A. Moghadam-esfahani, R. Osmieri, L. Specchia, S. Yusup, S. Tavasoli et al., H2-rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus biochar upgrading, Chem Eng J, vol.308, 2017.

P. J. Woolcock and R. C. Brown, A review of cleaning technologies for biomass-derived syngas, Biomass Bioenergy, vol.52, 2013.

J. Newnham, K. Mantri, M. H. Amin, J. Tardio, and S. K. Bhargava, Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane, Int J Hydrogen Energy, vol.37, pp.1454-64, 2012.

B. Rêgo-de-vasconcelos, L. Zhao, P. Sharrock, A. Nzihou, P. Minh et al., Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites, Appl Surf Sci, vol.390, pp.141-56, 2016.

M. Usman, W. Daud, W. Abbas, and H. F. , Dry reforming of methane: influence of process parametersda review, Renew Sustain Energy Rev, vol.45, 2015.

M. Farniaei, M. Abbasi, H. Rahnama, M. R. Rahimpour, and A. Shariati, Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: modeling and simulation, J Nat Gas Sci Eng, vol.20, pp.132-178, 2014.

T. Wurzel, S. Malcus, and L. Mleczko, Reaction engineering investigations of CO reforming in a fuidized-bed reactor

, Chem Eng Sci, vol.55, issue.99, pp.444-447, 2000.

Z. Shang, S. Li, L. Li, G. Liu, and X. Liang, Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane, Appl Catal B Environ, vol.201, pp.302-311, 2017.

B. Rego-de-vasconcelos and J. Lavoie, Is dry reforming the solution to reduce natural gas carbon footprint?, Int J Energy Prod Manag, vol.3, pp.44-56, 2018.

S. Arora and R. Prasad, An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts, RSC Adv, vol.6, pp.108668-88, 2016.

W. J. Jang, J. O. Shim, H. M. Kim, S. Y. Yoo, and H. S. Roh, A review on dry reforming of methane in aspect of catalytic properties, Catal Today, vol.324, pp.15-26, 2019.

O. Muraza and A. Galadima, A review on coke management during dry reforming of methane, Int J Energy Res, vol.39, pp.1196-216, 2016.

J. Kim, D. J. Suh, T. Park, and K. Kim, Effect of metal particle size on coking during CO2 reforming of CH4 over Niealumina aerogel catalysts, Appl Catal A Gen, vol.197, pp.487-488, 2000.

P. Frontera, A. Macario, A. A. Antonucci, P. L. Giordano, G. Nagy et al., Effect of support surface on methane dry-reforming catalyst preparation, Catal Today, 2013.

M. García-di-eguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, Nanostructured Pt-and Ni-based catalysts for CO2-reforming of methane, J Catal, vol.270, pp.136-181, 2010.

J. M. Garcia-vargas, J. L. Valverde, F. Dorado, and P. Sanchez, Influence of the support on the catalytic behaviour of Ni catalysts for the dry reforming reaction and the tri-reforming process, J Mol Catal A Chem, vol.395, pp.108-124, 2014.

W. Gac, A. Derylo-marczewska, S. Pasieczna-patkowska, N. Popivnyak, and G. Zukocinski, The influence of the preparation methods and pretreatment conditions on the properties of Ag-MCM-41 catalysts, J Mol Catal A Chem, vol.268, pp.15-23, 2007.

G. Chen, R. Shan, J. Shi, C. Liu, and B. Yan, Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts, Energy Convers Manag, vol.98, pp.463-472, 2015.

S. Bailliez, A. Nzihou, E. Flamant, and G. , Removal of lead (Pb) by hydroxyapatite sorbent, Process Saf Environ Prot, vol.82, pp.175-80, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01634399

H. Sebei, P. Minh, D. Nzihou, A. Sharrock, and P. , Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates, Appl Surf Sci, vol.357, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01609210

C. Huang, Z. Ma, P. Xie, Y. Yue, W. Hua et al., Hydroxyapatitesupported rhodium catalysts for N2O decomposition, J Mol Catal A Chem, vol.400, 2015.

Z. Boukha, J. Gonz-alez-prior, B. De-rivas, G. Alez-velasco, J. R. Fonseca et al., Synthesis, characterisation and behaviour of Co/hydroxyapatite catalysts in the oxidation of 1,2-dichloroethane, Appl Catal B Environ, vol.190, pp.125-161, 2016.

S. Bailliez and A. Nzihou, The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent
URL : https://hal.archives-ouvertes.fr/hal-01634402

, Chem Eng J, vol.98, pp.141-52, 2004.

A. Venugopal and M. S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts Behaviour in the water gas shift reaction, Appl Catal A Gen, vol.245, pp.647-653, 2003.

J. E. Bauer and G. J. Lewis, Low coke formation catalysts and process for reforming and synthesis gas production. US 6544439 B1, 2003.

Z. Yaakob, L. Hakim, M. Kumar, M. Ismail, and W. Daud, Hydroxyapatite supported Nickel catalyst for hydrogen production, Am J Sci Ind Res, vol.1, pp.122-128, 2010.

Z. Boukha, M. Kacimi, M. Pereira, J. L. Faria, J. L. Figueiredo et al., Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite, Appl Catal A Gen, vol.317, 2007.

X. Li, D. Zhang, X. Liu, L. Shi, and L. Sun, A tandem demetalization e desilication strategy to enhance the porosity of attapulgite for adsorption and catalysis, Chem Eng Sci, vol.141, pp.184-94, 2016.

K. Sing, D. H. Everett, R. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems, Handb. Heterog. Catal, pp.1217-1247, 2008.

S. Lowell and J. E. Shields, Adsorption isotherms. Powder surf. Area porosity, pp.11-14, 1991.

S. Sengupta and G. Deo, Modifying alumina with CaO or MgO in supported Ni and NieCo catalysts and its effect on dry reforming of CH4, J CO2 Util, vol.10, pp.67-77, 2015.

A. Siahvashi and A. A. Adesina, Synthesis gas production via propane dry (CO2) reforming: influence of potassium promotion on bimetallic Mo-Ni/Al2O3, Catal Today, vol.214, 2013.

S. J. Han, Y. Bang, H. J. Kwon, H. C. Lee, V. Hiremath et al., Elevated temperature CO2 capture on nano-structured MgOAl2O3 aerogel: effect of Mg/Al molar ratio, Chem Eng J, vol.242, pp.357-63, 2014.

A. Navajas, I. Campo, G. Arzamendi, W. Y. Hernandez, L. F. Bobadilla et al., Synthesis of biodiesel from the methanolysis of sunflower oil using PURAL Mg-Al hydrotalcites as catalyst precursors, Appl Catal B Environ, vol.100, 2010.

. Sto-si-c-d, S. Bennici, S. Sirotin, C. Calais, J. L. Couturier et al., Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance, Appl Catal A Gen, vol.447, issue.448, pp.124-158, 2012.

N. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, and M. N. Ahmad, Catalyst design for dry reforming of methane: analysis review, Renew Sustain Energy Rev, vol.82, pp.2570-85, 2018.

D. Pakhare and J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem Soc Rev, vol.43, 2014.

W. Ahmed, M. El-din, A. A. Aboul-enein, and A. E. Awadallah, Effect of textural properties of alumina support on the catalytic performance of Ni/Al2O3 catalysts for hydrogen production via methane decomposition, J Nat Gas Sci Eng, vol.25, pp.359-66, 2015.

P. Wu, X. Li, J. S. Lang, B. Habimana, F. Li et al., Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts, Catal Today, vol.146, pp.82-88, 2009.

S. Xu, X. Yan, and X. Wang, Catalytic performances of NiOeCeO2 for the reforming of methane with CO2 and O2, Fuel, vol.85, pp.2243-2250, 2006.

H. Ay, Dry reforming of methane over CeO2 supported Ni, Co and NieCo catalysts, Appl Catal B Environ, vol.179, pp.128-166, 2015.

M. E. G-alvez, A. Albarazi, D. Costa, and P. , Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures, Appl Catal A Gen, vol.504, pp.143-50, 2015.

M. A. Goula, N. D. Charisiou, K. N. Papageridis, A. Delimitis, E. Pachatouridou et al., Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction: influence of the synthesis method, Int J Hydrogen Energy, vol.40, 2015.

I. Mobasherpour, E. Salahi, and M. Pazouki, Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite, J Saudi Chem Soc, vol.15, 2011.

D. Pham-minh, N. D. Tran, A. Nzihou, and P. Sharrock, Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead(II) from an aqueous solution, Chem Eng J, vol.243, 2014.

F. Wang, L. Xu, J. Zhang, Y. Zhao, H. Li et al., Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction, Appl Catal B Environ, vol.180, issue.511, 2016.

M. E. Dry, The Fischer e Tropsch process, Catal Today, vol.71, pp.453-462, 1950.

D. Selvatico, A. Lanzini, and M. Santarelli, Low temperature Fischer-Tropsch fuels from syngas: kinetic modeling and process simulation of different plant configurations, Fuel, vol.186, pp.544-60, 2016.

C. G. Okoye-chine, M. Moyo, X. Liu, and D. Hildebrandt, A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis, Fuel Process Technol, vol.192, pp.105-134, 2019.

R. Y. Chein, Y. C. Chen, C. T. Yu, and J. N. Chung, Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures, J Nat Gas Sci Eng, vol.26, pp.617-646, 2015.

M. Jafarbegloo, A. Tarlani, A. W. Mesbah, and S. Sahebdelfar, Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance, Int J Hydrogen Energy, vol.40, pp.2445-51, 2015.

D. Liu, Y. Wang, D. Shi, X. Jia, X. Wang et al., Methane reforming with carbon dioxide over a Ni/ZiO2-SiO2 catalyst: influence of pretreatment gas atmospheres, Int J Hydrogen Energy, vol.37, 2012.

L. C. Wang, L. He, Y. M. Liu, Y. Cao, H. Y. He et al., Effect of pretreatment atmosphere on CO oxidation over a-Mn2O3 supported gold catalysts, J Catal, vol.264, pp.145-53, 2009.

H. De-sousa, A. N. Da-silva, A. Castro, A. Campos, J. M. Filho et al., Mesoporous catalysts for dry reforming of methane: correlation between structure and deactivation behaviour of Ni-containing catalysts, Int J Hydrogen Energy, vol.37, pp.12281-91, 2012.

M. M. Makri, M. A. Vasiliades, K. C. Petallidou, and A. M. Efstathiou, Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5wt%

, Ni/Ce1À xMxO2À d (M¼Zr4þ , Pr3þ ) catalysts, pp.1-15, 2015.

J. Zhang and F. Li, Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Appl Catal B Environ, vol.176, issue.177, 2015.

M. Rezaei, S. M. Alavi, S. Sahebdelfar, P. Bai, X. Liu et al., CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts, Appl Catal B Environ, vol.77, pp.346-54, 2008.

J. Juan-juan and M. C. Rom-an-martínez, Effect of potassium content in the activity of K-promoted Ni/Al2O3 catalysts for the dry reforming of methane, Appl Catal A Gen, vol.301, 2006.

Z. Alipour, M. Rezaei, and F. Meshkani, Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane, J Ind Eng Chem, vol.20, pp.2858-63, 2014.

T. Odedairo, J. Chen, and Z. Zhu, Metal-support interface of a novel Ni-CeO2 catalyst for dry reforming of methane, Catal Commun, vol.31, 2013.