. Nasa, . Noaa-data, and . Show, Warmest Year on Record Globally, 2016.

U. P. Ashik, W. M. Wan-daud, and J. Hayashi, A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield, Renew. Sustain. Energy Rev, vol.76, pp.743-767, 2017.

, Full Mauna Loa CO 2 Record; ESRL Global Monitoring Division, Global Greenhouse Gas Reference Network, 2018.

, Trends in Atmospheric Methane; ESRL Global Monitoring Division, Global Greenhouse Gas Reference Network, 2018.

T. Gasser, M. Kechiar, P. Ciais, E. J. Burke, T. Kleinen et al., Path-dependent reductions in CO 2 emission budgets caused by permafrost carbon release, Nat. Geosci, vol.11, pp.830-835, 2018.

D. Shindell, G. Faluvegi, K. Seltzer, and C. Shindell, Quantified, localized health benefits of accelerated carbon dioxide emissions reductions, Nat. Clim. Chang, vol.8, pp.291-295, 2018.

M. M. Zain and A. R. Mohamed, An overview on conversion technologies to produce value added products from CH 4 and CO 2 as major biogas constituents, Renew. Sustain. Energy Rev, vol.98, pp.56-63, 2018.

T. Akiyama, K. Oikawa, T. Shimada, E. Kasai, and J. Yagi, Thermodynamic Analysis of Thermochemical Recovery of High Temperature Wastes, ISIJ Int, vol.40, pp.286-291, 2000.

K. Abe, G. Saito, T. Nomura, and T. Akiyama, Limonitic Laterite Ore as a Catalyst for the Dry Reforming of Methane, Energ. Fuel, vol.30, pp.8457-8462, 2016.

M. C. Bradford and M. A. Vannice, CO 2 Reforming of CH 4, Catal. Rev, vol.41, pp.1-42, 1999.

Z. Wang, X. M. Cao, J. Zhu, and P. Hu, Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory, J. Cat, vol.311, pp.469-480, 2014.

E. Ruckenstein and H. Y. Wang, Carbon Deposition and Catalytic Deactivation during CO 2 Reforming of CH 4 over Co/?-Al 2 O 3 Catalysts, J. Cat, vol.205, pp.289-293, 2002.

K. Nagaoka, K. Takanabe, and K. Aika, Influence of the reduction temperature on catalytic activity of Co/TiO 2 (anatase-type) for high pressure dry reforming of methane, Appl. Catal. A-Gen, vol.255, pp.13-21, 2003.

J. L. Ewbank, L. Kovarik, C. C. Kenvin, and C. Sievers, Effect of preparation methods on the performance of Co/Al 2 O 3 catalysts for dry reforming of methane, Green Chem, vol.16, pp.885-896, 2014.

M. Myint, B. Yan, J. Wan, S. Zhao, and J. G. Chen, Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts, J. Cat, vol.343, pp.168-177, 2016.

A. W. Budiman, S. Song, T. Chang, C. Shin, and M. Choi, Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development, Catal. Surv. Asia, vol.16, pp.183-197, 2012.

T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki et al., Suppression of carbon deposition in the CO 2 -reforming of CH 4 by adding basic metal oxides to a Ni/Al 2 O 3 catalyst, Appl. Catal. A-Gen, vol.144, pp.111-120, 1996.

C. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane, Fuel, vol.89, pp.592-603, 2010.

H. Li, Y. He, D. Shen, S. Cheng, J. Wang et al., Design an in-situ reduction of Ni/C-SiO 2 catalyst and new insights into pretreatment effect for CH 4 -CO 2 reforming reaction, Int. J. Hydrog. Energy, vol.42, pp.10844-10853, 2017.

U. P. Ashik and W. M. Daud, Probing the differential methane decomposition behaviors of n-Ni/SiO 2 , n-Fe/SiO 2 and n-Co/SiO 2 catalysts prepared by co-precipitation cum modified Stober method, RSC Adv, vol.5, pp.67227-67241, 2015.

J. Zhu, X. Peng, L. Yao, D. Tong, and C. Hu, CO 2 reforming of methane over Mg-promoted Ni/SiO 2 catalysts: The influence of Mg precursors and impregnation sequences, Catal. Sci. Technol, vol.2, pp.529-537, 2012.

S. M. Mousavi, F. Meshkani, and M. Rezaei, Preparation of nanocrystalline Zr, La and Mg-promoted 10%

, Ni/Ce 0.95 Mn 0.05 O 2 catalysts for syngas production via dry reforming reaction, Int. J. Hydrog, vol.43, pp.6532-6538, 2018.

A. Luengnaruemitchai and A. Kaengsilalai, Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide, Chem. Eng. J, vol.144, pp.96-102, 2008.

X. Li, W. Ji, J. Zhao, S. Wang, and C. Au, Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO 2 , MCM-41, and SBA-15, J. Cat, vol.236, pp.181-189, 2005.

Y. Xu, X. Du, J. Li, P. Wang, J. Zhu et al., A comparison of Al 2 O 3 and SiO 2 supported Ni-based catalysts in their performance for the dry reforming of methane, J. Fuel Chem. Tech, vol.47, pp.199-208, 2019.

M. Thommes, K. Kaneko, V. Neimark-alexander, P. Olivier-james, F. Rodriguez-reinoso et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem, vol.87, p.1051, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

Z. Li, Z. Wang, B. Jiang, and S. Kawi, Sintering resistant Ni nanoparticles exclusively confined within SiO 2 nanotubes for CH 4 dry reforming, Catal. Sci. Technol, vol.8, 2018.

F. Yaripour, Z. Shariatinia, S. Sahebdelfar, and A. Irandoukht, Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction, Microporous Mesoporous Mater, vol.203, pp.41-53, 2015.

D. Gong, S. Li, S. Guo, H. Tang, H. Wang et al., Lanthanum and cerium co-modified Ni/SiO 2 catalyst for CO methanation from syngas, Appl. Surf. Sci, vol.434, pp.351-364, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI