Skip to Main content Skip to Navigation
Journal articles

Plastic Fuel Conversion and Characterisation: A Waste Valorization Potential for Ghana

Abstract : Plastics generally play a very important role in a plethora of industries, fields and our everyday lives. In spite of their cheapness, availability and important contributions to lives, they however, pose a serious threat to the environment due to their mostly non-biodegradable nature. Recycling into useful products can reduce the amount of plastic waste. Thermal degradation (Pyrolysis) of plastics is becoming an increasingly important recycling method for the conversion of plastic materials into valuable chemicals and oil products. In this work, waste Polyethylene terephthalate (PET) water bottles were thermally converted into useful gaseous and liquid products. A simple pyrolysis reactor system has been used for the conversions with the liquid product yield of 65 % at a temperature range of 400°C to 550°C. The chemical analysis of the pyrolytic oil showed the presence of functional groups such as alkanes, alkenes, alcohols, ethers, carboxylic acids, esters, and phenyl ring substitution bands. The main constituents were 1-Tetradecene, 1-Pentadecene, Cetene, Hexadecane, 1-Heptadecene, Heptadecane, Octadecane, Nonadecane, Eicosane, Tetratetracontane, 1-Undecene, 1-Decene). The results are promising and can be maximized by additional techniques such as hydrogenation and hydrodeoxygenation to obtain value-added products.
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download
Contributor : IMT Mines Albi IMT Mines Albi Connect in order to contact the contributor
Submitted on : Tuesday, March 3, 2020 - 11:04:17 AM
Last modification on : Friday, August 5, 2022 - 11:43:48 AM
Long-term archiving on: : Thursday, June 4, 2020 - 2:02:20 PM


Files produced by the author(s)



Michael Commeh, David Dodoo-Arhin, Edward Acquaye, Isaiah Nimako Baah, Nene Kwabla Amoatey, et al.. Plastic Fuel Conversion and Characterisation: A Waste Valorization Potential for Ghana. MRS Advances, Cambridge University Press, 2020, 5 (26), pp.1349-1356. ⟨10.1557/adv.2020.127⟩. ⟨hal-02496600⟩



Record views


Files downloads