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       Abstract - Concurrent configuration of a product and its 
associated production process is a challenging problem in 
customer/supplier relations dealing with configurable 
products. Search for optimized solutions that respect 
customer’s needs and constraints of the problem in a 
multiobjective context is a particularly difficult task.  
Constraints Filtering Based Evolutionary Algorithm (CFB-
EA) [1] proposes an original way to integrate constraints 
satisfaction in optimization thanks to a constraints filtering 
engine. CFB-EA tries to mix solutions randomly selected in 
order to improve them but leads to many incompatibility 
occurrences which are time consuming. We propose in this 
article a dedicated multiobjective clustering algorithm that 
reduces incompatibilities occurrences and improve the 
selection of solutions for crossover operator. 
 
       Keywords - product configuration; process 
configuration; configuration optimization; evolutionary 
algorithms; clustering 
 

I.  INTRODUCTION 
 
 In the manufacturing industry, the concept of mass 
customization has established itself as an indispensable 
lever for gaining market share. In order to develop and 
implement mass customization, many companies use 
configuration software [2]. Configuration software 
enables companies to propose to their customers 
customized products from a huge set of variants and 
options of products [3]. If all configuration software can 
assist the supplier during the configuration of the product, 
only some of them do the same for the associated 
production and/or delivery process. As product and 
process configurations are frequently interdependent, 
some authors [4][5][6] have proposed combining them in 
a single problem called ‘Concurrent Product and Process 
Configuration’ (CPPC). The configuration software is 
used to confront customer’s requirements and supplier 
needs with the CPPC model. Processing and optimizing 
CPPC problems is a major issue for companies producing 
technical products or systems either in business to 
business or business to customer situations. In addition to 
a solution that respects constraints and its requirements, 
the user (either customer or supplier) is also interested in 
an optimized response according to multiple criteria as for 
example cost, cycle time sustainability, quality or 
technical performance (in this study, only the first two 
ones are considered). 
 This result in a multicriteria optimization problem 
called O-CPPC. This problem is particularly difficult 
because of the huge number of variants of the product and 

the process, as well as their relationships and their impact 
on various objectives.  
 To face this problem, we propose in previous studies 
[1], a decision aiding process in two steps presented in 
Figure 1. Step1: interactive configuration and planning 
which processes non-negotiable requirements and 
provides a first solution space reduction. Step 2: response 
optimization which take into account constraints and 
provides a Pareto front shown to the customer for a final 
solution selection. This study is mainly concerned by 
improvement of this second step.   
 

 
Figure 1 – Decision aiding process 

 CFB-EA, presented in Figure 2, was proposed to 
achieve this multiobjective and constrained optimization 
step. There are various ways to integrate constraints 
handling in evolutionary algorithms [7]. The specificity of 
CFB-EA relies on an interaction with a filtering engine 
that maintain feasibility of solutions during their 
construction (initialization step) or modification 
(crossover and mutation step). CFB-EA algorithm is 
based on an adapted version of SPEA2 [8] that integrate 
constraints handling by the filtering engine. 
 

 
Figure 2 – CFB-EA algorithm 

 The main ideas of SPEA2 are: a) the evaluation of a 
solution takes Pareto-dominance and the local density of 
solutions into account, b) a set of the best and most 

Product/Process Configuration Evolutionary Optimization: A Multiobjective 
Clustering in Order to Reduce Inconsistencies During Crossover  

 

P. Pitiot1,2, M. Aldanondo1, E. Vareilles1, P. Gaborit1  
1Université de Toulouse - IMT Mines Albi-CGI, Albi, France 

2Institut d’Ingénierie Informatique de Limoges, Rodez, France 
 (michel.aldanondo@mines-albi.fr, elise.vareilles@mines-albi.fr, p.pitiot@aveyron.cci.fr) 

 



 

diversified solutions are preserved in a separate archive, 
c) a binary tournament in the archive is used to select 
parents for the next generation.  
 Six parameters have to be set: size of archive, size of 
population, number of generations or any stopping 
criterion, crossover probability for individual selection, 
mutation probabilities for individual and gene selections. 
 In the current version, the selection of parents for a 
crossover is achieved randomly. But in a constrained 
context, mixing very different individuals could be 
difficult. It leads to incompatibilities and thus a waste of 
computation time with many backtracks. The key idea put 
forward in this article is to retrain the parent selection to 
close individuals in the search space. This idea is not new 
and corresponds to the concept of restricted crossover or 
matting restriction radius (i.e. the maximal distance 
between the two parents) in unconstrained optimization 
[9]. The specificity of our proposition relies on the 
constrained and multiobjective context. We thus make the 
assumption than closed individuals are more compatible 
than distant ones. Such process could reduce waste of 
computation time due to incompatibilities. Using an 
absolute distance measure in the search space would be 
tricky to define and to set. Clustering analysis is an 
interesting unsupervised way to avoid using a distance 
measure. We thus propose an original multiobjective 
clustering of the solutions of the archive, then a selection 
of parents in close clusters for the crossover. 
 In next sections, a formal definition of the problem 
and a description of actual crossover operator are recalled. 
Then the proposed improvement and the associated 
clustering algorithm are presented. An experimental 
validation is finally exposed. 

 
II. PROBLEM FORMULATION AND RELATED 

WORKS 
 
A.  Formal definition of O-CPPC problem 
 

Product configuration can be defined by selection of a 
specific or customized product (through a set of 
properties, sub-assemblies or bill of materials, etc.) from a 
generic product or a product family, while taking into 
account specific customer requirements [10]. The same 
kind of reasoning can be considered for process 
configuration which consists in the selection of a specific 
production plan (set of operations, resources to be used, 
etc...) from some kind of a generic process plan while 
respecting process characteristics. Those two 
configuration problem and their coupling can be 
considered as a constraint satisfaction problem (CSP). 
This means that we could represent this CPPC problem by 
a set of variables with associated domains linked by 
constraints. But we could also add to this representation 
variables needed to evaluate configurations. Typically, 
customers are at least interested in knowing price and 
delivery date of his configured product.  That leads us to 
define the O-CPPC problem as the search for product and 

process configuration that meet customer product/process 
requirements but also evaluation expectations.  

This can be formulated using O-CSP (optimization 
constraint satisfaction problem) modeling framework. An 
O-CSP is defined by the  quadruplet <V, D, C, f > where 
V is the set of decision variables, D the set of domains 
linked to the variables of V, C the set of configuration 
constraints on variables of V and f the multi-valued 
fitness function: 

- The set V gathers the product and process decision 
variables but also some evaluation variables. Evaluation 
variables (cost and duration in our case) allow calculating 
fitness of a solution. Decision variables are all symbolic 
or at least discrete, while evaluation variables are 
numerical.  

- The set C gathers all configuration constraints 
(mainly with tables of compatibility between values in 
domains of linked variables). 

- The fitness function is defined by various numerical 
constraints and tables of compatibility that allows 
calculating the objective values according to choices 
made on decision variables. On the product side, each 
decision variable (choice of components or 
functionalities) is linked to an evaluation variable by a 
table of compatibility that defines the cost of components 
or functionalities. Then a numerical constraint, the sum of 
all elementary costs, provides the global product cost. On 
the process side, for each operation, a table of 
compatibility allows to calculate the duration and the cost 
of the operation. Then total cycle time of the process is 
computed using numerical constraints according to 
precedence between operations. The process cost is 
calculated by a numerical constraint that sums all 
operation costs. Product and process cost are added to 
constitute the total cost of the configuration. 

A strong specificity of this kind of optimization 
problem is that the solution space is large. Another 
specificity lies in the fact that the shape of the solution 
space is not continuous and, in most cases, shows many 
singularities. Furthermore, the multi-criteria problem and 
the need for Pareto optimal results are also strong problem 
expectations. These points explain why most of the 
articles published on this subject consider genetic or 
evolutionary approaches to deal with this problem 
[11][12][13][14]. 
 
B.  Crossover operator in CFB-EA 
 
 A detailed description of CFB-EA could be founded 
in [1]. We focus in this paper on crossover operator. The 
crossover consists in mixing chromosome of two 
solutions (parents) to get two new solutions (child) 
potentially better than previous ones. It starts by the 
selection of two parents in the matting pool (the set of 
individuals selected to be parents of next generation 
thanks to a binary tournament). This parent selection is 
achieved randomly. A first parent is selected then a 
second one different from the first one (a good solution 
may appear several times in the matting pool).  



 

 Once parents are selected, an instance in filtering 
engine is initiated with the common part of parents then 
duplicated to achieve separately crossover of each 
children. A key point concerning time consumption in 
filtering engine is that first filters on an instance are by far 
the most costly in computation time.  The more the 
common part is larger, the quicker will be the next 
filtering. 
 Crossover by itself consists in a uniform crossover of 
the remaining genes (genes different between parents). 
This means that each remaining gene have a probability of 
50% to be selected between parents to get a child. 
Remaining genes are selected randomly one by one and, 
according to the gene crossover probability, their values 
are exchanged between parents. After each instantiation, 
filtering engine is called to check feasibility of resulting 
individuals. If a domain of remaining variables become 
empty, the individual is unfeasible. A backtrack on 
previous choices is then launched to restore feasibility. If 
a domain of remaining variables is reduced to only one 
value, this value is automatically selected in order to 
preserve consistent genes combinations of a parent and 
reduce the number of backtrack (a crossover on this gene 
would be impossible with respect to the instantiation of 
the previous one). This last process reduces crossover 
possibilities and leads to more useless crossover (i.e. a 
crossover that leads to obtain the same individual as one 
of his parents). Even if there is more useless crossover, 
the saving of computation time due to the reduction of 
backtrack allows to generate more individuals and leads 
to better results.  
 
C.  Clustering and evolutionary algorithm 
 

Cluster analysis is the task of grouping a set of objects 
in groups (cluster) in the way that each object in the same 
cluster are more similar to each other than to those in 
other clusters [15]. Clustering has been successfully 
applied in various engineering and scientific disciplines 
such as biology, medicine, machine learning, pattern 
recognition, image analysis and data mining. Selection of 
a clustering algorithm depends on the number of solutions 
to sort and the required precision of clustering. The reader 
can consult [16] for a detailed survey of clustering 
algorithms. Here we have a small number of solutions 
(few hundreds) and a sub-optimal clustering is enough to 
get close individuals quickly. The simplest and most 
popular clustering algorithm is the K-means algorithm. 
The k-means algorithm has been used to regulate 
selection process in an EA named KGA [17] and to adjust 
the probabilities of crossover and mutation in [18]. In 
multiobjective context, Zhang et al. [19] propose a 
decision variable clustering method that divides the 
decision variables into two clusters based on the features 
of each variable. The decision variable clustering method 
adopts the k-means method to divide the decision 
variables into two types: convergence-related variables 
and diversity-related variables. Jointly to our work, [20] 

proposes a self-adaptive mating restriction strategy. It 
differs by the way clusters are formed and used.  
 
III. PROPOSITION OF A RESTRAINED CROSSOVER 

 
To reduce unsatisfying or difficult crossovers, the idea 

is to restrain crossover to parents that belong to close 
areas. Close parents should have more similarities and 
thus lead to more successful and quick crossovers. The 
drawback could be a lack of diversity that leads to 
suboptimal individuals or a slower improvement by 
limiting the diffusion of performing combinations in 
population. In constrained optimization context, another 
critical issue is to reduce the number of backtrack/repair 
during construction of individuals.  

Our specificities rely on genetic operator addressed 
(only crossover operator) and the multi-objective problem 
processing. This last one imposes a normalization of 
objectives but also leads to an original way to cluster 
individuals. Indeed, dominated individuals in archive are 
not suitable to constitute interesting clusters. Thus we 
combine a normalization of individuals performance 
using the standard score (Z-score) and a clustering of 
individuals using k-means algorithm only on Pareto front 
individuals of the archive.  

The Z-score calculation allows computing distances 
between individuals properly by eliminating the 
differences of scales between dimensions. Z-score of an 
individual on a dimension i is obtained by subtracting the 
population mean on this dimension from individual raw 
score and then dividing the difference by the population 
standard deviation as defined in equation 1. At the 
beginning of the clustering process, Z-score is thus 
calculated for every individual of archive.  

                                            (1) 

Where i is the dimension evaluated, xi is the 
performance of evaluated individual on dimension i, μi is 
the mean of the population on dimension i and σi is 
the standard deviation of the population on dimension i. 

Once the z-scores are calculated on each individual of 
the archive, the k-means algorithm is launched. 
Parameters of k-means algorithm are n the number of 
clusters and MaxIter the maximal number of iterations. 
The specificities of our implementation are: 
- the use of Z-score to calculate distances between 

individuals, 
- clustering only on Pareto Front individuals in order to 

avoid useless Pareto-dominated clusters  
- Initialization of clusters is achieved by sorting Pareto 

front individuals according to one criterion and 
partitioning in n clusters. This initialization of cluster 
is really effective because the algorithm converges in 
very few iterations (mostly in less than 5 iterations). 

After initialization step, the algorithm follows classical 
steps: calculate centroids of each cluster, assign 



 

individuals to the nearest cluster and loop until there is no 
more change or MaxIter is reach (it never appends). 

After this step, all remaining individuals of the archive 
(i.e. dominated ones) are assigned to the nearest cluster. 
Figure 3 illustrate two cases of clustering process results: 
for an archive at the beginning of optimization process 
(on left with spread individuals) and at the end (on right 
with grouped individuals). 

Finally, the initial parent selection of CFB-EA is 
modified as follow. Individuals are selected for crossover 
according to the crossover probability. For each selected 
individual, another parent is selected in archive in the 
same or in the close clusters. In this first version and to 
avoid numerous parameters, second parent selection is 
limited to the nearest clusters (i.e. an individual that 
belongs to cluster i could by crossed  with individuals that 
belongs to cluster i-1, i or i+1).  

Thus the only new parameter is the number of clusters. 
To avoid suboptimal convergence and ensure propagation 
of performing combinations in the population, clusters 
must not be too small. If they are too large, benefits of 
restrained crossover could be wasted. A future 
improvement could be to automatically set this parameter 
according to the mean number of individuals in clusters 
with regard to the size of archive. 

 
Figure 3 - Illustration of two clustering results (5 clusters) on first (top) 

and on last archive (bottom) of one run. 
 

IV. EXPERIMENTS 
 

A.  Evaluation metrics and problem instance tested 
 

To evaluate proposed approach, we propose to compute 
and to follow, with respect to the computation time, the 
evolution of the hypervolume (HV) metric defined in 
[21]. This measures the hypervolume dominated by a set 

of individuals. HV is maximum when the solutions are the 
most diversified on the Pareto front. Each result is the 
average of 5 runs. Average HV (undimensional) and 
average computation time (in seconds) and their 
respective relative standard deviation (RSD) are provided. 
To evaluate evolution of HV, we also compute time 
needed to get 99.9% and 99% of final HV value. Notice 
that the time consumption corresponds to one CPU core 
processing time and, as filtering engine could be 
parallelized, it could be divided by the number of CPU 
core used to get the real computation time.  

These experiments are made on a reference problem 
that considers 30 configuration variables (24 product 
description variables and 6 process description variables). 
26 configuration constraints link between 2 and 4 
configuration variables and, for each constraint, the ratio 
of feasible tuples is between 0.01 and 0.6. In order to 
avoid case dependency, the used problem is drawn from 
an analysis of CPPC problems proposed in [22]. This 
analysis is based on the notions of generic product 
modules, generic process operations, configuration and 
constraint patterns. It allows various representative CPPC 
problems to be generated. In this experiment, we use a 
model that represents a platform architecture product 
model. 

 
B.  Impact of restricted crossover and parameter tuning 

 
Figure 4 shows the results achieved with classical CFB-

EA (continuous line) and with proposed restricted 
crossover (dotted line). Here, archive is divided in 5 
clusters as illustrated on figure 3. Associated values could 
be founded in first two line of Table 1. 
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Figure 4 – Effect of restricted crossover 

Effect of restricted crossover is really significant. 33% 
less computation time is needed to get the final HV value 
and 68% to get 99.9% of final HV. CFB-EA with 
restricted crossover found the best value at every run 
(RSD of HV is 0 %) in 1695 seconds. However, there is a 
strong dispersal (RSD of time is 28.5%).  

Detailed analysis shows that the number of backtracks 
is reduced by 34%. On the other hand, the number of 
useless crossovers strongly increases (37% of useless 
crossover against 23% without restricted crossover).   

 



 

 
Table 1 – Detailed results 

 
We also analyze the impact of the number of clusters. 

Best results are obtained with 5 clusters. With 3 clusters, 
behavior of algorithm is hardly better than CFB-EA 
without restricted crossover. There is only 8% less 
backtracks. With 8 clusters, the number of backtracks is 
reduce by 38%. Nevertheless, number of useless 
crossover also strongly increase to 46% of useless 
crossover and leads to poorer results (16% / 125% more 
computation time to get final HV / 99.9% of final HV 
with an RSD on time of 44% / 1.7%). 

 
V.  CONCLUSION 

 
In this paper, we present an effectiveness improvement 

of CFB-EA thanks to a restrained crossover.  The k-
means clustering algorithm was adapted to the 
multiobjective context in an original and simple way. It 
could be used with others multiobjective EA. First 
experimental results clearly show significant computation 
time reductions with an order of magnitude of 33%. This 
must be confirmed with others models experimentations 
and compared with other existing clustering approaches. 
In our to-do list, an automatic setting of the number of 
cluster is also interesting to study.  
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