W. Chen, J. Peng, and X. T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renew Sustain Energy Rev, vol.44, pp.847-66, 2015.

M. Li, X. Li, J. Bian, C. Chen, Y. Yu et al., Effect of temperature and holding time on bamboo torrefaction, Biomass Bioenergy, vol.83, pp.366-72, 2015.

T. Nocquet, C. Dupont, J. Commandre, M. Grateau, S. Thiery et al., Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 e experimental study, Energy, vol.72, pp.180-187, 2014.

J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass, J Anal Appl Pyrolysis, vol.92, 2011.

D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao et al., Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin, Energy Convers Manag, vol.169, pp.228-265, 2018.

W. Chen and P. Kuo, Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis, Energy, vol.36, 2011.

M. J. Prins, K. J. Ptasinski, and F. Janssen, Torrefaction of wood: Part 1. Weight loss kinetics, J Anal Appl Pyrolysis, vol.77, 2006.

K. Shoulaifar, T. Demartini, N. Karlstr?-om, O. Hupa, and M. , Impact of organically bonded potassium on torrefaction, Fuel, vol.165, pp.544-52, 2016.

L. A. De-macedo, C. , J. Rousset, P. Valette, and J. , Influence of potassium carbonate addition on the condensable species released during wood torrefaction, Fuel Process Technol, vol.169, pp.248-57, 2018.

S. Zhang, Y. Su, K. Ding, S. Zhu, H. Zhang et al., Effect of inorganic species on torrefaction process and product properties of rice husk, Bioresour Technol, vol.265, pp.450-455, 2018.

X. Guo, S. Wang, K. Wang, Q. Liu, and Z. Luo, Influence of extractives on mechanism of biomass pyrolysis, J Fuel Chem Technol, vol.38, issue.10, pp.60019-60028, 2010.

R. Moya, A. Rodríguez-zúñiga, A. Puente-urbina, and J. Gait-an-alvarez, Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica, Energy, vol.149, pp.1-10, 2018.

C. Dupont, S. Jacob, K. O. Marrakchy, C. Hognon, M. Grateau et al., How inorganic elements of biomass influence char steam gasification kinetics, Energy, vol.109, pp.430-435, 2016.

. Romero-mill-an, S. Lm, F. E. Vargas, and A. Nzihou, Steam gasification behavior of tropical agrowaste: a new modeling approach based on the inorganic composition, Fuel, vol.235, pp.45-53, 2019.

M. Kleen and G. Gellerstedt, Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps, J Anal Appl Pyrolysis, vol.35, issue.95, p.893, 1995.

A. Anca-couce, Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis, Prog Energy Combust Sci, vol.53, pp.41-79, 2016.

F. Collard and J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sustain Energy Rev, vol.38, pp.594-608, 2014.

S. Papari and K. Hawboldt, A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models, Renew Sustain Energy Rev, vol.52, pp.1580-95, 2015.

S. Wang, B. Ru, H. Lin, G. Dai, Y. Wang et al., Kinetic study on pyrolysis of biomass components: a critical review, Curr Org Chem, vol.20, 2016.

S. Wang, G. Dai, H. Yang, and Z. Luo, Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review, Prog Energy Combust Sci, vol.62, pp.33-86, 2017.

K. Cheng, W. T. Winter, and A. J. Stipanovic, A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion, Polym Degrad Stabil, vol.97, pp.1606-1621, 2012.

D. Blasi and C. , Modeling chemical and physical processes of wood and biomass pyrolysis, Prog Energy Combust Sci, vol.34, pp.47-90, 2008.

P. Rousset, I. Turner, A. Donnot, P. , and P. , Choix d'un mod ele de pyrolyse m enag ee du bois a l' echelle de la microparticule en vue de la mod elisation macroscopique, Ann For Sci, vol.63, p.17, 2006.

F. Shafizadeh, Introduction to pyrolysis of biomass, J Anal Appl Pyrolysis, vol.3, 1982.

J. L-ed-e, Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose, J Anal Appl Pyrolysis, vol.94, pp.17-32, 2012.

M. S. Mettler, A. D. Paulsen, D. G. Vlachos, and P. J. Dauenhauer, Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass, Energy Environ Sci, vol.5, pp.7864-7872, 2012.

C. A. Koufopanos, A. Lucchesi, and G. Maschio, Kinetic modelling of the pyrolysis of biomass and biomass components, Can J Chem Eng, vol.67, pp.75-84, 1989.

D. Blasi, C. Lanzetta, and M. , Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, J Anal Appl Pyrolysis, 1997.

T. Nocquet, C. Dupont, J. Commandre, M. Grateau, S. Thiery et al., Volatile species release during torrefaction of biomass and its macromolecular constituents: Part 2 e modeling study, Energy, vol.72, pp.188-94, 2014.

C. Branca, C. D. Blasi, C. Mango, and I. Hrablay, Products and kinetics of glucomannan pyrolysis, 2013.

M. G. Grønli, G. , D. Blasi, and C. , Thermogravimetric analysis and devolatilization kinetics of wood, Ind Eng Chem Res, vol.41, pp.4201-4209, 2002.

M. Brostr?-om, A. Nordin, L. Pommer, C. Branca, D. Blasi et al., Influence of torrefaction on the devolatilization and oxidation kinetics of wood, J Anal Appl Pyrolysis, vol.96, pp.100-109, 2012.

M. J. Prins, K. J. Ptasinski, and F. Janssen, Torrefaction of wood. Part 2. Analysis of products, J Anal Appl Pyrolysis, vol.77, pp.35-40, 2006.

R. B. Bates and A. F. Ghoniem, Biomass torrefaction: modeling of volatile and solid product evolution kinetics, Bioresour Technol, vol.124, pp.460-469, 2012.

A. Gonzalez-quiroga, K. M. Van-geem, and G. B. Marin, Towards first-principles based kinetic modeling of biomass fast pyrolysis, Biomass Convers. Biorefinery, vol.7, 2017.

R. Vinu and L. J. Broadbelt, A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition, Energy Environ Sci, vol.5, pp.9808-9834, 2012.

M. T. Klein and P. S. Virk, Modeling of lignin thermolysis, Energy Fuels, vol.22, pp.2175-82, 2008.

S. R. Horton, R. J. Mohr, Y. Zhang, F. P. Petrocelli, and M. T. Klein, Molecular-level kinetic modeling of biomass gasification, Energy Fuels, vol.30, pp.1647-61, 2016.

K. Norinaga, T. Shoji, S. Kudo, and J. Hayashi, Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose, Fuel, vol.103, pp.141-50, 2013.

N. Thimthong, S. Appari, R. Tanaka, K. Iwanaga, S. Kudo et al., Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry, Fuel Process Technol, vol.134, pp.159-67, 2015.

H. Yang, S. Appari, S. Kudo, J. Hayashi, and K. Norinaga, Detailed chemical kinetic modeling of vapor-phase reactions of volatiles derived from fast pyrolysis of lignin, Ind Eng Chem Res, vol.54, pp.6855-64, 2015.

H. B. Mayes and L. J. Broadbelt, Unraveling the reactions that unravel cellulose, J Phys Chem, vol.116, pp.7098-106, 2012.

E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca et al., Chemical kinetics of biomass pyrolysis, Energy Fuels, vol.22, pp.4292-300, 2008.

M. Corbetta, A. Frassoldati, H. Bennadji, K. Smith, M. J. Serapiglia et al., Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation, Energy Fuels, vol.28, pp.3884-98, 2014.

A. Cuoci, T. Faravelli, A. Frassoldati, S. Granata, G. Migliavacca et al., A general mathematical model of biomass devolatilization. Note 1. Lumped kinetic models of cellulose. hemicellulose and lignin, 2007.

A. Cuoci, T. Faravelli, A. Frassoldati, S. Granata, G. Migliavacca et al., A general mathematical model of biomass devolatilization note 2. Detailed kinetics of volatile species, 2007.

E. Ranzi, M. Corbetta, F. Manenti, and S. Pierucci, Kinetic modeling of the thermal degradation and combustion of biomass, Chem Eng Sci, vol.110, pp.2-12, 2014.

P. Debiagi, C. Pecchi, G. Gentile, A. Frassoldati, A. Cuoci et al., Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis, Energy Fuels, vol.29, pp.6544-55, 2015.

A. Anca-couce, R. Mehrabian, R. Scharler, and I. Obernberger, Kinetic scheme of biomass pyrolysis considering secondary charring reactions, Energy Convers Manag, vol.87, pp.687-96, 2014.

A. Anca-couce, P. Sommersacher, and R. Scharler, Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis, J Anal Appl Pyrolysis, vol.127, pp.411-436, 2017.

A. Anca-couce and I. Obernberger, Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction, Fuel, vol.167, pp.158-67, 2016.

K. Dussan, S. Dooley, and R. Monaghan, Integrating compositional features in model compounds for a kinetic mechanism of hemicellulose pyrolysis, Chem Eng J, vol.328, pp.943-61, 2017.

K. Dussan, S. Dooley, and R. Monaghan, A model of the chemical composition and pyrolysis kinetics of lignin, Proc Combust Inst, 2018.

M. Gonz-alez-martínez, C. Dupont, D. Da-silva-perez, G. Mortha, T. et al., Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: experimental thermogravimetric solid mass loss, Energy, vol.205, p.118067, 2020.

A. Broido, A simple, sensitive graphical method of treating thermogravimetric analysis data, J. Polym. Sci. Part -2 Polym. Phys, vol.7, 1969.

A. Broido and M. A. Nelson, Char yield on pyrolysis of cellulose, Combust Flame, vol.24, 1975.

D. F. Arseneau, Competitive reactions in the thermal decomposition of cellulose, Can J Chem, vol.49, 1971.

G. V-arhegyi, E. Jakab, and M. J. Antal, Is the broido-shafizadeh model for cellulose pyrolysis true?, Energy Fuels, vol.8, pp.1345-52, 1994.

F. Shafizadeh and P. Chin, Thermal deterioration of wood, In: Wood technol. Chem. Asp. American Chemical Society, p.29, 1977.

D. Blasi, C. Branca, and C. , Kinetics of primary product formation from wood pyrolysis, Ind Eng Chem Res, vol.40, pp.5547-56, 2001.

A. Bradbury, Y. Sakai, and F. Shafizadeh, A kinetic model for pyrolysis of cellulose, J Appl Polym Sci, vol.23, pp.3271-80, 1979.

F. Thurner and U. Mann, Kinetic investigation of wood pyrolysis, Ind Eng Chem Process Des Dev, vol.20, pp.482-490, 1981.

W. Chan, M. Kelbon, and B. B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, pp.1505-1518, 1985.

J. Ratte, F. Marias, J. Vaxelaire, and P. Bernada, Mathematical modelling of slow pyrolysis of a particle of treated wood waste, J Hazard Mater, vol.170, pp.1023-1063, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02155416

V. Repellin, A. Govin, M. Rolland, and R. Guyonnet, Energy requirement for fine grinding of torrefied wood, Biomass Bioenergy, vol.34, pp.923-953, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508334

L. Shang, J. Ahrenfeldt, J. K. Holm, S. Barsberg, R. Zhang et al., Intrinsic kinetics and devolatilization of wheat straw during torrefaction, J Anal Appl Pyrolysis, vol.100, pp.145-52, 2013.

J. Piskorz, D. Radlein, and D. S. Scott, On the mechanism of the rapid pyrolysis of cellulose, J Anal Appl Pyrolysis, vol.9, issue.86, pp.85003-85006, 1986.

R. K. Agrawal, Kinetics of reactions involved in pyrolysis of cellulose I. The three reaction model, Can J Chem Eng, vol.66, pp.403-415, 1988.

R. K. Agrawal, Kinetics of reactions involved in pvrolvsis of cellulose II. The modified kilzer-bioid model, Can J Chem Eng, vol.66, pp.413-421, 1988.

M. J. Prins, K. J. Ptasinski, and F. Janssen, More efficient biomass gasification via torrefaction, Energy, vol.31, pp.3458-70, 2006.

E. Peduzzi, G. Boissonnet, G. Haarlemmer, and C. Dupont, Mar echal F. Torrefaction modelling for lignocellulosic biomass conversion processes, Energy, vol.70, pp.58-67, 2014.

J. L. Banyasz, S. Li, J. L. Lyons-hart, and K. H. Shafer, Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution, J Anal Appl Pyrolysis, vol.57, 2001.

J. Klinger, E. Bar-ziv, and D. Shonnard, Kinetic study of aspen during torrefaction, J Anal Appl Pyrolysis, vol.104, 2013.

J. Klinger, E. Bar-ziv, and D. Shonnard, Unified kinetic model for torrefactionepyrolysis, Fuel Process Technol, vol.138, pp.175-83, 2015.

A. Anca-couce, R. Mehrabian, R. Scharler, and I. Obernberger, Kinetic scheme to predict product composition of biomass torrefaction, Chem. Eng. Trans, vol.37, pp.43-51, 2014.

M. Gonz-alez-martínez, C. Dupont, T. , S. Meyer, X. Gourdon et al., Impact of biomass diversity on torrefaction: study of solid conversion and volatile species formation through an innovative TGA-GC/MS apparatus, Biomass Bioenergy, vol.119, pp.43-53, 2018.

A. Ebringerov-a, H. T. Hrom-adkov-a-z, and . Hemicellulose, , pp.1-67, 2005.

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu Rev Plant Biol, vol.61, pp.263-89, 2010.

P. J. Harris, Primary and secondary plant cell walls: a comparative overview, N Z J For Sci, pp.36-53, 2006.

H. Almuina-villar, N. Lang, A. Anca-couce, J. R?-opcke, F. Behrendt et al., Application of laser-based diagnostics for characterization of the influence of inorganics on the slow pyrolysis of woody biomass, J Anal Appl Pyrolysis, vol.140, pp.125-161, 2019.