013.

O. Muraza and A. Galadima, A review on coke management during dry reforming of methane, Int J Energy Res, vol.39, issue.9, pp.1196-1216, 2015.

B. Nematollahi, M. Rezaei, E. N. Lay, and M. Khajenoori, Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: in view of solid carbon formation, J Nat Gas Chem, vol.21, issue.11, pp.60421-60421, 2012.

P. Nguyen, L. Nguyen, K. T. Nguyen, T. Duong, N. L. Hoang et al., Application of microwave-assisted technology: a green process to produce ginger products without waste, J Food Proc Eng, vol.42, 2019.

H. M. Nguyen, J. Sunarsoc, C. Lia, G. H. Pham, C. Phan et al., Microwave-assisted catalytic methane reforming: a review, 2020.

, Appl Catal A Gen, vol.599, p.117620

S. Nightingale, Interfacial phenomena in microwave sintering, Ionics, vol.7, pp.327-331, 2001.

M. K. Nikoo and N. Amin, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process Technol, vol.92, pp.678-691, 2011.

M. Nüchter, B. Ondruschka, W. Bonrath, and A. Gum, Microwave assisted synthesis-a critical technology overview, Green Chem, vol.6, issue.3, pp.128-141, 2004.

T. Odedairo, J. Ma, J. Chen, S. Wang, and Z. Zhu, Influences of doping Cr/Fe/Ta on the performance of Ni/CeO 2 catalyst under microwave irradiation in dry reforming of CH 4, J Solid State Chem, vol.233, pp.166-177, 2016.

O. H. Ojeda-niño, F. Gracia, and C. Daza, Role of Pr on Ni-Mg-Al mixed oxides synthesized by microwave-assisted self-combustion for dry reforming of methane, Ind Eng Chem Res, vol.58, pp.7909-7921, 2019.

D. Pashchenko, Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation, Int J Hydrog Energy, vol.42, pp.14926-14935, 2017.

Z. Peng, J. Y. Hwang, B. G. Kim, J. Mouris, and R. Hutcheon, Microwave absorption capability of high volatile bituminous coal during pyrolysis, Energy Fuels, vol.26, pp.5146-5151, 2012.

K. Peng, J. Zhou, W. Xu, Z. You, W. Long et al., Microwave irradiation-selective catalytic reduction of NO to N 2 by activated carbon at low temperature, Energy Fuels, vol.31, pp.7344-7351, 2017.

D. Pham-minh, T. S. Phan, D. Grouset, and A. Nzihou, Thermodynamic equilibrium study of methane reforming with carbon dioxide, water and oxygen, J Clean Energy Technol, vol.6, pp.309-313, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01876167

D. Pham-minh, H. Torres, A. Rego-de-vasconcelos, B. Siang, T. J. Vo et al., Conversion of biogas to syngas via catalytic carbon dioxide reforming reactions: an overview of thermodynamic aspects, catalytic design, and reaction kinetics, Biorefinery of alternative resources: targeting green fuels and platform chemicals, pp.427-456, 2020.

O. N. Protasov, N. A. Mamonov, M. N. Mikhailov, and L. M. Kustov, Optimization of equilibrium carbon dioxide methane reforming parameters by the gibbs free energy minimization method, Russ J Phys Chem A, vol.86, pp.741-746, 2012.

Z. Qin, J. Chen, X. Xie, X. Luo, T. Su et al., CO 2 reforming of CH 4 to syngas over nickel-based catalysts, Environ Chem Lett, vol.18, pp.1-21, 2020.

J. Qiu and T. Qiu, Fabrication and microwave absorption properties of magnetite nanoparticle-carbon nanotube-hollow carbon fiber composites, Carbon, vol.81, pp.20-28, 2015.

A. P. Raje and B. H. Davis, Fischer-Tropsch synthesis over ironbased catalysts in a slurry reactor. Reaction rates, selectivities and implications for improving hydrocarbon productivity, Catal Today, vol.36, issue.3, pp.245-248, 1997.

T. Razzaq and C. O. Kappe, On the energy efficiency of microwaveassisted organic reactions, Chemsuschem, vol.1, pp.123-132, 2008.

F. Rodriguez-reinoso, The role of carbon materials in heterogeneous catalysis, Carbon, vol.36, issue.97, pp.173-178, 1998.

R. Rosa, P. Veronesi, A. Casagrande, and C. Leonelli, Microwave ignition of the combustion synthesis of aluminides and field-related effects, J Alloys Compd, vol.657, pp.59-67, 2016.

A. S. Rossi, M. G. Faria, M. S. Pereira, and C. H. Ataíde, Kinetics of microwave heating and drying of drilling fluids and drill cuttings, Dry Technol, vol.35, pp.1130-1140, 2017.

R. Roy, R. Peelamedu, C. Grimes, J. Cheng, and D. Agrawal, Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies, J Mater Res, vol.17, pp.3008-3011, 2002.

A. A. Salema, Y. K. Yeow, K. Ishaque, F. N. Ani, M. T. Afzal et al., Dielectric properties and microwave heating of oil palm biomass and biochar, Ind Crops Prod, vol.50, pp.366-374, 2013.

M. Sar?yer, A. A. Bozda?, N. A. Sezgi, and T. Do?u, Performance comparison of microwave and conventionally heated reactors for sorption enhanced reforming of ethanol over Ni impregnated SBA-15, Chem Eng J, vol.377, p.75, 2018.

R. F. Schiffmann and R. Steiner, Inexpensive microwave leakage detectors-are they worth it? (A performance evaluation report), 2012.

, J Microw Power Electromagn Energy, vol.46, p.831

Y. T. Shah and T. H. Gardner, Dry reforming of hydrocarbon feedstocks, Catal Rev, vol.56, pp.476-536, 2014.

T. F. Sheshko, T. A. Kryuchkova, Y. M. Serov, I. V. Chislova, and I. A. Zvereva, New mixed perovskite-type Gd 2-x Sr 1+x Fe 2 O 7 catalysts for dry reforming of methane, and production of light olefins, Catal Ind, vol.9, pp.162-169, 2017.

T. J. Siang, S. Singh, O. Omoregbe, L. G. Bach, N. Phuc et al., Hydrogen production from CH 4 dry reforming over bimetallic Ni-Co/Al 2 O 3 catalyst, J Energy Inst, vol.91, pp.683-694, 2018.

G. D. Stefanidis, A. N. Munoz, G. S. Sturm, and A. Stankiewicz, A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts, Rev Chem Eng, vol.30, pp.233-259, 2014.

J. Sun, W. Wang, and Q. Yue, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials, vol.9, p.231, 2016.

E. T. Thostenson and T. W. Chou, Microwave processing: fundamentals and applications, Compos Part A Appl Sci Manuf, vol.30, issue.99, pp.20-22, 1999.

S. Tian, F. Yan, Z. Zhang, and J. Jiang, Calcium-looping reforming of methane realizes in situ CO 2 utilization with improved energy efficiency, Sci Adv, vol.5, 2019.

M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su et al., Sustainable carbon materials, Chem Soc Rev, vol.44, pp.250-290, 2015.

S. Tsang, J. Claridge, and M. Green, Recent advances in the conversion of methane to synthesis gas, Catal Today, vol.23, issue.1, pp.3-15, 1995.

X. Tu and J. C. Whitehead, Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature, Appl Catal B Environ, vol.125, pp.439-448, 2012.

J. C. Védrine, Natural gas as feedstock, Sustainable strategies for the upgrading of natural gas Fundamentals, challenges, and opportunities. NATO science series II: mathematics, physics and chemistry, vol.191, pp.403-412, 2005.

P. Verma and S. K. Samanta, Microwave-enhanced advanced oxidation processes for the degradation of dyes in water, Environ Chem Lett, vol.16, pp.969-1007, 2018.

Y. Wang, L. Yao, S. Wang, D. Mao, and C. Hu, Low-temperature catalytic CO 2 dry reforming of methane on Ni-based catalysts: a review, Fuel Process Technol, vol.169, pp.199-206, 2018.

P. Wang, P. A. Liu, and S. Ye, Preparation and microwave absorption properties of Ni(Co/Zn/Cu)Fe 2 O 4 /SiC@SiO 2 composites, Rare Met, 2019.

F. Wen, F. Zhang, and Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers, J Phys Chem C, vol.115, pp.14025-14030, 2011.

W. B. Westphal and A. Sils, Massachusetts Institute of Technology, 1972.

F. Wiesbrock, R. Hoogenboom, and U. S. Schubert, Microwave-assisted polymer synthesis: state-of-the-art and future perspectives, Macromol Rapid Commun, vol.25, pp.1739-1764, 2004.

H. Will, P. Scholz, and B. Ondruschka, Microwave-assisted heterogeneous gas-phase catalysis, Chem Eng Technol, vol.27, pp.113-122, 2004.

L. Xiong, M. Yu, J. Liu, S. Li, and B. Xue, Preparation and evaluation of the microwave absorption properties of template-free graphene foam-supported Ni nanoparticles, RSC Adv, vol.7, pp.14733-14741, 2017.

W. Xu, X. Hu, M. Xiang, M. Luo, R. Peng et al., Highly effective direct decomposition of H2S into H2 and S by microwave catalysis over CoS-MoS 2 /?-Al 2 O 3 microwave catalysts, Chem Eng J, vol.326, pp.1020-1029, 2017.

W. Xu, M. Luo, R. Peng, M. Xiang, X. Hu et al., Highly effective microwave catalytic direct decomposition of H 2 S into H 2 and S over MeS-based (Me = Ni, Co) microwave catalysts, Energy Conver Manag, vol.149, pp.219-227, 2017.

Y. Xu, X. H. Du, J. Li, P. Wang, J. Zhu et al., A comparison of Al 2 O 3 and SiO 2 supported Ni-based catalysts in their performance for the dry reforming of methane, J Fuel Chem Technol, vol.47, issue.19, pp.30010-30016, 2019.

P. Yin, Y. Deng, L. Zhang, N. Li, X. Feng et al., Facile synthesis and microwave absorption investigation of activated carbon@Fe 3 O 4 composites in the low frequency band, RSC Adv, vol.8, pp.23048-23057, 2018.

A. P. York, T. Xiao, and M. L. Green, Brief overview of the partial oxidation of methane to synthesis gas, Top Catal, vol.22, issue.3-4, pp.345-358, 2003.

N. Yoshikawa, E. Ishizuka, and S. Taniguchi, Heating of metal particles in a single-mode microwave applicator, Mater Trans, vol.47, pp.898-902, 2006.

X. Zhang and D. O. Hayward, Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems, Inorg Chim Acta, vol.359, pp.3421-3433, 2006.

X. Zhang, D. O. Hayward, and D. Mingos, Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating, Chem Commun, 1999.

X. Zhang, D. O. Hayward, C. Lee, and D. Mingos, Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS 2 catalysts, Appl Catal B Environ, vol.33, issue.01, pp.171-171, 2001.

X. Zhang, D. O. Hayward, and D. Mingos, Dielectric properties of MoS 2 and Pt catalysts: effects of temperature and microwave frequency, Catal Lett, vol.84, issue.3-4, p.243, 2002.

X. Zhang, C. Lee, D. Mingos, and D. O. Hayward, Carbon dioxide reforming of methane with Pt catalysts using microwave dielectric heating, Catal Lett, vol.88, pp.129-139, 2003.

Y. Zhang, S. Zhang, X. Zhang, J. Qiu, L. Yu et al., Ni modified WCx catalysts for methane dry reforming, Advances in CO2 capture, sequestration, and conversion, vol.1194, pp.171-189, 2015.

F. Zhang, Z. Song, J. Zhu, L. Liu, J. Sun et al., Process of CH 4 -CO 2 reforming over Fe/SiC catalyst under microwave irradiation, Sci Total Environ, vol.639, pp.1148-1155, 2018.

F. Zhang, Z. Song, J. Zhu, J. Sun, X. Zhao et al., Factors influencing CH 4 -CO 2 reforming reaction over Fe catalyst supported on foam ceramics under microwave irradiation, Int J Hydrog Energy, vol.43, pp.9495-9502, 2018.

Y. J. Zhang, Z. J. Wang, Y. N. Chen, and Z. D. Zhang, Crystallization kinetics of PbTiO 3 ferroelectric films: comparison of microwave irradiation with conventional heating, J Eur Ceram Soc, vol.38, pp.105-111, 2018.

B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Chen et al., Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties, RSC Adv, vol.5, pp.9806-9814, 2015.

Y. J. Zhu and F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem Rev, vol.114, pp.6462-6555, 2014.

H. Zhu, J. He, Q. Yang, Y. Yang, and K. Huang, A rotary radiation structure of microwave reactor for advanced materials processing, 2017 international conference on information, communication and engineering (ICICE), pp.404-407, 2017.

A. Zlotorzynski, The application of microwave radiation to analytical and environmental chemistry, Crit Rev Anal Chem, vol.25, pp.80505-57, 1995.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations