W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res, vol.7, pp.1564-1583, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res, vol.19, issue.1, pp.3-20, 2004.

I. N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci, vol.3, issue.%11, pp.47-57, 1965.

K. L. Johnson, Contact Mechanics, 1987.

G. Constantinides, K. R. Chandran, F. Ulm, K. Van, and . Vliet, Grid indentation analysis of composite microstructure and mechanics: principles and validation, Mater. Sci. Eng. A, vol.430, issue.%11, pp.189-202, 2006.

P. S. Phani and W. Oliver, A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing, Mater. Des, vol.164, p.107563, 2019.

N. X. Randall, M. Vandamme, and F. Ulm, Nanoindentation analysis as a twodimensional tool for mapping the mechanical properties of complex surfaces, J. Mater. Res, vol.24, issue.%13, pp.679-690, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00555541

L. Brown, P. G. Allison, and F. Sanchez, Use of nanoindentation phase characterization and homogenization to estimate the elastic modulus of heterogeneously decalcified cement pastes, Mater. Des, vol.142, pp.308-318, 2018.

M. Sebastiania, R. Moscatellia, F. Ridib, P. Baglionib, and C. F. , High-resolution high-speed nanoindentation mapping of cement pastes: unravelling the effect of microstructure on the mechanical properties of hydrated phases, Mater. Des, vol.97, pp.372-380, 2016.

B. Vignesh, W. Oliver, G. Kumar, P. Sudharshan, and . Phani, Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings, Mater. Des, vol.181, p.108084, 2019.

E. Ariza-echeverri, A. Masoumi, D. Nishikawa, A. Mesa, A. Marquez-rossy et al., Development of a new generation of quench and partitioning steels: influence of processing parameters on texture, nanoindentation, and mechanical properties, Mater. Des, vol.186, 2020.

X. Zhu, Y. Yuan, L. Li, Y. Du, and F. Li, Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques, Mater. Des, vol.129, pp.91-102, 2017.

C. Singh and J. Singh, Accurate contour plotting using 6-node triangular elements in 2d, Finite Elem. Anal. Des, vol.45, issue.%12, pp.81-93, 2009.

A. Ruiz-moreno and P. Hähner, Indentation size effects of ferritic/martensitic steels: a comparative experimental and modelling study, Mater. Des, vol.145, pp.168-180, 2018.

M. Ghidelli, M. Sebastiani, C. Collet, and R. Guillemet, Determination of the elastic moduli and residual stresses of freestanding Au-TiW bilayer thin films by nanoindentation, Mater. Des, vol.106, pp.436-445, 2016.

A. Elsayed, W. Li, O. A. Kady, W. M. Daoush, E. A. Olevsky et al., Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering, J. Alloys Compd, vol.639, pp.373-380, 2015.

F. Bachmann, R. Hielscher, and H. Schaeben, Grain detection from 2d and 3d EBSD dataspecification of the MTEX algorithm, Ultramicroscopy, vol.111, issue.%112, pp.1720-1733, 2011.

F. Bachmann, R. Hielscher, P. E. Jupp, W. Pantleon, H. Schaeben et al., Inferential statistics of EBSD data from within individual crystalline grains, J. Appl. Crystallogr, vol.43, pp.1338-1355, 2010.

J. R. Davis and T. Testing, , 2004.

M. Dao, N. V. Chollacoop, K. J. Van-vliet, T. A. Venkatesh, and S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater, vol.49, pp.3899-3918, 2001.

H. Pelletier, J. Krier, A. Cornet, and P. Mille, Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials, Thin Solid Films, vol.379, pp.147-155, 2000.

C. Sanchez-camargo, A. Hor, and C. Mabru, A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter, Int. J. Mech. Sci, vol.171, p.105370, 2020.

C. Sanchez-camargo, Mechanical Multi-scale Characterization of Metallic Materials by Nanoindentationtest, 2019.

G. Konstantopoulos, E. P. Koumoulos, and C. A. Charitidis, Classification of mechanism of reinforcement in the fiber-matrix interface: application of machine learning on nanoindentation data, Mater. Des, vol.192, p.108705, 2020.

E. Lee, Theory of Electrophoresis and Diffusiphoresis of Highly Charged Colloidal Particles, 2018.

E. Rolfe, M. Kelly, H. Arora, and J. Dear, Composite materials for blast applications in air and underwater, Dyn. Response Fail. Compos. Mater. Struct, pp.263-295, 2017.

V. Buljak, Inverse Analyses With Model Reduction: Proper Orthogonal Decomposition in Structural Mechanics, 2011.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math, vol.11, issue.%12, pp.431-441, 1963.

M. K. Transtrum, B. B. Machta, and J. P. Sethna, Geometry of nonlinear least squares with applications to sloppy models and optimization, Phys. Rev. E, vol.83, issue.%113, p.36701, 2011.

P. L. Larsson, A. E. Giannakopoulos, E. Söderlund, D. J. Rowcliffe, and R. Vestergaard, Analysis of Berkovich indentation, Int. J. Solids Struct, vol.33, issue.%12, pp.221-248, 1996.

M. F. Ashby and D. R. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, 2012.

A. B. Lebedev, Y. A. Burenkov, A. Romanov, V. I. Kopylov, V. P. Filonenko et al., Softening of the elastic modulus in submicrocrystalline copper, Mater. Sci. Eng. A, vol.203, pp.165-170, 1995.

J. Collin, G. Mauvoisin, and P. Pilvin, Materials characterization by instrumented indentation using two different approaches, Mater. Des, vol.31, issue.%11, pp.636-640, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00830348