M. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys, vol.30, pp.139-326, 1981.

G. Duesberg, A. Graham, F. Kreupl, M. Liebau, R. Seidel et al., Ways towards the scaleable integration of carbon nanotubes into silicon based technology, Diam. Relat. Mater, vol.13, pp.354-361, 2004.

J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and P. Avouris, Doping and phonon renormalization in carbon nanotubes, Nat. Nanotechnol, vol.2, pp.725-730, 2007.

H. P. Boehm, Chemical Identification of Surface Groups, Adv. Catal, pp.179-274, 1966.

L. Li, P. A. Quinlivan, and D. R. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, vol.40, pp.2085-2100, 2002.

M. Montes-mor-an, D. Su-arez, J. Men-endez, and E. Fuente, On the nature of basic sites on carbon surfaces: an overview, Carbon, vol.42, pp.1219-1225, 2004.

T. J. Bandosz and C. Ania, Surface chemistry of activated carbons and its characterization, Interface Sci.Technol, pp.159-229, 2006.

E. Cruz-silva, Z. Barnett, B. G. Sumpter, and V. Meunier, Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles, Phys. Rev. B, vol.83, p.155445, 2011.

Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, vol.4, pp.1790-1798, 2010.

Y. Shao, J. Sui, G. Yin, and Y. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell, Appl. Catal. B Environ, vol.79, pp.89-99, 2008.

R. Lv and M. Terrones, Towards new graphene materials: doped graphene sheets and nanoribbons, Mater. Lett, vol.78, pp.209-218, 2012.

R. Lv, Q. Li, A. R. Botello-m-endez, T. Hayashi, B. Wang et al., Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Sci. Rep, vol.2, p.586, 2012.

A. L. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey et al., Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, vol.4, pp.6337-6342, 2010.

H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties, J. Mater. Chem, vol.21, pp.5430-5434, 2011.

D. Yu, E. Nagelli, F. Du, and L. Dai, Metal-free carbon nanomaterials become more active than metal catalysts and last longer, J. Phys. Chem. Lett, vol.1, pp.2165-2173, 2010.

J. Ozaki, Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells, Carbon, vol.44, p.3358, 2006.

L. Zhang, J. Zhang, D. P. Wilkinson, and H. Wang, Progress in preparation of nonnoble electrocatalysts for PEM fuel cell reactions, J. Power Sources, vol.156, pp.171-182, 2006.

M. Lef-evre, E. Proietti, F. Jaouen, and J. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, vol.324, pp.71-74, 2009.

G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, vol.332, pp.443-447, 2011.

E. Proietti, F. Jaouen, M. Lef-evre, N. Larouche, J. Tian et al., Ironbased cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat. Commun, vol.2, p.416, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739597

D. H. Lee, W. J. Lee, W. J. Lee, S. O. Kim, and Y. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube, Phys. Rev. Lett, vol.106, p.175502, 2011.

D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang et al., Toward N-doped graphene via solvothermal synthesis, Chem. Mater, vol.23, pp.1188-1193, 2011.

R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Mater. Chem, vol.20, pp.7114-7117, 2010.

Y. Lu, M. Zhou, C. Zhang, and Y. Feng, Metal-embedded graphene: a possible catalyst with high activity, J. Phys. Chem. C, vol.113, 2009.

Y. Li, J. Wang, X. Li, J. Liu, D. Geng et al., Nitrogen-doped carbon nanotubes as cathode for lithiumeair batteries, Electrochem. Commun, vol.13, pp.668-672, 2011.

H. Xu, D. Cheng, D. Cao, and X. C. Zeng, A universal principle for a rational design of single-atom electrocatalysts, Nat. Catal, vol.10, 2018.

X. Wang, Y. Qin, L. Zhu, and H. Tang, Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: synergistic effect between adsorption and catalysis, Environ. Sci. Technol, vol.49, pp.6855-6864, 2015.

Y. Liu, L. Yu, C. N. Ong, and J. Xie, Nitrogen-doped graphene nanosheets as reactive water purification membranes, Nano Res, vol.9, 2016.

P. Malik, Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics, J. Hazard Mater, vol.113, pp.81-88, 2004.

K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani et al., Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions, Bioresour. Technol, vol.87, pp.129-132, 2003.

X. Wang, N. Zhu, and B. Yin, Preparation of sludge-based activated carbon and its application in dye wastewater treatment, J. Hazard Mater, vol.153, pp.22-27, 2008.

S. Babel and T. A. Kurniawan, Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, vol.54, pp.951-967, 2004.

X. Hu, L. Lei, H. P. Chu, and P. L. Yue, Copper/activated carbon as catalyst for organic wastewater treatment, Carbon, vol.37, pp.631-637, 1999.

A. Ban, A. Schafer, and H. Wendt, Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents, J. Appl. Electrochem, vol.28, pp.227-236, 1998.

S. H. Mood, M. Ayiania, Y. Jefferson-milan, and M. Garcia-perez, Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions, Chemosphere, vol.240, p.124889, 2019.

R. V. Siriwardane, M. Shen, E. P. Fisher, and J. A. Poston, Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuels, vol.15, pp.279-284, 2001.

H. Tamon and M. Okazaki, Influence of acidic surface oxides of activated carbon on gas adsorption characteristics, Carbon, vol.34, pp.741-746, 1996.

R. Reich, W. T. Ziegler, and K. A. Rogers, Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres, Ind. Eng. Chem, vol.19, pp.336-344, 1980.

E. Costa, J. Sotelo, G. Calleja, and C. Marron, Adsorption of binary and ternary hydrocarbon gas mixtures on activated carbon: experimental determination and theoretical prediction of the ternary equilibrium data, AIChE J, vol.27, pp.5-12, 1981.

M. Ayiania, F. M. Carbajal-gamarra, T. Garcia-perez, C. Frear, W. Suliman et al., Production and characterization of H 2 S and PO4 3À carbonaceous adsorbents from anaerobic digested fibers, Biomass Bioenergy, vol.120, pp.339-349, 2019.

A. Bagreev, D. C. Locke, and T. J. Bandosz, H2S adsorption/oxidation on adsorbents obtained from pyrolysis of sewage-sludge-derived fertilizer using zinc chloride activation, Ind. Eng. Chem. Res, vol.40, pp.3502-3510, 2001.

M. J. Antal and M. Grønli, The art, science, and technology of charcoal production, Ind. Eng. Chem. Res, vol.42, pp.1619-1640, 2003.

G. M. Jenkins and K. Kawamura, Polymeric Carbons: Carbon Fibre, Glass and Char, 1976.

Y. Rhim, D. Zhang, D. H. Fairbrother, K. A. Wepasnick, K. J. Livi et al., Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature, Carbon, vol.48, pp.1012-1024, 2010.

G. Zickler, T. Sch?-oberl, and O. Paris, Mechanical properties of pyrolysed wood: a nanoindentation study, Philos. Mag. A, vol.86, pp.1373-1386, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00513635

S. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero et al., Firstprinciples calculation of the electronic properties of graphene clusters doped with nitrogen and boron: analysis of catalytic activity for the oxygen reduction reaction, Phys. Rev. B, vol.80, p.235410, 2009.

B. Biel, X. Blase, F. Triozon, and S. Roche, Anomalous doping effects on charge transport in graphene nanoribbons, Phys. Rev. Lett, vol.102, p.96803, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00992765

Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao et al., Nitrogendoped graphene and its electrochemical applications, J. Mater. Chem, vol.20, pp.7491-7496, 2010.

X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber et al., N-doping of graphene through electrothermal reactions with ammonia, Science, vol.324, pp.768-771, 2009.

A. C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electronephonon coupling, doping and nonadiabatic effects, Solid State Commun, vol.143, pp.47-57, 2007.

A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke et al., Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett, vol.12, pp.3925-3930, 2012.

L. Cancado, M. Pimenta, B. Neves, M. Dantas, and A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett, vol.93, p.247401, 2004.

J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim et al., Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons, Nano Lett, vol.12, pp.617-621, 2012.

T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation, Phys. Rev. B, vol.79, p.205433, 2009.

M. W. Smith, I. Dallmeyer, T. J. Johnson, C. S. Brauer, J. Mcewen et al., Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles, Carbon, vol.100, pp.678-692, 2016.

G. A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, and O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by Xray diffraction and Raman spectroscopy, Carbon, vol.44, pp.3239-3246, 2006.

S. Gupta and A. Saxena, Nanocarbon materials: probing the curvature and topology effects using phonon spectra, J. Raman Spectrosc, vol.40, pp.1127-1137, 2009.

S. Yamauchi and Y. Kurimoto, Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters, J. Wood Sci, vol.49, pp.235-240, 2003.

C. Hu, S. Sedghi, A. Silvestre-albero, G. G. Andersson, A. Sharma et al., Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway, Carbon, vol.85, pp.147-158, 2015.

A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, vol.61, p.14095, 2000.

Z. Wang, A. G. Mcdonald, R. J. Westerhof, S. R. Kersten, C. M. Cuba-torres et al., Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis, J. Anal. Appl. Pyrolysis, vol.100, pp.56-66, 2013.

M. Smith, L. Scudiero, J. Espinal, J. Mcewen, and M. Garcia-perez, Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations, Carbon, vol.110, pp.155-171, 2016.

Y. Kawashima and G. Katagiri, Fundamentals, overtones, and combinations in the Raman spectrum of graphite, Phys. Rev. B, vol.52, p.10053, 1995.

J. Schmidt, W. Polik, and W. Enterprise, , 2013.

M. D. Halls, J. Velkovski, H. B. Schlegel-;-s-vwn, and B. B3-lyp, Harmonic frequency scaling factors for Hartree-Fock, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set, vol.105, pp.413-421, 2001.

M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio et al., Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys, vol.9, pp.1276-1290, 2007.

O. Beyssac, B. Goff-e, J. Petitet, E. Froigneux, M. Moreau et al., On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc, vol.59, pp.2267-2276, 2003.

A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamondelike carbon, and nanodiamond, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci, vol.362, pp.2477-2512, 2004.

R. Beams, L. G. Cançado, and L. Novotny, Raman characterization of defects and dopants in graphene, J. Phys. Condens. Matter, vol.27, p.83002, 2015.

B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang et al., Controllable N-doping of graphene, Nano Lett, vol.10, pp.4975-4980, 2010.

Y. Lin, C. Lin, and P. Chiu, Controllable graphene N-doping with ammonia plasma, Appl. Phys. Lett, vol.96, p.133110, 2010.

M. Ayiania, A. J. Hensley, K. Groden, M. Garcia-perez, and J. Mcewen, Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene nanoribbons from first principles, Carbon, vol.152, pp.715-726, 2019.

M. Ayiania, M. Smith, A. J. Hensley, L. Scudiero, J. Mcewen et al., Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles, Carbon, vol.162, pp.528-544, 2020.

F. Negri, C. Castiglioni, M. Tommasini, and G. Zerbi, A computational study of the Raman spectra of large polycyclic aromatic hydrocarbons: toward molecularly defined subunits of graphite, J. Phys. Chem, vol.106, pp.3306-3317, 2002.

C. E. Brewer, K. Schmidt-rohr, J. A. Satrio, and R. C. Brown, Characterization of biochar from fast pyrolysis and gasification systems, Environ. Prog. Sustain. Energy, vol.28, pp.386-396, 2009.

X. Cao, J. J. Pignatello, Y. Li, C. Lattao, M. A. Chappell et al., Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques, Energy Fuels, vol.26, pp.5983-5991, 2012.

H. C. Schniepp, J. Li, M. J. Mcallister, H. Sai, M. Herrera-alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B, vol.110, pp.8535-8539, 2006.

M. J. Mcallister, J. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater, vol.19, pp.4396-4404, 2007.

X. Li, K. Lian, L. Liu, Y. Wu, Q. Qiu et al., Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia, Sci. Rep, vol.6, p.23495, 2016.

M. Keiluweit, P. S. Nico, M. G. Johnson, and M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol, vol.44, pp.1247-1253, 2010.

O. Paris, C. Zollfrank, and G. A. Zickler, Decomposition and carbonisation of wood biopolymersda microstructural study of softwood pyrolysis, Carbon, vol.43, pp.53-66, 2005.

J. Mcdonald-wharry, M. Manley-harris, and K. Pickering, Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy, Carbon, vol.59, pp.383-405, 2013.

P. J. Harris, Z. Liu, and K. Suenaga, Imaging the atomic structure of activated carbon, J. Phys. Condens. Matter, vol.20, p.362201, 2008.

E. Corro, A. O. De-la-roza, M. Taravillo, and V. G. Baonza, Raman modes and Grüneisen parameters of graphite under compressive biaxial stress, Carbon, vol.50, pp.4600-4606, 2012.

M. Hanfland, H. Beister, and K. Syassen, Graphite under pressure: equation of state and first-order Raman modes, Phys. Rev. B, vol.39, p.12598, 1989.