M. Maryanski, J. Gore, R. Kennan, and R. Schulz, NMR relaxation enhancement in gels polymerized and crosslinked by ionizing radiation: a new approach to 3D dosimetry by MRI, Magn. Reson. Imaging, vol.11, pp.253-261, 1993.

M. Maryanski, Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter, Phys. Med. Biol, vol.39, p.1437, 1994.

L. Olsson, S. Petersson, A. L. Mattsson, and S. , Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies, Phys. Med. Biol, vol.34, pp.43-52, 1989.

S. Bäck, J. Medin, P. Magnusson, P. Olsson, G. E. Olsson et al., Ferrous sulphate gel dosimetry and MRI for proton beam dose measurements, Phys. Med. Biol, vol.44, p.1983, 1999.

R. Schulz, A. Deguzman, D. Nguyen, and J. Gore, Dose-response curves for Fricke-infused agarose gels as obtained by nuclear magnetic resonance, Phys. Med. Biol, vol.35, p.1611, 1990.

T. Kron, P. Metcalfe, and J. Pope, Investigation of the tissue equivalence of gels used for NMR dosimetry, Phys. Med. Biol, vol.38, p.139, 1993.

S. Smith, A reduction of diffusion in PVA Fricke hydrogels, J. Phys. Conf. Ser, vol.573, p.12046, 2015.

K. Chu, K. Jordan, J. Battista, V. Dyk, J. Rutt et al., Polyvinyl alcohol-Fricke hydrogel and cryogel: two new gel dosimetry systems with low Fe 3+ diffusion, Phys. Med. Biol, vol.45, p.955, 2000.

L. Schreiner, True 3D chemical dosimetry (gels, plastics): development and clinical role, J. Phys. Conf. Ser, vol.573, p.12003, 2015.

K. Penev and K. Mequanint, Controlling sensitivity and stability of ferrous-xylenol orange-gelatin 3D gel dosimeters by doping with phenanthroline-type ligands and glyoxal, Phys. Med. Biol, vol.58, pp.1823-1861, 2013.

A. Appleby, Imaging of radiation dose by visible color development in ferrous-agarose-xylenol orange gels, Med. Phys, vol.18, p.309, 1991.

R. Kelly, K. Jordan, and J. Battista, Optical CT reconstruction of 3D dose distributions using the ferrousbenzoic-xylenol (FBX) gel dosimeter, Med. Phys, vol.25, p.1741, 1998.

J. Gore and Y. Kang, Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging, Phys. Med. Biol, vol.29, pp.1189-97, 1984.

P. Harris, A. Piercy, and C. Baldock, A method for determining the diffusion coefficient in Fe(II/III) radiation dosimetry gels using finite elements, Phys. Med. Biol, vol.41, p.1745, 1996.

T. Pedersen, D. Olsen, and A. Skretting, Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images, Phys. Med. Biol, vol.42, p.1575, 1997.

Y. Tseng, The role of dose distribution gradient in the observed ferric ion diffusion time scale in MRI-Fricke-infused gel dosimetry, Magn. Reson. Imaging, vol.20, pp.495-502, 2002.

R. , Chelator effect on ion diffusion in ferroussulfate-doped gelatin gel dosimeters as analyzed by MRI, Med. Phys, vol.23, p.15, 1996.

L. Schreiner, Review of Fricke gel dosimeters, J. Phys. Conf. Ser, vol.3, pp.9-21, 2004.

D. Pasquale and F. , Ion diffusion modelling of Frickeagarose dosemeter gels, Radiat. Prot. Dosimetry, vol.120, pp.151-155, 2006.

J. ?olc and V. Sp?vá?ek, New radiochromic gel for 3D dosimetry based on Turnbull blue: basic properties, Phys. Med. Biol, vol.54, pp.5095-107, 2009.

T. Maeyama, A diffusion-free and linear-energytransfer-independent nanocomposite Fricke gel dosimeter, Radiat. Phys. Chem, vol.96, pp.92-98, 2014.

J. Crooks, Measurement of diffusion coefficients J. Chem. Educ, vol.66, p.614, 1989.

J. Coulaud, Tissue-inspired phantoms: a new range of equivalent tissue simulating breast, cortical bone and lung tissue Biomed, Phys. Eng. Express, vol.4, p.35017, 2018.

J. Crank, The Mathematics of Diffusion, vol.19, pp.853344-853350, 1975.

J. Coulaud, V. Brumas, P. Sharrock, and M. Fiallo, 3D optical detection in radiodosimetry: easyDosit hydrogel characterization Spectrochim, Acta Part A Mol. Biomol. Spectrosc, 2019.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol.55, 1965.

D. Gensanne, Design of a New Tissue-Equivalent gel : Applications to three Dimensional Dosimetry Using Magnetic Resonance Imaging, 2003.

S. Kasapis, A. Deszczynski, M. Mitchell, J. Abeysekera, and R. , Gelatin versus polysaccharide in mixture with sugar Biomacromolecules, vol.4, pp.1142-1151, 2003.

D. James and L. Rintoul, Protein-water Interactions in solution: the water-gelatin-electrolyte system, Aust. J. Chem, vol.35, pp.1157-63, 1982.

Y. Choi, S. Lim, and B. Yoo, Measurement of dynamic rheology during ageing of gelatine-sugar composites, Int. J. Food Sci. Technol, vol.39, pp.935-980, 2004.

W. Mcbryde, A spectrophotometric reexamination of the spectra and stabilities of the iron(III) -tiron complexes Can, J. Chem, vol.42, pp.1917-1944, 1964.

P. Delahay, P. M. Van-rysselberghe, and P. , J. Chem. Educ, vol.27, p.683, 1950.

Z. Marczenko, B. Cerzak, and M. , Separation, Preconcentration and Spectrophotometry in Inorganic Analysis, vol.10, 2000.

B. Beverskog and I. Puigdomenech, Revised pourbaix diagrams for iron at 25°C-300°C, Corros. Sci, vol.38, pp.2121-2156, 1996.

A. Stefánsson, Iron(III) Hydrolysis and Solubility at 25°C, Environ. Sci. Technol, vol.41, pp.6117-6140, 2007.

J. Workman, Concise Handbook Of Analytical Spectroscopy, The: Theory, Applications, And Reference Materials, 2016.

T. Siddall and W. Vosburgh, A spectrophotometric study of the hydrolysis of Iron (III) Ion 1, J. Am. Chem. Soc, vol.73, pp.4270-4272, 1951.

M. Shriadah and K. Ohzeki, Effect of anion-exchange resin on the formation of iron(III)-Tiron complexes, Analyst, vol.111, p.197, 1986.

S. E. Polchlopek and J. Smith, Composition of ferric thiocyanate at high concentrations, J. Am. Chem. Soc, vol.71, pp.3280-3283, 1949.

K. Ozutsumi, M. Kurihara, T. Miyazawa, and T. Kawashima, Complexation of Iron(III) with thiocyanate Ions in, Aqueous Solution Anal. Sci, vol.8, pp.521-527, 1992.

H. E. Bent and C. French, The structure of ferric thiocyanate and its dissociation in aqueous solution, J. Am. Chem. Soc, vol.63, pp.568-72, 1941.

G. Laurence, A potentiometric study of the ferric thiocyanate complexes Trans, vol.52, p.236, 1956.

R. Betts and F. Dainton, Electron Transfer and Other Processes Involved in the Spontaneous Bleaching of Acidified Aqueous Solutions of Ferric Thiocyanate, J. Am. Chem. Soc, vol.75, pp.5721-5727, 1953.

M. Lister and D. Rivington, Some measurements on the Iron(III)-Thiocyanate system in aqueous solution Can, J. Chem, vol.33, pp.1572-90, 1955.

S. Sultan and E. Bishop, A study of the formation and stability of the iron(III)-thiocyanate complex in acidic media, Analyst, vol.107, p.1060, 1982.

D. Oliveira, L. Sampaio, F. Moreira, M. De-almeida, and A. , Measurements of the Fe 3+ diffusion coefficient in Fricke Xylenol gel using optical density measurements, Appl. Radiat. Isot, vol.90, pp.241-245, 2014.

T. Kron, J. D. Pope, and J. , Fast T1 imaging of dual gel samples for diffusion measurements in NMR dosimetry gels, Magn. Reson. Imaging, vol.15, pp.211-232, 1997.

G. Gambarini, Study of light transmittance from layers of Fricke-xylenol-orange-gel dosimeters Nucl, Instruments Methods Phys. Res. Sect. BBeam Interact. with Mater. Atoms, vol.213, pp.321-325, 2004.

C. Baldock, P. Harris, A. Piercy, and B. Healy, Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method, Australas. Phys. Eng. Sci. Med, vol.24, pp.19-30, 2001.

L. Jones and P. Atkins, Chemistry: Molecules, Matter, and change, 1999.

J. Nixon, P. Georgakopoulos, and J. Carless, Diffusion from gelatin-glycerin-water gels, J. Pharm. Pharmacol, vol.19, pp.246-52, 1967.

P. Davis and B. Tabor, Kinetic study of the crosslinking of gelatin by formaldehyde and glyoxal, J. Polym. Sci. Part A Gen. K, vol.1, pp.799-815, 2003.

A. Bigi, G. Cojazzi, S. Panzavolta, K. Rubini, and N. Roveri, Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking, Biomaterials, vol.22, pp.763-771, 2001.