S. Abanades, G. Flamant, B. Gagnepain, and D. Gauthier, Fate of heavy metals during municipal solid waste incineration, Waste Manage. Res, vol.20, pp.55-68, 2002.

T. Ahmad, J. Park, S. Keel, J. Yun, U. Lee et al., Behavior of heavy metals in air pollution control devices of 2,400 kg/h municipal solid waste incinerator, Korean J. Chem. Eng, vol.35, pp.1823-1828, 2018.

G. Antonioni, D. Guglielmi, V. Cozzani, C. Stramigioli, and D. Corrente, Modelling and simulation of an existing MSWI flue gas two-stage dry treatment, Process Saf. Environ. Prot, vol.92, pp.242-250, 2014.

C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson et al., Reprint of: FactSage thermochemical software and databases, Calphad Comput. Coupling Phase Diagrams Thermochem, vol.55, pp.1-19, 2016.

A. Beylot, S. Muller, M. Descat, Y. Ménard, and J. Villeneuve, Life cycle assessment of the French municipal solid waste incineration sector. Waste Manage, vol.80, pp.144-153, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01942987

Y. Cao, B. Chen, J. Wu, H. Cui, J. Smith et al., Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal, Energy Fuels, vol.21, pp.145-156, 2007.

T. R. Carey, O. W. Hargrove, J. Carl, F. F. Richardson, . Chang et al., Factors affecting mercury control in utility flue gas using activated carbon, J. Air Waste Manage. Assoc, vol.48, pp.1166-1174, 1998.

Y. Chen and S. Hsiau, Cake formation and growth in cake filtration, Powder Technol, vol.192, pp.217-224, 2009.

X. Cheng and X. T. Bi, A review of recent advances in selective catalytic NO x reduction reactor technologies, Particuology, vol.16, pp.1-18, 2014.

A. Dal-pozzo, R. Moricone, A. Tugnoli, and V. Cozzani, Experimental investigation of the reactivity of sodium bicarbonate toward hydrogen chloride and sulfur dioxide at low temperatures, I&EC, vol.58, pp.6316-6324, 2019.

S. Eswaran and H. G. Stenger, Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts, Energy Fuels, vol.19, pp.2328-2334, 2005.

, Commission implementing decision (EU) 2019/2010 of November 2019 establising the BAT conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for waste incineration, Off. J. Eur. Union, vol.62, pp.55-92, 2019.

T. J. Feeley, A. P. Jones, L. A. Brickett, B. A. O'palko, C. E. Miller et al., An update on DOE's Phase II and Phase III mercury control technology R&D program, Fuel Process. Technol, vol.90, pp.1388-1391, 2009.

S. C. Garrick and M. Bühlmann, Modeling of Gas-to-Particle Mass Transfer in Turbulent Flows, 2018.

M. Gharebaghi, K. J. Hughes, R. T. Porter, M. Pourkashanian, and A. Williams, Mercury speciation in air-coal and oxy-coal combustion: A modelling approach, Proc. Combust. Inst, vol.33, pp.1779-1786, 2011.

B. Ghorishi and B. K. Gullett, Sorption of mercury species by activated carbons and calcium-based sorbents: effect of temperature, mercury concentration and acid gases, Waste Manage. Res, vol.16, pp.582-593, 1998.

E. Ha, N. Basu, S. Bose-o'reilly, J. G. Dórea, E. Mcsorley et al., Current progress on understanding the impact of mercury on human health, Environ. Res, vol.152, pp.419-433, 2017.

B. Hall, O. Lindqvist, and E. Ljungström, Mercury chemistry in simulated flue gases related to waste incineration conditions, Environ. Sci. Technol, vol.24, pp.108-111, 1990.

B. Hall, P. Schager, and O. Lindqvist, Chemical reactions of mercury in combustion flue gases, Water, Air, Soil Pollut, vol.56, pp.3-14, 1991.

D. J. Hassett and K. E. Eylands, Mercury capture on coal combustion fly ash, Fuel, vol.78, pp.150-151, 1999.

J. Hranisavljevic and A. Fontijn, Kinetics of ground-state Cd reactions with Cl2, O2, and HCl over wide temperature ranges, J. Phys. Chem. A, vol.101, pp.2323-2326, 1997.

J. Hranisavljevic and A. Fontijn, Kinetics of ground-state Cd reactions with Cl2, O2, and HCl over wide temperature ranges, J. Phys. Chem. A, vol.101, pp.2323-2326, 1997.

I. Ie, C. Hung, Y. Jen, C. Yuan, and W. Chen, Adsorption of vaporphase elemental mercury (Hg0) and mercury chloride (HgCl2) with innovative composite activated carbons impregnated with Na2S and S0 in different sequences, Chem. Eng. J, vol.229, pp.469-476, 2013.

E. Jannelli and M. Minutillo, Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Manage, vol.27, pp.684-690, 2006.

D. Karatza, A. Lancia, and D. Musmarra, Fly ash capture of mercuric chloride vapors from exhaust combustion gas, Environ. Sci. Technol, vol.32, pp.3999-4004, 1998.

D. Karatza, A. Lancia, D. Musmarra, and F. Pepe, Adsorption of metallic mercury on activated carbon, Symp. Combust, vol.26, pp.80074-80083, 1996.

D. Karatza, A. Lancia, D. Musmarra, F. Pepe, and G. Volpicelli, Removal of mercuric chloride from flue gas by sulfur impregnated activated carbon, Hazard. Waste Hazard. Mater, vol.13, pp.95-105, 1996.

D. Karatza, A. Lancia, D. Musmarra, F. Pepe, and G. Volpicelli, Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon, Combust. Sci. Technol, vol.112, pp.163-174, 1996.

G. Li, Q. Wu, S. Wang, Z. Duan, H. Su et al., Improving flue gas mercury removal in waste incinerators by optimization of carbon injection rate, Environ. Sci. Technol, vol.52, pp.1940-1945, 2018.

J. S. Lighty, G. Silcox, C. L. Senior, and J. J. Helble, Fundamentals of Mercury Oxidation in Flue Gas, 2008.

H. Lin, C. Yuan, W. Chen, and C. Hung, Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis, J. Air Waste Manage. Assoc, vol.56, pp.1550-1557, 2006.

H. Min, T. Ahmad, and S. Lee, Mercury adsorption characteristics as dependent upon the physical properties of activated carbon, Energy Fuels, vol.31, pp.724-729, 2016.

D. V. Nichita, S. Gomez, and E. Luna, Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method, Comput. Chem. Eng, vol.26, pp.1703-1724, 2002.

S. Niksa, J. J. Helble, and N. Fujiwara, Kinetic modeling of homogeneous mercury/ oxidation: The importance of NO and H2O in predicting oxidation in coalderived systems, Environ. Sci. Technol, vol.35, pp.3701-3706, 2001.

R. Ochiai, M. A. Uddin, E. Sasaoka, and S. Wu, Effects of HCl and SO2 concentration on mercury removal by activated carbon sorbents in coalderived flue gas, Energy Fuels, vol.23, pp.4734-4739, 2009.

J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath et al., Status review of mercury control options for coal-fired power plants, Fuel Process. Technol, vol.82, issue.03, pp.59-65, 2003.

A. A. Presto and E. J. Granite, Critical review survey of catalysts for oxidation of mercury in flue gas, Environ. Sci. Technol, vol.40, pp.5601-5609, 2006.

M. J. Quina, J. C. Bordado, and R. M. Quinta-ferreira, Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manage, 2008.

H. Reissner, S. Crèvecoeur, M. Kramer, N. Kraus, R. Kuivalainen et al., Mercury Removal -Guideline for Assessment and Design Recommendations -European Power, 2015.

M. Rumayor, K. Svoboda, J. ?vehla, M. Poho?elý, and M. ?yc, Mitigation of gaseous mercury emissions from waste-to-energy facilities: Homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes, J. Environ. Manage, vol.206, pp.276-283, 2018.

D. Ruthven, Principles of Adsorption and Adsorption Processes, 1984.

T. Ruzovic and K. Svoboda, Thermodynamic possibilities of fue gas dry desulfurization, de-HCl, Chem. Pap, vol.74, pp.951-962, 2019.

F. Scala, Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1 In-duct removal, Environ. Sci. Technol, vol.35, pp.4367-4372, 2001.

F. Scala, Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2 Fabric filter removal, Environ. Sci. Technol, vol.35, pp.4373-4378, 2001.

C. L. Senior, A. F. Sarofim, T. Zeng, J. J. Helble, and R. Mamani-paco, Gas-phase transformations of mercury in coal-fired power plants, Fuel Process. Technol, vol.63, pp.197-213, 2000.

S. Shabbar and I. Janajreh, Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method, Energy Convers. Manage, vol.65, pp.755-763, 2012.

G. Skodras, I. Diamantopoulou, G. Pantoleontos, and G. P. Sakellaropoulos, Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor, J. Hazard. Mater, vol.158, pp.1-13, 2008.

R. N. Sliger, J. C. Kramlich, and N. M. Marinov, Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species, Fuel Process. Technol, vol.65, pp.108-111, 2000.

R. K. Srivastava, W. Jozewicz, and J. Srivastava, Flue gas desulfurization: the state of the art, J. Air Waste Manage. Assoc, vol.51, pp.1676-1688, 2001.

K. Svoboda, M. Hartman, M. ?yc, M. Poho?elý, P. Kameníková et al., Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units, J. Environ. Manage, vol.166, pp.499-511, 2016.

Z. Tao, S. Dai, and X. Chai, Mercury emission to the atmosphere from municipal solid waste landfills: A brief review, Environ. Atmos, 2017.

N. Verdone and P. De-filippis, Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators, Chemosphere, vol.54, pp.975-985, 2004.

Y. Wang, Y. Duan, L. Yang, Y. Jiang, C. Wu et al., Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants, J. Fuel Chem. Technol, vol.36, pp.23-29, 2008.

M. Xu, Y. Qiao, C. Zheng, L. Li, and J. Liu, Modeling of homogeneous mercury speciation using detailed chemical kinetics, Combust. Flame, vol.132, pp.208-218, 2003.

J. Zhou, L. Zhongyang, Z. Yanqun, and F. Mengxiang, Mercury Emission and its Control in Chinese Coal-Fired Power Plants, Advanced Topics in Science and Technology in China, 2013.

Q. Zhou, Y. Duan, S. Zhao, C. Zhu, M. She et al., Modeling and experimental studies of in-duct mercury capture by activated carbon injection in an entrained flow reactor, Fuel Process. Technol, vol.140, pp.304-311, 2015.