E. Parliament, / 2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, 2018.

, For the European commission's knowledge. Centre for Bioeconomy, Brief on biomass for energy in the European Union, 2019.

W. Chen, J. Peng, and X. T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renew Sustain Energy Rev, vol.44, pp.847-66, 2015.

P. Mckendry, Energy production from biomass (part 1): overview of biomass, Bioresour Technol, pp.37-46, 2002.

D. Nhuchhen, P. Basu, and B. Acharya, A comprehensive review on biomass torrefaction, Int. J. Renew. Energy Biofuels, pp.1-56, 2014.

P. Bergman, A. R. Boersma, R. Zwart, and J. Kiel, Torrefaction for biomass cofiring in existing coal-fired power stations "BIOCOAL, 2015.

J. Klinger, E. Bar-ziv, and D. Shonnard, Kinetic study of aspen during torrefaction, J Anal Appl Pyrolysis, vol.104, 2013.

T. Nocquet, C. Dupont, J. Commandre, M. Grateau, S. Thiery et al., Volatile species release during torrefaction of wood and its macromolecular constituents: Part 1 e experimental study, Energy, vol.72, pp.180-187, 2014.

W. Chen, C. Wang, H. C. Ong, P. L. Show, T. Hsieh et al., pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin, Fuel, vol.258, p.116168, 2019.

P. R. Patwardhan, R. C. Brown, and B. H. Shanks, Product distribution from the fast pyrolysis of hemicellulose, ChemSusChem, vol.4, 2011.

S. Wang, G. Dai, B. Ru, Y. Zhao, X. Wang et al., Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose, Energy, vol.120, pp.864-71, 2017.

M. Gonz-alez-martínez, P. Floquet, C. Dupont, D. Da-silva-perez, and X. Meyer, Assessing the impact of woody and agricultural biomass variability on its behaviour in torrefaction through Principal Component Analysis, Biomass Bioenergy, vol.134, p.105474, 2020.

F. Collard and J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sustain Energy Rev, vol.38, pp.594-608, 2014.

D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao et al., Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin, Energy Convers Manag, vol.169, pp.228-265, 2018.

M. J. Prins, K. J. Ptasinski, and F. Janssen, More efficient biomass gasification via torrefaction, Energy, vol.31, pp.3458-70, 2006.

B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera et al., Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process. Technol, vol.89, pp.169-75, 2008.

W. Chen and P. Kuo, Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass, Energy, vol.36, 2011.

T. Nocquet, C. Dupont, J. Commandre, M. Grateau, S. Thiery et al., Volatile species release during torrefaction of biomass and its macromolecular constituents: Part 2 e modeling study, Energy, vol.72, pp.188-94, 2014.

K. Werner, L. Pommer, and . Brostr?, Thermal decomposition of hemicelluloses, J Anal Appl Pyrolysis, vol.110, pp.130-137, 2014.

C. Branca, C. D. Blasi, C. Mango, and I. Hrablay, Products and kinetics of glucomannan pyrolysis, 2013.

S. Wang, B. Ru, H. Lin, and Z. Luo, Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles, Bioresour Technol, vol.143, pp.378-83, 2013.

H. A. Kr?-assig, Cellulose, structure, accessibility and reactivity. Gordon and Breach Publishers, 1993.

H. V. Scheller, P. Ulvskov, and . Hemicelluloses, Annu Rev Plant Biol, vol.61, pp.263-89, 2010.

R. Sun, X. F. Sun, and J. Tomkinson, Hemicelluloses and their derivatives, In: Hemicellul. Sci technol, pp.2-22, 2003.

B. Monties, Les polym eres v egetaux: les lignines, 1980.

E. Biagini, F. Barontini, and L. Tognotti, Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique, Ind Eng Chem Res, vol.45, pp.4486-93, 2006.

P. T. Williams and S. Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass, Renew Energy, vol.7, pp.6-7, 1996.

M. J. Prins, K. J. Ptasinski, and F. Janssen, Torrefaction of wood. Part 2. Analysis of products, J Anal Appl Pyrolysis, vol.77, pp.35-40, 2006.

M. J. Prins, K. J. Ptasinski, and F. Janssen, Torrefaction of wood: Part 1. Weight loss kinetics, J Anal Appl Pyrolysis, vol.77, 2006.

R. B. Bates and A. F. Ghoniem, Biomass torrefaction: modeling of volatile and solid product evolution kinetics, Bioresour Technol, vol.124, pp.460-469, 2012.

R. Moya, A. Rodríguez-zúñiga, A. Puente-urbina, and J. Gait-an-alvarez, Study of light, middle and severe torrefaction and effects of extractives and chemical compositions on torrefaction process by thermogravimetric analysis in five fast-growing plantations of Costa Rica, Energy, vol.149, pp.1-10, 2018.

M. Lauberts, L. Lauberte, A. Arshanitsa, T. Dizhbite, G. Dobele et al., Structural transformations of wood and cereal biomass components induced by microwave assisted torrefaction with emphasis on extractable value chemicals obtaining, J Anal Appl Pyrolysis, 2018.

P. R. Patwardhan, J. A. Satrio, R. C. Brown, and B. H. Shanks, Influence of inorganic salts on the primary pyrolysis products of cellulose, Bioresour Technol, vol.101, pp.4646-55, 2010.

M. Kleen and G. Gellerstedt, Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps, J Anal Appl Pyrolysis, vol.35, issue.95, p.893, 1995.

C. Dupont, S. Jacob, K. O. Marrakchy, C. Hognon, M. Grateau et al., How inorganic elements of biomass influence char steam gasification kinetics, Energy, vol.109, pp.430-435, 2016.

. Romero-mill-an, S. Lm, F. E. Vargas, and A. Nzihou, Steam gasification behavior of tropical agrowaste: a new modeling approach based on the inorganic composition, Fuel, vol.235, pp.45-53, 2019.

K. Shoulaifar, T. Demartini, N. Karlstr?-om, O. Hupa, and M. , Impact of organically bonded potassium on torrefaction, Fuel, vol.165, pp.544-52, 2016.

L. A. De-macedo, C. , J. Rousset, P. Valette, and J. , Influence of potassium carbonate addition on the condensable species released during wood torrefaction, Fuel Process Technol, vol.169, pp.248-57, 2018.

S. Zhang, Y. Su, K. Ding, S. Zhu, H. Zhang et al., Effect of inorganic species on torrefaction process and product properties of rice husk, Bioresour Technol, vol.265, pp.450-455, 2018.

M. Safar, B. Lin, W. Chen, D. Langauer, J. Chang et al., Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction, Appl Energy, vol.235, pp.346-55, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02154656

M. Gonz-alez-martínez, C. Dupont, T. , S. Meyer, X. Gourdon et al., Impact of biomass diversity on torrefaction: study of solid conversion and volatile species formation through an innovative TGA-GC/MS apparatus, Biomass Bioenergy, vol.119, pp.43-53, 2018.

E. M. Rubin, Genomics of cellulosic biofuels, Nature, vol.454, pp.841-846, 2008.

P. J. Harris, Primary and secondary plant cell walls: a comparative overview, N Z J For Sci, pp.36-53, 2006.

J. J. Harrington, R. Booker, and R. J. Astley, Modelling the elastic properties of softwood. Part I: the cell-wall lamellae, Holz Als Roh-Werkst, pp.37-41, 1998.

T. Stevanovic, Chemical composition and properties of wood, Lignocellul. Fibers wood handb, pp.49-106, 2016.

N. Johar, I. Ahmad, and A. Dufresne, Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk, Ind Crop Prod, vol.37, pp.93-102, 2012.

K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Improvement of plant based natural fibers for toughening green compositesdeffect of load application during mercerization of ramie fibers, Composer Part Appl Sci Manuf, vol.37, issue.2213, 2006.

A. E. Oudiani, Y. Chaabouni, S. Msahli, and F. Sakli, Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre, Carbohydr, Polymer, vol.86, 2011.

E. H?-agglund, B. Lindberg, and J. Mcpherson, Dimethylsulphoxide, a solvent for hemicelluloses, Acta Chem Scand, vol.10, pp.1160-1164, 1956.

J. Rowley, S. R. Decker, W. Michener, and S. Black, Efficient extraction of xylan from delignified corn stover using dimethyl sulfoxide, Biotech, vol.3, 2013.

A. Ebringerov-a, H. T. Hrom-adkov-a-z, and . Hemicellulose, , pp.1-67, 2005.

A. Ebringerov-a and T. Heinze, Xylan and xylan derivatives e biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties, Macromol Rapid Commun, vol.21, pp.542-56, 2000.

A. Tribot, G. Amer, M. Abdou-alio, H. De-baynast, C. Delattre et al., Wood-lignin: supply, extraction processes and use as bio-based material, Eur Polym J, vol.112, pp.228-268, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02608823

J. C. Carvajal, A. Cardona, and C. A. , Comparison of lignin extraction processes: economic and environmental assessment, Bioresour. Technol, vol.214, pp.468-76, 2016.

G. Gellerstedt, J. Pranda, and E. Lindfors, Structural and molecular properties of residual birch kraft lignins, J Wood Chem Technol, vol.14, pp.467-82, 1994.

A. Guerra, L. A. Lucia, and D. S. Argyropoulos, Isolation and characterization of lignins from Eucalyptus grandis Hill ex Maiden and Eucalyptus globulus Labill. by enzymatic mild acidolysis (EMAL), Holzforschung, vol.62, pp.24-30, 2008.

R. Fahmi, A. V. Bridgwater, S. C. Thain, I. S. Donnison, P. M. Morris et al., Prediction of Klason lignin and lignin thermal degradation products by PyeGC/MS in a collection of Lolium and Festuca grasses, J Anal Appl Pyrolysis, vol.80, pp.16-23, 2007.

D. Da-silva-perez, C. Dupont, A. Guillemain, S. Jacob, F. Labalette et al., Characterisation of the most representative agricultural and forestry biomasses in France for gasification, Waste Biomass Valorization, vol.6, pp.515-541, 2015.

P. A. Ahlgren and G. Dai, Removal of wood components during chlorite delignification of black spruce, Can J Chem, vol.49, pp.1272-1277, 1971.

R. Alonso and E. , Contribution to the study of formation mechanisms of condensable by-products from torrefaction of various biomasses, 2015.

M. Gonz-alez-martínez, C. Dupont, S. Thiery, X. M. Meyer, and C. Gourdon, Characteristic time analysis of biomass torrefaction phenomena -application to thermogravimetric analysis device, Chem. Eng. Trans, vol.50, pp.61-67, 2016.

T. Nocquet, Torr efaction du bois et de ses constituants: exp eriences et mod elisation des rendements en mati eres volatiles, 2012.

M. Gonz-alez-martínez, T. Ohra-aho, D. Da-silva-perez, T. Tamminen, and C. Dupont, Influence of step duration in fractionated Py-GC/MS of lignocellulosic biomass, J Anal Appl Pyrolysis, vol.137, pp.195-202, 2019.

M. Chauve, Mod elisation cin etique de l'hydrolyse enzymatique des substrats cellulosiques. Influence de la structure et morphologie du substrat, phdthesis, 2011.

F. J. Kolpak and J. Blackwell, Determination of the structure of cellulose II, Macromolecules, vol.9, 1976.

, Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose, J Anal Appl Pyrolysis, vol.94, pp.17-32, 2012.

,

S. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopoulou, C. M. Michailof, P. A. Pilavachi et al., A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin, J Anal Appl Pyrolysis, vol.105, pp.143-50, 2014.

J. C. Del-río, A. Guti-errez, I. M. Rodríguez, D. Ibarra, and A. T. Martínez, Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR, J Anal Appl Pyrolysis, vol.79, pp.39-46, 2007.