H. L. Eiselstein and D. J. Tillack, The invention and definition of alloy 625, superalloys 718, 625 and various derivatives, TMS, pp.1-14, 1991.

G. D. Smith, D. J. Tillack, and S. J. Patel, Alloy 625 -impressive past/significant presence/awesome future, Superalloys, vol.625, pp.35-46, 2001.

L. E. Shoemaker, Trends in Properties and Applications, Superalloys 718, 625, 706 and Various Derivatives, vol.625, pp.409-418, 2005.

S. Floreen, G. E. Fuchs, and W. J. Yang, The metallurgy of Alloy, Various Derivatives, TMS, vol.625, pp.13-37, 1994.

P. M. Mignanelli, N. G. Jones, E. Pickering, O. Messe, C. M. Rae et al., gamma-gamma prime-gamma double prime dual-superlattice superalloys, Scripta Mater, pp.136-140, 2007.

I. J. Moore, M. G. Burke, and E. J. Palmiere, Modelling the nucleation, growth and coarsening kinetics of ? 00 (D022) precipitates in the Ni-base Alloy 625, Acta Mater, vol.119, pp.157-166, 2016.

K. N. Amato, J. Hernandez, L. E. Murr, E. Martinez, S. M. Gaytan et al., Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron and laser beam melting, J. Mater. Sci. Res, vol.1, issue.2, pp.3-41, 2012.

T. Borowski, A. Brojanowska, M. Kost, H. Garbacz, and T. Wierzcho?-n, Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding, pp.1489-1493, 2009.

M. A. Anam, D. Pal, and B. Stucker, Modeling and experimental validation of nickelbased super alloy (inconel 625) made using selective laser melting, Sol. Freeform Fabric, pp.463-473, 2013.

S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure characteristics of inconel 625 superalloy manufactured by selective laser melting, J. Mater. Sci. Technol, vol.31, pp.946-952, 2015.

I. Yadroitsev and I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape, Physcs Proc, vol.5, pp.551-560, 2010.

H. Hacka, R. Link, E. Knudsen, B. Baker, and S. Olig, Mechanical properties of additive manufactured nickel alloy 625, Add. Manuf, vol.14, pp.105-115, 2017.

G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J. W. Lee et al., Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion, Mater. Sci. Eng, vol.729, pp.64-75, 2018.

Z. Tian, C. Zhang, D. Wang, W. Liu, X. Fang et al., A review on laser powder bed fusion of inconel 625 nickel-based alloy, Appl. Sci, vol.10, 2020.

A. Wisniewski and J. Beddoes, Influence of grain-boundary morphology on creep of a wrought Ni-base superalloy, Mater. Sci. Eng, pp.266-272, 2009.

H. U. Hong and S. W. Nam, Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel, J. Mater. Sci, vol.3, issue.8, pp.1535-1542, 2003.

H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, and C. Y. Jo, The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy, Mater. Sci. Eng, vol.517, pp.125-131, 2009.

J. W. Lee, D. J. Kim, and H. U. Hong, A new approach to strengthen grain boundaries for creep improvement of a Ni-Cr-Co-Mo superalloy at 950 1C, Mater. Sci. Eng, vol.625, pp.164-168, 2015.

H. Loyer-danflou, M. Marty, and A. Walder, Formation of serrated grain boundaries and their effect on the mechanical properties in a P/M nickel base superalloy, Superalloys, pp.63-72, 1992.

J. M. Larson and S. Floreen, Metallurgical factors affecting the crack growth resistance of a superalloy, Metall. Trans. A, vol.8, pp.51-55, 1977.

M. Terner, J. W. Lee, J. H. Kim, and H. U. Hong, First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy, Int. J. Mater. Res, vol.109, issue.9, pp.803-810, 2018.

, Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM, 2014.

G. Marchese, X. G. Colera, F. Calignano, M. Lorusso, S. Biamino et al., Characterization and comparison of inconel 625 processed by selective laser melting and laser metal deposition, Adv. Eng. Mater, vol.19, 2016.

L. N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal et al., Process optimisation of selective laser melting using energy density model for nickel based superalloys, Mater. Sci. Technol, pp.657-661, 2016.

. Astm-e8/e8m-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, 2016.

T. Debroy, H. L. Weia, J. S. Zubacka, T. Mukherjee, J. W. Elmer et al., Additive manufacturing of metallic components -process, structure and properties, Prog. Mater. Sci, vol.92, pp.112-224, 2018.

P. Wang, B. Zhang, C. C. Tan, S. Raghavan, Y. F. Lim et al., Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting, Mater. Des, vol.112, pp.290-299, 2016.

N. J. Harrison, I. Todd, and K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach, Acta Mater, vol.94, pp.59-68, 2015.

H. Heubner, M. Kohler, and B. Prinz, Determination of the Solidification Behaviour of Some Selected Superalloys, Superalloys, pp.437-447, 1988.

Y. Zhang, B. Huang, and J. Li, Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy, Metall. Mater. Trans, vol.44, pp.1641-1644, 2013.

D. M. Stefanescu and R. Ruxanda, Fundamentals of Solidification, Metallography and Microstructures, vol.9, 2004.

J. N. Dupont, C. V. Robino, A. R. Marder, and M. R. Notis, Solidification of Nb-bearing superalloys: Part II. Pseudoternary solidification surfaces, vol.29, pp.2797-2806, 1998.

M. C. Flemings, Solidification processing, Metall. Trans, vol.5, pp.2121-2134, 1974.

G. Lindwall, C. E. Campbell, E. A. Lass, F. Zhang, M. R. Stoudt et al., Simulation of TTT curves for additively manufactured inconel 625, Metall. Mater. Trans, vol.50, pp.457-467, 2019.

T. Keller, G. Lindwall, S. Ghosh, L. Ma, B. M. Lane et al., Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys, Acta Mater, vol.139, pp.244-253, 2017.

J. L. Bartlett and X. Li, An overview of residual stresses in metal powder bed fusion, Add. Manuf, vol.27, pp.131-149, 2019.

A. Kreitcberg, K. Inaekyan, S. Turenne, and V. Brailovski, Temperature-and timedependent mechanical behavior of post-treated IN625 alloy processed by laser powder bed fusion, J. Manuf. Mater. Process, vol.3, issue.3, 2019.

K. Zhao, L. Lou, Y. Ma, and Z. Hu, Effect of minor niobium addition on microstructure of a nickel-base directionally solidified superalloy, Mater. Sci. Eng, vol.476, pp.372-377, 2008.

A. K. Koul and R. Thamburaj, Serrated grain boundary formation potential of Ni-based superalloys and its implications, Metall. Trans. A, vol.16, pp.17-26, 1985.

M. F. Henry, Y. S. Yoo, D. Y. Yoon, and J. Choi, The dendritic growth of ? 0 precipitates and grain boundary serration in a model nickel-base superalloy, Metall. Trans. A, vol.24, pp.1733-1743, 1993.

H. Loyer-danflou, M. Macia, T. H. Sanders, and T. Khan, Mechanisms of formation of serrated grain boundaries in nickel base superalloys, Superalloys, pp.119-127, 1992.

J. G. Yoon, H. W. Jeong, Y. S. Yoo, and H. U. Hong, Influence of initial microstructure on creep deformation behaviors and fracture characteristics of Haynes 230 superalloy at 900 ? C, Mater. Char, vol.101, pp.49-57, 2015.

H. U. Hong, I. S. Kim, B. G. Choi, Y. S. Yoo, and C. Y. Jo, On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy, Metall. Mater. Trans, vol.43, pp.173-181, 2012.

H. U. Hong, H. W. Jeong, I. S. Kim, B. G. Choi, Y. S. Yoo et al., Significant decrease in interfacial energy of grain boundary through serrated grain boundary transition, Philos. Mag. A, vol.92, pp.2809-2825, 2012.

H. U. Hong, I. S. Kim, B. G. Choi, Y. S. Yoo, and C. Y. Jo, On the mechanism of serrated grain boundary formation in Ni-based superalloys with low ? 0 volume fraction, 2012.

K. J. Kim, H. U. Hong, and S. W. Nam, A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel, Mater. Chem. Phys, vol.126, pp.480-483, 2011.

K. J. Kim, H. U. Hong, and S. W. Nam, Investigation on the formation of serrated grain boundaries with grain boundary characteristics in an AISI 316 stainless steel, J. Nucl. Mater, vol.393, pp.249-253, 2009.

J. W. Lee, M. Terner, H. U. Hong, S. H. Na, J. B. Seol et al., A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni-20Cr binary model alloy, Mater. Char, vol.135, pp.146-153, 2018.

M. Terner, H. U. Hong, J. H. Lee, and B. G. Choi, On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys, Int. J. Mater. Res, vol.109, issue.9, pp.803-810, 2018.

R. W. Balluffi and J. W. Cahn, Mechanism for diffusion induced grain boundary migration, Acta Metall, vol.29, issue.3, pp.90073-90073, 1981.

, Haynes® 625 Alloy Brochure

, Special Metals Inconel® Alloy 625 Brochure

J. Lee, M. Terner, E. Copin, P. Lours, and H. U. Hong, A novel approach to the production of NiCrAlY bond coat onto IN625 superalloy by selective laser melting, Add. Manuf, vol.31, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02404143

L. Zheng, G. Schmitz, Y. Meng, R. Chellali, and R. Schlesiger, Mechanism of intermediate temperature embrittlement of Ni and Ni-based superalloys, Crit. Rev. Solid State, vol.37, issue.3, pp.181-214, 2012.

M. T. Perez-prado and M. E. Kassner, Superplasticity, Fundamentals of Creep in Metals and Alloys, pp.139-157, 2015.

W. D. Callister and G. G. Rethwisch, Materials Science and Engineering: an Introduction, 2018.

P. Rodriguez, Serrated plastic flow, Bull. Mater. Sci, vol.6, issue.4, pp.653-663, 1984.

A. M. Beese, Z. Wang, A. D. Stoica, and D. Ma, Absence of dynamic strain aging in an additively manufactured nickel-base superalloy, Nat. Commun, vol.9, p.2083, 2018.

P. Behjati and S. Asgari, Microstructural characterisation of deformation behaviour of nickel base superalloy IN625, Mater. Sci. Technol, pp.1858-1862, 2011.