E. Negri, L. Fumagalli, and M. Macchi, A review of the roles of digital twin in cps-based production systems, Procedia Manufacturing, vol.11, pp.939-948, 2017.

W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, Digital twin in manufacturing: A categorical literature review and classification, IFAC-PapersOnLine, vol.51, issue.11, pp.1016-1022, 2018.

M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp et al., Modeling, simulation, information technology & processing roadmap, National Aeronautics and Space Administration, 2012.

B. A. Talkhestani, N. Jazdi, W. Schlögl, and M. Weyrich, A concept in synchronization of virtual production system with real factory based on anchor-point method, 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 2017.

A. Karakra, F. Fontanili, E. Lamine, J. Lamothe, and A. Taweel, Pervasive computing integrated discrete event simulation for a hospital digital twin, 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp.1-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02045735

B. Gockel, A. Tudor, M. Brandyberry, R. Penmetsa, and E. Tuegel, Challenges with structural life forecasting using realistic mission profiles, 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, p.1813, 2012.

K. Reifsnider and P. Majumdar, Multiphysics stimulated simulation digital twin methods for fleet management, p.54

A. Structures, Structural Dynamics, and Materials Conference, p.1578, 2013.

Y. Bazilevs, X. Deng, A. Korobenko, F. L. Di-scalea, M. Todd et al., Isogeometric fatigue damage prediction in large-scale composite structures driven by dynamic sensor data, Journal of Applied Mechanics, vol.82, issue.9, p.91008, 2015.

T. Gabor, L. Belzner, M. Kiermeier, M. T. Beck, and A. Neitz, A simulation-based architecture for smart cyber-physical systems, Autonomic Computing (ICAC), pp.374-379, 2016.

E. M. Kraft, The air force digital thread/digital twin-life cycle integration and use of computational and experimental knowledge, 54th AIAA Aerospace Sciences Meeting, p.897, 2016.

A. Canedo, Industrial iot lifecycle via digital twins, Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, p.29, 2016.

M. Schluse and J. Rossmann, From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems, 2016 IEEE International Symposium on, pp.1-6, 2016.

F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang et al., Digital twindriven product design, manufacturing and service with big data, The International Journal of Advanced Manufacturing Technology, vol.94, issue.9, pp.3563-3576, 2018.

S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom, Declarative support for sensor data cleaning, International Conference on Pervasive Computing, pp.83-100, 2006.

Y. Zhuang, L. Chen, X. S. Wang, and J. Lian, A weighted moving average-based approach for cleaning sensor data, Distributed Computing Systems, 2007. ICDCS'07. 27th International Conference on, pp.38-38, 2007.

Q. Wang, K. Ren, S. Yu, and W. Lou, Dependable and secure sensor data storage with dynamic integrity assurance, ACM Transactions on Sensor Networks (TOSN), vol.8, issue.1, p.9, 2011.