U. A. Schneider and B. A. Mccarl, Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation, Environ Resour Econ, vol.24, pp.291-312, 2003.

J. J. Bozell, L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander et al., Production of levulinic acid and use as a platform chemical for derived products, Resour Conserv Recycl, vol.28, pp.47-53, 2000.

D. J. Hayes, An examination of biorefining processes, catalysts and challenges, Catal Today, vol.145, pp.138-51, 2009.

L. Lomba, C. Lafuente, M. García-mardones, I. Gascón, and B. Giner, Thermophysical study of methyl levulinate, J Chem Thermodyn, vol.65, pp.34-41, 2013.

B. V. Timokhin, V. A. Baransky, and G. D. Eliseeva, Levulinic acid in organic synthesis, Russ Chem Rev, vol.68, pp.73-84, 1999.

L. Silva, J. F. Grekin, R. Mariano, A. P. , M. Filho et al., Making Levulinic Acid and Ethyl Levulinate Economically Viable: A Worldwide Technoeconomic and Environmental Assessment of Possible Routes, Energy Technol, vol.6, pp.613-652, 2018.

N. R. Canada, Current lumber, pulp and panel prices 2013, vol.5, 2019.

A. Mohr and S. Raman, Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels, Energy Policy, vol.63, pp.114-136, 2013.

D. R. Fernandes, A. S. Rocha, E. F. Mai, and C. Mota, Teixeira da Silva V. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts

, Appl Catal Gen, pp.199-204, 2012.

J. Bart, H. Reidetschlager, J. Schatka, K. Lehmann, and A. , Kinetics of esterification of levulinic acid with n-butanol by homogeneous catalysis, Ind Eng Chem Res, vol.33, 1994.

M. Mascal, B. Nikitin, and E. , High-yield conversion of plant biomass into the key valueadded feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chem, vol.12, pp.370-373, 2010.

C. Chang, G. Xu, and X. Jiang, Production of ethyl levulinate by direct conversion of wheat straw in ethanol media, Bioresour Technol, vol.121, pp.93-102, 2012.

D. Ding, J. Xi, J. Wang, X. Liu, G. Lu et al., Production of methyl levulinate from cellulose: selectivity and mechanism study, Green Chem, vol.17, pp.4037-4081, 2015.

L. Peng, L. Lin, and H. Li, Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose, Ind Crops Prod, vol.40, pp.136-180, 2012.

L. Peng, L. Lin, H. Li, and Q. Yang, Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts, Appl Energy, vol.88, pp.4590-4596, 2011.

F. Rataboul and N. Essayem, Cellulose Reactivity in Supercritical Methanol in the Presence of Solid Acid Catalysts: Direct Synthesis of Methyl-levulinate, Ind Eng Chem Res, vol.50, pp.799-805, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00699717

J. Zhang, S. Wu, B. Li, and H. Zhang, Advances in the Catalytic Production of Valuable Levulinic Acid Derivatives, ChemCatChem, vol.4, pp.1230-1237, 2012.

L. Van-mao, R. Zhao, Q. Dima, G. Petraccone, and D. , New Process for the Acid-Catalyzed Conversion of Cellulosic Biomass (AC3B) into Alkyl Levulinates and Other Esters Using a Unique One-Pot System of Reaction and Product Extraction, Catal Lett, vol.141, pp.271-277, 2011.

R. Mao, Catalytic conversion of ligno-cellulosic biomass into fuels and chemicals. WO2013127006A1, 2013.

K. Garves, Acid Catalyzed Degradation of Cellulose in Alcohols, J Wood Chem Technol, vol.8, pp.121-155, 1988.

X. Wu, J. Fu, and X. Lu, One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol, Carbohydr Res, vol.358, pp.37-46, 2012.

J. Damay, X. Duret, T. Ghislain, O. Lalonde, and J. Lavoie, Steam explosion of sweet sorghum stems: optimisation of the production of sugars by response surface methodology combined with the severity factor, Ind Crops Prod, vol.111, pp.482-93, 2018.

R. Rowell, Handbook Of Wood Chemistry And Wood Composites, 2005.

L. Vera-candioti, D. Zan, M. M. Cámara, M. S. Goicoechea, and H. C. , Using the desirability function in analytical methods development, Talanta, vol.124, pp.123-161, 2014.

W. F. Duarte, J. C. Amorim, L. De-assis-lago, D. R. Dias, and R. F. Schwan, Optimization of Fermentation Conditions for Production of the Jabuticaba (Myrciaria cauliflora) Spirit Using the Response Surface Methodology, J Food Sci, vol.76, pp.782-90, 2011.

W. Omar, W. , S. Amin, and N. A. , Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology, Biomass Bioenergy, vol.35, pp.1329-1367, 2011.

H. Li, L. Peng, L. Lin, K. Chen, and H. Zhang, Synthesis, isolation and characterization of methyl levulinate from cellulose catalyzed by extremely low concentration acid, J Energy Chem, vol.22, issue.14, pp.60269-60271, 2013.

L. Peng, L. Lin, H. Li, and K. Chen, Acid-Catalyzed Direct Synthesis of Methyl Levulinate from Paper Sludge in Methanol Medium, BioResources, vol.8, pp.5895-907, 2013.

E. S. Olson, M. R. Kjelden, A. J. Schlag, and R. K. Sharma, Levulinate Esters from Biomass Wastes, Chem. Mater. Renew. Resour, vol.784, pp.51-63, 2001.