P. Suzaki, M. T. Munaro, C. C. Triques, S. J. Kleinübing, M. Klen et al., Biosorption of binary heavy metal systems: phenomenological mathematical modeling, Chem Eng J, vol.313, pp.364-73, 2017.

W. J. Liu, W. W. Li, H. Jiang, and H. Q. Yu, Fates of chemical elements in biomass during its pyrolysis, Chem Rev, vol.117, pp.6367-98, 2017.

M. Said, L. Cassayre, J. Dirion, A. Nzihou, and X. Joulia, Influence of nickel on biomass pyro-gasification: coupled thermodynamic and experimental investigations, Ind Eng Chem Res, vol.57, pp.9788-97, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01735283

B. Yousaf, G. J. Liu, Q. Abbas, M. U. Ali, R. W. Wang et al., Operational control on environmental safety of potentially toxic elements during thermal conversion of metal-accumulator invasive ragweed to biochar, J Clean Prod, vol.195, pp.458-69, 2018.

T. Chen, Y. X. Zhang, H. T. Wang, W. J. Lu, Z. Y. Zhou et al., Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge, Bioresour Technol, vol.164, pp.47-54, 2014.

K. Zeng, R. Li, P. Minh, D. Weiss-hortala, E. Nzihou et al., Solar pyrolysis of heavy metal contaminated biomass for gas fuel production, Energy, vol.187, p.116016, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02396837

W. Liu, K. Tian, H. Jiang, X. Zhang, H. Ding et al., Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, Environ Sci Technol, vol.46, pp.7849-56, 2012.

R. T. Dilks, F. Monette, and M. Glaus, The major parameters on biomass pyrolysis for hyperaccumulative plants e a review, Chemosphere, vol.146, pp.385-95, 2016.

L. Koppolu and L. D. Clements, Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: preparation of synthetic hyperaccumulator biomass, Biomass Bioenergy, vol.24, pp.69-79, 2003.

L. Koppolu, F. A. Agblevor, and L. D. Clements, Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: lab-scale pyrolysis of synthetic hyperaccumulator biomass, Biomass Bioenergy, vol.25, pp.651-63, 2003.

L. Koppolu, R. Prasad, and L. D. Clements, Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part III: pilot-scale pyrolysis of synthetic hyperaccumulator biomass, Biomass Bioenergy, vol.26, pp.463-72, 2004.

K. Zeng, G. Gauthier, J. Soria, G. Mazza, and G. Flamant, Solar pyrolysis of carbonaceous feedstocks: a review, Sol Energy, vol.156, pp.73-92, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01892657

K. Zeng, D. Gauthier, R. Li, and G. Flamant, Solar pyrolysis of beech wood: effects of pyrolysis parameters on the product distribution and gas product composition, Energy, vol.93, pp.1648-57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01315739

K. Zeng, D. Gauthier, R. Li, and G. Flamant, Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood, Energy, vol.125, pp.552-61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01887763

K. Zeng, D. Gauthier, P. Minh, D. Weiss-hortala, E. Nzihou et al., Characterization of solar fuels obtained from beech wood solar pyrolysis, Fuel, vol.188, pp.285-93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619246

M. Hervy, S. Berhanu, E. Weiss-hortala, A. Chesnaud, C. Villot et al., Multi-scale characterisation of chars mineral species for tar cracking, Fuel, vol.189, pp.88-97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01391562

K. Zeng, P. Minh, D. Gauthier, D. Weiss-hortala, E. Nzihou et al., The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood, Bioresour Technol, vol.182, pp.114-123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176348

C. Guizani, K. Haddad, L. Limousy, and M. Jeguirim, New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis, Carbon, vol.119, pp.519-540, 2017.

R. H. Li, H. Huang, J. J. Wang, W. Liang, P. C. Gao et al., Conversion of Cu(II)-polluted biomass into an environmentally benign Cu nanoparticles-embedded biochar composite and its potential use on cyanobacteria inhibition, J Clean Prod, vol.216, pp.25-32, 2019.

L. Wang, T. Li, B. M. Güell, T. Løvås, and J. Sandquist, An SEM-EDX study of forest residue chars produced at high temperatures and high heating rate, Energy Procedia, vol.75, pp.226-257, 2015.

J. He, V. Strezov, T. Kan, H. Weldekidan, S. Asumadu-sarkodie et al., Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation, Bioresour Technol, vol.278, pp.214-236, 2019.

C. Keller, C. Ludwig, F. Davoli, and J. Wochele, Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction, Environ Sci Technol, vol.39, pp.3359-67, 2005.

K. O. Davidsson, B. J. Stojkova, and J. Pettersson, Alkali emission from birchwood particles during rapid pyrolysis, Energy Fuels, vol.16, pp.1033-1042, 2002.

T. Kowalski, C. Ludwig, and A. Wokaun, Qualitative evaluation of alkali release during the pyrolysis of biomass, Energy Fuels, vol.21, pp.3017-3039, 2007.

A. Nzihou, B. Stanmore, and N. Lyczko, Pham Minh D. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review, Energy, vol.170, pp.326-363, 2019.

Y. Liu, F. Guo, X. Li, T. Li, K. Peng et al., Catalytic effect of iron and nickel on gas formation from fast biomass pyrolysis in a microfluidized bed reactor: a kinetic study, Energy Fuels, vol.31, pp.12278-87, 2017.

X. H. Liu, Y. Zheng, Z. H. Liu, H. R. Ding, X. H. Huang et al., Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy, Fuel, vol.157, pp.97-106, 2015.

M. Xu, H. Y. Hu, Y. H. Yang, Y. D. Huang, K. Xie et al., A deep insight into carbon conversion during Zhundong coal molten salt gasification, Fuel, vol.220, pp.890-897, 2018.

C. D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, vol.86, pp.2316-2340, 2007.

X. He, K. Zeng, Y. P. Xie, G. Flamant, H. P. Yang et al., The effects of temperature and molten salt on solar pyrolysis of lignite, Energy, vol.181, pp.407-423, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02149242

H. L. Tay, S. Kajitani, S. Wang, and C. Z. Li, A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification, Fuel, vol.121, pp.165-72, 2014.

P. Fu, S. Hu, J. Xiang, L. S. Sun, S. Su et al., Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate, J Anal Appl Pyrol, vol.98, pp.177-83, 2012.

L. M. Lu, C. H. Kong, V. Sahajwalla, and D. Harris, Char structural ordering during pyrolysis and combustion and its influence on char reactivity, Fuel, vol.81, pp.1215-1240, 2002.

M. Stals, E. Thijssen, J. Vangronsveld, R. Carleer, S. Schreurs et al., Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals, J Anal Appl Pyrol, vol.87, pp.1-7, 2010.

Y. F. Shen, M. D. Chen, T. H. Sun, and J. P. Jia, Catalytic reforming of pyrolysis tar over metallic nickel nanoparticles embedded in pyrochar, Fuel, vol.159, pp.570-579, 2015.

R. Azargohar, S. Nanda, J. A. Kozinski, A. K. Dalai, and R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass, Fuel, vol.125, pp.90-100, 2014.

S. S. Wang, G. Gao, T. C. Li, Y. S. Ok, C. F. Shen et al., Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: a case study of Phytolacca acinosa Roxb. (Phytolaccaceae), Chemosphere, vol.178, pp.59-64, 2017.

J. Dong, Y. Chi, Y. J. Tang, M. J. Ni, A. Nzihou et al., Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration, Energy Fuels, vol.29, pp.7516-7541, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01632390

V. Bert, J. Allemon, P. Sajet, S. Dieu, A. Papins et al., Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options, Biomass Bioenergy, vol.96, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01512270

H. Huang, W. Yao, R. Li, A. Ali, J. Du et al., Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue, Bioresour Technol, vol.249, pp.487-93, 2018.

M. Syc, M. Poho-relý, . Jeremi-a-s-m, M. Vosecký, . Kameníkov-a-p et al., Pun coch a r M. Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass, Energy Fuels, vol.25, pp.2284-91, 2011.

J. R. Bunt and F. B. Waanders, Trace element behaviour in the SasoleLurgi MK IV FBDB gasifier, Fuel, vol.88, pp.961-970, 2009.

J. W. Jin, Y. N. Li, J. Y. Zhang, S. C. Wu, Y. C. Cao et al., Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge, J Hazard Mater, vol.320, pp.417-443, 2016.

M. J. Wornat, R. H. Hurt, N. Yang, and T. J. Headley, Structural and compositional transformations of biomass chars during combustion, Combust Flame, vol.100, pp.131-174, 1995.

T. Okuno, N. Sonoyama, J. I. Hayashi, C. Z. Li, C. Sathe et al., Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass, Energy Fuels, vol.19, pp.2164-71, 2005.

S. Y. Lu, Y. Z. Du, D. X. Zhong, B. Zhao, X. D. Li et al., Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators, Environ Sci Technol, vol.46, pp.5025-5056, 2012.

L. Wang, J. Sandquist, G. Varhegyi, and B. M. Güell, CO 2 gasification of chars prepared from wood and forest residue: a kinetic study, Energy Fuels, vol.27, pp.6098-107, 2013.