Planning with preferences using Multi-Attribute Utility Theory along with a Choquet Integral
Loïc Bidoux, Jean-Paul Pignon, Frederick Benaben

To cite this version:
Loïc Bidoux, Jean-Paul Pignon, Frederick Benaben. Planning with preferences using Multi-Attribute Utility Theory along with a Choquet Integral. Engineering Applications of Artificial Intelligence, Elsevier, 2019, 85, pp.808-817. 10.1016/j.engappai.2019.08.002. hal-02271098

HAL Id: hal-02271098
https://hal-mines-albi.archives-ouvertes.fr/hal-02271098
Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Planning with preferences using Multi-Attribute Utility Theory along with a Choquet Integral

Loïc Bidoux, Jean-Paul Pignon, Frédéric Bénaben

IMT Mines Albi - University of Toulouse, France
Thales Communications & Security, France

ABSTRACT

This paper addresses the problem of planning with preferences using Multiple Criteria Decision Analysis (MCDA) mechanisms. We start by explaining how PDDL3 preferences can be modeled by criteria from the Multi-Attribute Utility Theory (MAUT) along with a Choquet integral. Interestingly, preferences formalized using MAUT have almost the same expressiveness as the ones formalized in PDDL3 while being much easier to model. Next, we present a new heuristic for planning with preferences which is based on the Choquet integral. Finally, we introduce ChoPlan, a proof-of-concept planner solving MAUT-encoded planning problems using the aforementioned heuristic. ChoPlan's performances are evaluated with respect to state of the art planners using problems from the fifth International Planning Competition.

1. Introduction

Planning addresses the problem of finding a sequence of actions to achieve a specified goal state from a given initial state. In many real-world applications, the set of valid plans may be quite large as the aforementioned goal state may be achieved in various ways. As a consequence, it is crucial to consider the notion of plan quality to distinguish between good and bad plans according to users' preferences. Preferences naturally arise in many use cases and can be illustrated using the Tourism domain (more details regarding this new planning domain in Section 4) in which a road trip including visits of several cities and points of interest must be organized. In this problem, one may have preferences over the visits to perform or the restaurants and hotels to book based on criteria such as financial cost and comfort. Moreover, it may be preferred that some cities are visited before other ones. In order to compare plans based on their quality, a preference relation amongst the set of valid plans must be defined. The PDDL3 (Gerevini and Long, 2006) is the main language used by the planning community to construct such a relation. It has been extensively used during the fifth international planning competition (Gerevini et al., 2009) which focused on planning taking into account users' preferences.

This paper studies the problem of planning with preferences using Multiple Criteria Decision Analysis (MCDA) mechanisms. MCDA assists users solving decision problems such as the identification of the best solutions amongst a large set of alternatives (see Figueira et al., 2005 for a complete state of the art survey). Generating a preference model that formalizes decision-makers' preferences is a key element of MCDA. These models have a great expressiveness since they can represent several criteria as well as the various interactions between them. Considering that MCDA problems and planning with preferences present some similarities, ideas from the MCDA community can benefit the planning community. In this paper, we show that the MCDA formalism brings practical improvement as it can be used to extend the scope of preference-based planning problems that can be solved. Furthermore, we introduce a new heuristic for planning with preferences inspired by some MCDA mathematical tools.

In Sections 2 and 3, we present preliminary notions on planning with preferences and MCDA. In Sections 4 and 5, we describe the contributions of this paper namely an extension of the PDDL3 formalism as well as a new heuristic for preference-based planning. Next, in Section 6, we introduce our planner ChoPlan and evaluate its performances with respect to state of the art planners. To conclude, applications to planning in crisis management context are briefly discussed in Section 7.

2. Planning with preferences

In order to introduce the problem of planning with preferences, we first state the definition of the classical planning problem as described by Ghallab et al. (2004).

Definition 1 (Classical Planning). A classical planning problem CP is a 5-tuple \((S, A, I, F, G)\), with \(S\) a finite set of states, \(A\) a finite set of
actions, \(y : S \times A \rightarrow S \) a transition function, \(x_0 \in S \) an initial state, \(G \) a goal formula and \(S_G \subset S \) the set of goal states induced by \(G \). A solution of a problem \(CP \) is a sequence of actions \(x = \langle a_1, \ldots, a_n \rangle \) corresponding to a sequence of states \((s_1, \ldots, s_n) \) such that \(s_1 = y(s_0, a_1) \), \(s_n = y(s_{n-1}, a_n) \) and \(s_n \in S_G \). The set of solutions (or plans) of \(CP \) is denoted by \(X \).

In many real-world applications, users may prefer some plans to others because they might have interesting properties, be easier or cheaper to implement. This motivates the introduction of a preference relation \(\succeq \) over \(X \) such that \(x_1 \succeq x_2 \) is interpreted as “plan \(x_1 \) is at least as preferred as plan \(x_2 \)”. Preference-based planning (see Baier and McIlraith, 2008 for a complete survey) extends the classical planning approach by taking into account the relation \(\succeq \) that represent users’ preferences.

Definition 2 (Preference-based Planning). A preference-based planning (PBP) problem is a pair \(I = (CP, \succeq) \) with \(CP \) a classical planning problem and \(\succeq \) a complete preorder on \(X \). A plan \(x \) is a solution of \((CP, \succeq) \) if \(x \) is a solution of \(CP \). Moreover, \(x \) is an optimal solution if \(\forall x' \in X \), \(x \succeq x' \).

The goal of preference-based planning is to find optimal solutions (or at least good ones) according to \(\succeq \) contrarily to classical planning where any solution is satisfactory. PBP problems are formalized using the PDDL3 language introduced in 2006. In PDDL3, preferences are conditions on the sequence of states (also called trajectory) of a plan that users would prefer to see satisfied if possible. Preferences are defined using modal operators such as at-end, always, sometime, at-most-once and sometime-before whose semantics are described in Gerevini and Long (2006). Considered as soft constraints, preference formulas are always true from a semantic point of view but can nonetheless be satisfied or not. Penalties for violation are calculated using preference costs associated with Boolean expressions that is-violated \(<\text{name}>\) where \(<\text{name}>\) is the preference’s name. Plan quality is specified by aggregating the various preference costs using the metric function introduced in PDDL2.1 by Fox and Long (2003).

3. Preference modelling in MCDM

This section deals with preference modelling using the MCDM formalism. It focuses on the methods used in this paper namely the Multi-Attribute Utility Theory (MAUT) and the Choquet integral. Preference modelling aims at design a model that permits automatic analysis of how several alternatives (plans in our context) compare to each other. To this end, a complete preorder \(\succeq \) (e.g. a reflexive and transitive binary relation) is defined over a set of alternatives \(X \). Let \(P = \{1, \ldots, p\} \) be the set of criteria to be considered in order to compare the alternatives. Such criteria can be associated with any quantity such as a production cost, a delivery time or a level of quality for instance. Each alternative \(x \in X \) is identified by an attribute tuple \((x_1, \ldots, x_k) \) of the cartesian product \(\Omega = \Omega_1 \times \cdots \times \Omega_k \) with \(\Omega_k \subset \mathbb{R} \) denoting the definition domain of the criteria \(k \).

3.1. Multi-attribute utility theory

The MAUT formalism (see Dyer, 2005) associates each alternative with a utility. This value represents the level of satisfaction of the decision-makers with respect to \(x \) and is expressed on a common satisfaction scale \(\xi = [0, 1] \).

Definition 3 (MAUT Model). Given \(X \) a set of alternatives and \(P \) a set of criteria, the MAUT model defines a complete pre-order \(\succeq \) on \(X \) by:

\[
\begin{align*}
\forall x, x' \in X & \quad x \succeq x' \iff U(x'^{\ast}) \geq U(x^{\ast}) \\
U(x^{\ast}) & = w(u_1(x_1^{\ast}), \ldots, u_k(x_k^{\ast}))
\end{align*}
\]

with \(U : \Omega \rightarrow [0, 1] \) a MAUT utility function based on:

- \(u_k : \Omega_k \rightarrow \xi \) some partial utility functions
- \(\psi : \xi^p \rightarrow \xi \) an aggregation function

Partial utility functions \(u_k : \Omega_k \rightarrow \xi \) have values within the common satisfaction scale \(\xi = [0, 1] \). A pure linear model \(u_k(x) = \lambda_1 x_1 + \lambda_2 \) is not satisfactory to construct partial utility functions as decision-makers preferences are generally not linear. Indeed, it is more suitable to consider continuous piecewise linear utility functions which provide a great expressiveness as they can approximate any continuous arithmetic function.

Definition 4 (Piecewise Linear Utility Function). Let \(u_k \) be the partial utility function of the criterion \(k \in P \). \(\Omega_k \) is divided in \(n \) intervals, bounds of which \(w_k^0 = 0 \), \(\ldots, w_k^n = 1 \) are defined such that: \(\forall i \in [0, n-1] \), \(w_k^i < w_k^{i+1} \). Utility of an alternative \(x \in X \) on criterion \(k \) is defined by linear interpolation of \(x_k \in [w_k^i, w_k^{i+1}] \) with \(i \in [0, n-1] \):

\[
u_k(x) = u_k(w_k^i) + \frac{u_k(w_k^{i+1}) - u_k(w_k^i)}{w_k^{i+1} - w_k^i} \times (x_k - w_k^i)
\]

Within the MAUT framework, the aggregation function \(\psi \) is used to compute an alternative’s utility with respect to the values provided by the partial utility functions \(u_k \). Due to its simplicity, the weighted sum is a commonly used aggregation function.

Definition 5 (Weighted Sum). Let \(y \in \xi^p \) be a vector and \(w \in [0,1]^p \) a vector of weights such that \(\sum_k w_k = 1 \) and \(w_k \geq 0 \). The weighted sum \(S_w : \xi^p \rightarrow \xi \) is defined as:

\[
S_w(y) = \sum_{k=1}^p w_k y_k
\]

Unfortunately, the weighted sum has intrinsic limitations and thus cannot be used to model a possibly important spectrum of decision-makers preferences. In order to illustrate these limitations, let us consider the example proposed by Grabisch and Labreuche (2010). Three alternatives \(x^1, x^2, x^3 \) are to be compared, based on two criteria and their respective utility functions \(u_1 \) and \(u_2 \) so that:

\[
\begin{align*}
u_1(x^1) = 0.4 & \quad u_1(x^2) = 0 \quad u_1(x^3) = 1 \\
u_2(x^1) = 0.4 & \quad u_2(x^2) = 1 \quad u_2(x^3) = 0
\end{align*}
\]

If a decision-maker prefers to avoid solutions with totally unsatisfactory criteria (\(\forall k \in P \), \(u_k(x) \neq 0 \)), then its preferences induce the order \(x^2 \sim x^3 \sim x^1 \). As a consequence, the vector of weights \((w_1, w_2) \) of \(S_w \) has to respect:

\[
x^2 \sim x^3 \quad \Rightarrow \quad w_1 = w_2 \quad x^2 \sim x^3 \quad \Rightarrow \quad 0.4 \cdot (w_1 + w_2) > w_2
\]

which is impossible. This type of behaviour is due to the implicit hypothesis of criteria independence inherent to the weighted sum. As a consequence, it is necessary to look for more powerful aggregation operators to model complex preferences. The Choquet integral is one of them.

3.2. Choquet integral

In order to design a model avoiding the aforementioned limitations, one can generalize the weighted sum by defining weights not only on a single criterion but also on all possible subsets of criteria of \(P \). Such a generalization is possible using the notion of capacity (Choquet, 1953) which is defined over \(\mathcal{P}(P) \) the power set of \(P \).

Definition 6 (Capacity). Let \(P \) be a set of criteria, the function \(\mu : \mathcal{P}(P) \rightarrow [0,1] \) is a capacity function if:

- \(\mu(\emptyset) = 0 \) and \(\mu(P) = 1 \)
- \(\forall A, B \subseteq P \), \(A \subseteq B \Rightarrow \mu(A) \leq \mu(B) \)
The capacity is normalized and increasing which is interpreted in the natural way. The notion of capacity allows us to introduce the Choquet integral (Choquet, 1953) which can be used as an aggregation function.

Definition 7 (Choquet Integral). Let \(y \in \mathbb{R}^n \) be a vector and \(\mu \) a capacity function defined over \(\mathcal{P}(P) \). The Choquet integral \(C_\mu : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined as:

\[
C_\mu(y) = \sum_{k=1}^p \mu(\{x(k), \ldots, x(p)\}) \times \left[y_{x(k)} - y_{x(k-1)} \right]
\]

with \(\sigma \) a permutation on \(P \) such that \(y_{x(1)} \leq \cdots \leq y_{x(p)} \) and \(y_{x(p)} = 0 \).

The Choquet integral generalizes the main usual aggregation operators: min, max, weighted sum and ordered weighted sum (Grabisch, 1996). It permits us to model weighting as well as interactions between criteria. For instance, the notion of capacity provides a solution to the aforementioned example:

\[
\begin{align*}
x^b & \sim x^c \iff \mu(1) = \mu(2) \\
x^b & > x^c \iff 0.4 \mu(1,2) > \mu(2)
\end{align*}
\]

Choosing \(\mu(1) = \mu(2) = 0.3 \) allows us to design the expected preference model as \(\mu(1,2) = 1 \) by definition. Preference models based on a Choquet integral with respect to some capacity \(\mu \) have a great expressiveness. However, their expressiveness comes at the price of complexity as \(2^n - 2 \) parameters are required to define the capacity function (i.e. all the values of \(\mu \) on \(\mathcal{P}(P) \) except for \(\emptyset \) and \(P \)). In order to simplify these models while keeping most of their expressiveness, Möbius transformation (Rota, 1964) and k-additive capacities (Grabisch, 1997) are introduced.

Definition 8 (Möbius Transformation). Let \(\mu \) be a capacity, its Möbius transformation \(m : \mathcal{P}(P) \rightarrow [-1,1] \) is given by:

\[
m(A) = \sum_{K \subseteq A} (-1)^{|A-K|} \mu(K)
\]

Definition 9 (K-additivity). A capacity \(\mu \) is said k-additive if its Möbius transformation verifies:

- \(\forall A \in \mathcal{P}(P), |A| > k \Rightarrow m(A) = 0 \)
- \(\exists A \in \mathcal{P}(P), |A| = k \text{ and } m(A) \neq 0 \)

The k-additive capacities are particularly interesting because one only needs \(\sum_{|A|=k} 1 \) parameters to represent them. In particular, 2-additive capacities are often considered as the best compromise between expressiveness and complexity. They only required \(p(p+1)/2 \) parameters to be specified while still allowing to model interactions between pairs of criteria (interactions between more than one criteria being hard to handle for decision-makers anyway). Using a 2-additive capacity, the Choquet integral can be expressed as follows Grabisch and Labreuche (2010).

Definition 10 (2-additive Choquet Integral). Let \(y \in \mathbb{R}^n \) be a vector and \(\mu \) a capacity function defined on \(P \). The 2-additive Choquet integral \(C_\mu : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined as:

\[
C_\mu(y) = \sum_{I_j \subseteq P} (y_j \wedge y_i) \times I_j + \sum_{I_j \subseteq P} (y_j \vee y_i) \times |I_j|
\]

with \(\wedge \) and \(\vee \) denoting min and max operators, \(m_i \) and \(m_j \) used instead of \(m(i) \) and \(m(j) \) for simplicity:

- \(I_j = m_j \)
- \(\phi_i = m_i + \frac{1}{2} \sum_{I_j \subseteq P} I_j \)

The Shapley value \(\phi_i \) (Shapley, 1953) expresses the global weight of the criterion \(i \). It should not be confused with \(m_i \) which represents the importance of the criterion \(i \) considered alone. Furthermore, the interaction index \(I_i \) (Grabisch, 1997) characterizes the interaction between criteria \(i \) and \(j \). By analysing Definition 10, one sees that if the interaction index \(I_i \) is positive, criteria are aggregated using the min operator. In this case, the criteria are said complementary as their overall score is high only if both criteria scores are high. On the other hand, if the interaction index \(I_i \) is negative, the criteria are aggregated using the max operator. In this case, they are said substitutable one to the other as it is sufficient that one criterion score is high in order to obtain a high overall score. Finally, the linear part of the integral performs the weighting of the individual criteria.

4. Modelling PDDL3 preferences using MAUT

In this section, we show that the PDDL3 preferences can be expressed using the MAUT model and a Choquet integral. Interestingly, preferences formalized using MAUT have almost the same expressiveness as the ones formalized in PDDL3 while being much easier to model. We first introduce a new planning domain (Section 4.1) that will be used for illustrative purposes in the subsequent sections. Then, we explain how to encode PDDL3 preferences into MAUT criteria and how to substitute the PDDL metric function with a Choquet integral (Section 4.2). Next, we present the formal language of our PDDL3/MAUT extension (Section 4.3).

To finish, we compare the expressiveness of the PDDL3/MAUT with respect to the initial PDDL3 formalism (Section 4.4) and explain why preference elicitation is easier to perform using PDDL3/MAUT (Section 4.5).

4.1. Tourism planning domain

We have introduced a new planning domain denoted Tourism in order to illustrate how the PDDL3 preferences can be represented using a MAUT model along with a Choquet integral (Bidoux, 2017c). In this domain, one has to organize a road trip between cities while optimizing several trajectory preferences (points of interest to visit before other ones or at most once, culinary specialities to try) and several numeric preferences (travel duration, financial cost, comfort, entertainment and cultural scores). Unsurprisingly, the travel duration criterion can be used to express a preference regarding the duration of the road trip. The financial cost criterion models the various expenses of the journey such as the travel costs or the hotels and restaurants prices. The comfort criterion models the quality of the considered hotels and restaurants. The entertainment and cultural criteria depends on the various points of interest that are visited. Some constraints ensuring that the road trip participants eat and sleep regularly must also be respected. In order to formalize the intrinsic interactions between these numeric preferences, the plan metric is modelled by a Choquet integral involving a substitutability between financial cost and comfort score as well as between entertainment and cultural scores.

4.2. Representing PDDL3 preferences using MAUT

In the previous section, we have explained that a MAUT criterion is characterized by an attribute value \(x_i \) along with a partial utility function \(u_i \) representing the user’s preferences over the attribute domain \(\Omega_i \). The PDDL3 preferences can easily be generalized by substituting each one of them with a MAUT criterion.

Such a substitution is quite intuitive for numeric preferences as one only needs to define the partial utility function of the considered numeric expression. For example, given a Tourism problem, a user may be completely satisfied (respectively totally unsatisfied) if the financial cost of the road trip is 1000 euros (respectively 4000 euros). Moreover, his preferences are not necessarily linear and he may strongly prefer a price of 3000 euros to one of 4000 euros while moderately preferring a price of 1000 euros over one of 3000 euros. These preferences are
score defined with respect to the following values:

may be booked during the road trip are characterized by a comfort

defined using a partial utility function over the same satisfaction scale

operator.

1. This simple mechanism allows

as a partial utility function. For instance, in a

but nonetheless straightforward. Indeed, one only has to consider an at-

illustrated on Fig. 1 where the partial utility function is defined over

Tourism problem, preference (sometime-before (c-visited c2) (c-visited

means that the city c1 should be visited before the city c2 if

possible. If a plan implies visiting c2 before c1, then the preference is

violated, the value of the corresponding MAUT attribute and its partial

utility are both equal to 0. On the other hand, if c1 is visited before c2

(or if c2 is never visited), then the preference is satisfied by the plan,

the value of the MAUT attribute and its partial utility are both equal to

1. This simple mechanism allows PDDL3 preferences to be represented

by MAUT criteria while preserving their initial semantic.

As in PDDL3, plan quality (called utility in the MAUT terminology) is

obtained by merging the problem’s criteria using an aggregation

operator.

Preference aggregation is more intuitive in the MAUT model as it

enforces commensurability between criteria. Indeed, all preferences are defined using a partial utility function over the same satisfaction scale ξ. We illustrate this using the Tourism problem once again. Hotels that may be booked during the road trip are characterized by a comfort score defined with respect to the following values: high, moderate and low. Without commensurability, it is impossible to determine if an improvement on the financial cost preference (e.g. a cost of 1800 euros rather than 2200 euros) is preferred to one on the average comfort score preference (e.g. from a moderate comfort score to a high one). Therefore, constructing a metric function aggregating meaningfully financial cost, comfort score and sometime-before (c-visited c2) (c-visited c1) is difficult in PDDL3. On the contrary, if preferences are represented by MAUT criteria, it is easier to aggregate them as they are all commensurable.

Preference aggregation is performed using the Choquet integral along with a 2-additive capacity. As explained in Section 3, a 2-additive capacity can be used to represent the weight of each preference as well as the interactions between pairs of preferences. For illustrative purpose, we present in Fig. 1 a capacity aggregating financial cost (criterion 1), average hotel comfort score (criterion 2) and sometime-before ((c-visited c2) (c-visited c1)) (criterion 3) preferences. If the user considers that criteria 1 and 2 are equally important and slightly more important than criterion 3, its preferences can be represented by μ(1) = μ(2) > μ(3)). Moreover, if he estimates that there is no interaction between pairs of criteria (1, 3) and (2, 3), we have μ(1) + μ(3)) = μ((1, 3) and μ(2) + μ(3)) = μ(2, 3)). Finally, the user may think that 1 and 2 are substitutable (μ(1)) + μ(2)) > μ((1, 2)) which means that he may accept a high financial cost if the average hotel comfort score is also high and vice versa. Table 1 illustrates a 2-additive capacity satisfying these requirements. When instantiated with such a capacity, the Choquet integral defines an aggregation function for the three aforementioned criteria and their interactions.

4.3. Formal language of the PDDL3/MAUT extension

As the intuition regarding the generalization of the PDDL3 preferences into MAUT criteria have been explained, we now present the formal language of the PDDL3/MAUT extension. We have chosen to design this extension such that it is fully compatible with the existing PDDL3 specification. In order to do so, we have introduced a new PDDL requirement that planners may choose to support. The latter is called maust-preferences and is built upon numeric-fluents and preferences requirements (Gerevini and Long, 2005). The bnf description specifying the syntax of the maust-preferences requirement is available on dataverse (Bidoix, 2017a). Without any surprise, the main elements of this extension are the concepts of maust-criterion (maust-criterion) and the concept of Choquet integral (choquet-integral).

In addition, in order to define the semantics of the PDDL3/MAUT extension, one only need to combine the semantics of the PDDL2.1 numeric expressions (Fox and Long, 2003) and the PDDL3 preferences (Gerevini and Long, 2006) with respect to the MAUT definitions. We now precise the definitions given in Section 2 in order to formalize the semantics of the PDDL3/MAUT extension.

Definition 11 (PDDL3 Planning Problem). An instance of a PDDL3 planning problem is defined to be a pair $I = \langle \text{Dom, Prob} \rangle$ where:

- The planning domain is a tuple $\text{Dom} = \langle F, R, A \rangle$ consisting of function symbols F, relation symbols R and actions A.
- The planning problem is a tuple $\text{Prob} = \langle O, s_0, EG, P \rangle$ consisting of objects in the domain O, initial state s_0, extended goals EG and preferences P.

Definition 12 (PDDL3/MAUT Planning Problem). An instance of a PDDL3/MAUT planning problem I_M is an instance of PDDL3 planning problem I where the tuple Prob have been redefined as $\langle O, s_0, EG, MC, C_p \rangle$ with MC a set of criteria representing the preferences P of the problem and C_p a 2-additive Choquet integral.

In such problems, a state s is no longer defined as a set of atomic formulas Atm but as a pair $\langle Atm, v \rangle$ with $v \in \mathbb{R}^{dim}$ where dim denotes the number of primitive numeric expressions of the problem (Fox and Long, 2003). Based on these additional notations, we can define the utility associated to both numeric and trajectory preferences and explain how the plan’s utility is computed.

Definition 13 (Numeric Preference Utility). Let $t = \langle s_0, \ldots, s_k \rangle$ be a trajectory whose final state s_k is described by the pair $\langle Atm, v \rangle$, f be a primitive numeric expression and k in MC be the MAUT criterion representing the numeric preference with attribute f and partial utility function $u_k : \Omega_f \rightarrow [0, 1]$. The utility associated to the MAUT criterion k on the trajectory t is computed with respect to s_k as $u_k(t) = u_k(e_f)$.

Definition 14 (Trajectory Preference Utility). Let $t = \langle s_0, \ldots, s_k \rangle$ be a trajectory, Φ be an extended goal and $k \in MC$ be the MAUT criterion representing the trajectory preference associated to Φ with partial

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Example of a 2-additive capacity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}(P)$</td>
<td>0</td>
</tr>
<tr>
<td>μ</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
</tr>
</tbody>
</table>
utility function $u_k : \{0, 1\} \rightarrow [0, 1]$. The utility associated to the MAUT criterion k on the trajectory x is computed with respect to the semantic of Φ as:

$$u_k^x = \begin{cases} 1 & \text{if } (x(0), x(1), \ldots, x(T)) \models \Phi \\ 0 & \text{if } (x(0), x(1), \ldots, x(T)) \models \neg \Phi \end{cases}$$

Definition 15 (Plan Utility). Let I_u be an instance of a PDDL3/MAUT problem, x be a plan defined by the trajectory t and u_1^x, \ldots, u_n^x the partial utility values of the MAUT criteria MC with respect to t. The utility U of the plan x is defined as $U_x = C_p(u_1^x, \ldots, u_n^x)$.

Using Definition 15, a plan x_1 is said to be at least as preferred as a plan x_2 (denoted $x_1 \geq x_2$) if and only if $U_{x_1} \geq U_{x_2}$.

4.4. Comparison between PDDL3 and PDDL3/MAUT

We have chosen to design the PDDL3/MAUT extension so that it is fully compatible with the existing PDDL3 specification. Therefore, it comes at no surprise that PDDL3 and PDDL3/MAUT are almost identical in term of expressiveness. One should nonetheless note that some differences exist between these two formalisms.

In order to represent a numeric preference within the PDDL3/MAUT formalism, one has to bound its value which is not required in PDDL3. From a strict theoretical viewpoint, this means that some PDDL3 problems cannot be encoded into PDDL3/MAUT unless bounds on numeric values are provided in order to convert them. However, working with unbound numeric preferences induce incommensurability between preferences which in turn impacts negatively the preference aggregation. As such, one can argue that when working on real world problems where the preference model have to be meaningful, one should have avoided unbound numeric preferences in the beginning.

On the other hand, the PDDL3/MAUT formalism brings several improvements in term of expressiveness with respect to the PDDL3. By the very nature of MAUT criteria, it is possible to aggregate several criteria together in order to produce a new one. Consequently, the notion of compound preferences aggregating several preferences can be used in PDDL3/MAUT while not being supported in PDDL3. One should note that compound preferences are also supported by others PBP languages such as LPPI for example Bienvenu et al. (2006).

In addition, in PDDL3 preferences are intrinsically binary whereas they are intrinsically fuzzy in PDDL3/MAUT thanks to the employed partial utility functions. Therefore, PDDL3/MAUT preferences could be used to generalize PDDL3 preferences thus increasing the expressiveness of the language. For instance, a PDDL3/MAUT preference could be used to count the number of states in which a predicate ϕ is true thus constituting a fuzzy interpretation of the PDDL3 (sometime ϕ) preference that only express whether ϕ is true at least once in the plan.

4.5. Preference elicitation using PDDL3/MAUT

Preference elicitation is the process used to create a mathematical representation of user’s preferences with respect to a relation \succeq. As the automated planning community is mainly focused on problem solving, the preference elicitation problem (which constitutes one step of the problem modelling) is generally assumed solved a priori by current preference-based planning approaches. One might consider this posture slightly dogmatic as in many real-world PBP applications, preference elicitation is a crucial problem to address and can be as hard to solve as the planning problem itself. Indeed, there is no point to look for an optimized solution with respect to a given preference model if the latter does not formalize correctly what the decision-makers are trying to achieve.

Preference elicitation is intrinsically easier to perform using the PDDL3/MAUT formalism. Indeed, the latter natively supports (i) fine-grained definition of preferences thanks to partial utility functions, (ii) commensurability between preferences (which enforces meaningful preference comparison) thanks to the common satisfaction scale ξ as well as (iii) preference interactions thanks to the Choquet integral. Even if such mechanisms could be simulated in PDDL3, doing so would complexify a lot the underlying planning problems as these functionalities cannot be easily formalized in plain PDDL3. This is illustrated by the Tourism planning domain that features several trajectory preferences (points of interest to visit before other ones or at most once, culinary specialities to try), several numeric preferences (financial cost, travel duration, comfort, entertainment and cultural scores) as well as several constraints to respect. In addition, its plan metric is modelled by a Choquet integral involving substitutability between criteria. One should note that the Tourism domain contrasts with many IPC5 planning domains that use at most one numeric preference.

One should also note that several MCDA results can be used to assist users during the creation of their preference models. For instance, when preferences are represented by MAUT criteria aggregated with a Choquet integral, the preference elicitation problem can be solved using a method proposed by Labreuche and Grabisch (2003). The latter is based on a questioning procedure in which the decision-maker is asked a few questions regarding its preferences over hypothetical alternatives maximizing subsets of criteria. This approach is quite interesting because (i) the decision-maker is not required to have any mathematical background and (ii) no concrete plans have to be provided. Furthermore, this preference elicitation method can be performed efficiently using the MYRAS software (Labreuche and Lehuédé, 2005).

5. PPB using the Choquet integral

In Section 4, the Choquet integral has been considered as a tool for preference modelling. Hereafter, it is used to define a new family of heuristics for planning with preferences (Section 5.1). In addition, we present a new estimate of plan quality using fuzzy preferences (Section 5.2). Moreover, we also describe an algorithm solving PBP problems thanks to the aforementioned heuristics (Section 5.3).

5.1. Heuristics based on the Choquet integral

Heuristic search has been a time-honoured principle to solve classical planning problems in which several goals must be achieved. However, when planning with preferences, finding a solution is not enough as we are looking for good solutions according to user’s preferences. If the search is focused on goals, it might be easier to find solutions but these are likely to be mediocre ones with respect to preferences. At the opposite, if the search is only focused on preferences, it is possible that no solution may be found at all. Our approach utilizes a heuristic search that performs a trade-off between easiness of achieving the goals and potential quality according to preferences.

To this end, we rely on a 2-additive Choquet integral with respect to a capacity ρ along with two MAUT criteria respectively related to goals to be achieved (denoted Δ) and preferences to be optimized (denoted A). The core idea is to define ρ to represent a complementarity (i.e. a positive interaction) between goal and preference criteria. As a consequence, all other things being equal, balanced solutions that are good on both goal and preference criteria will obtained a better score than imbalanced ones.

Definition 16 (Choquet-based Heuristic). Let I be a PBP problem instance, C_p be a Choquet integral and s a state, a Choquet-based heuristic h_ρ is defined as:

$$h_\rho(I, s) = C_p(\Delta(I, s), A(I, s))$$

where $\Delta(I, s)$ and $A(I, s)$ are estimates related to goals to be achieved and preferences to be optimized respectively.

We now introduce h_ρ^x a Choquet-based heuristic compatible with the PDDL3/MAUT formalism that is based on two criteria Δ_1 and A_1. The goal criterion Δ_1 represents the progress made in order to achieve the goals G from a given state s with respect to the initial state s_0. Its...
Definition 17 (Estimate Δ_i). Let I_M be an instance of a pddl3/maut problem with G the goals to be achieved, s a state and u_c the partial utility function depicted on Fig. 2, then:

$$
\Delta_i(I_M, s) = u_c\left(\frac{r(I_M, s, G)}{r(I_M, s_0, G)} \right)
$$

Fig. 2 illustrates the partial utility function u_c. The user is moderately satisfied ($u_c(1) = 0.5$) if the state s is at the same distance of the goals than s_0. His satisfaction is maximal when the goal is verified in s ($u_c(0) = 1$). Moreover, his satisfaction slowly decreases between 1 and 2 in order to allow the planner to search for long solutions (whose quality might be better) even if the goals can be achieved quickly.

The preference criterion (denoted A_1) represents an estimate of the quality of any plan that would be constructed by extending the state s. It can be computed easily by evaluating the utility function of the problem I_M with respect to the trajectory (s_0, \ldots, s). This estimate is inherently optimistic (respectively pessimistic) regarding the preferences satisfied (respectively violated) in (s_0, \ldots, s).

Definition 18 (Estimate A_1). Let I_M be an instance of a pddl3/maut problem with C_p its Choquet integral and u'_1, \ldots, u'_l the partial utility values of the l criteria of I_M with respect to the trajectory $t = (s_0, \ldots, s)$,

$$
A_1(I_M, s) = C_p(u'_1, \ldots, u'_l)
$$

Following the definition of Δ_i and A_1, we now describe the h^*_c heuristic.

Definition 19 (Heuristic h^*_c). Let I_M be a pddl3/maut problem and C_p be a Choquet integral,

$$
h^*_c(I_M, s) = C_p\left(A_1(I_M, s) \cdot A_1(I_M, s) \right)
$$

5.2. Estimate of plan quality using fuzzy preferences

In this section, we describe an estimate of plan quality denoted A_1 that will be used to construct a second Choquet-based heuristic h^*_c. This estimate is presented using the pddl3/maut formalism but is nonetheless generic and could be built with any language supporting the notion of fuzzy preferences.

Using the preference criterion A_1, one implicitly considers that the utility of an intermediate state of a plan is a good estimate of its final utility. Indeed, estimate A_1 takes into account the relative importance of the preferences but does not consider any information regarding the future evolution of their satisfiability. One can design a more informed estimate by considering the likelihood that the preferences will be satisfied in the final state given the current state s. For instance, one of the heuristics proposed by Baier et al. (2009) evaluates the metric function of the problem in various nodes N_i of a relaxed planning graph and then weights these values according to the depth i of the nodes N_i. Moreover, the heuristic used in SPRING (Coles and Coles, 2011) can be interpreted as a modification of the relaxed planning graph structure in order to take into account the preferences of the problem and their respective weights. The approach adopted in this work also exploits the relaxed planning graph structure yet is based on the fuzzy nature of the maaut criteria used to represent the preferences.

The quantity A_2 is constructed by replacing in A_1 the usual semantic interpretation of final preferences, sometime and sometime-before preferences by an estimate of the effort to produce in order to satisfy them from the state s. One should note that this interpretation is compatible with the pddl preferences’ semantics since the two boundary cases of a null effort or an infinite effort can be seen respectively as a preference satisfied or violated in s. In order to redefine the semantics of the maaut criteria, one can use mechanisms similar to those of Definition 17. For instance, $r(I, s, \phi)$ is an estimate of the number of actions that one has to execute from a state s to achieve the predicate ϕ. Thus, it describes the effort to produce in order to satisfy the preference at-end ϕ from s. We now introduce formally the semantically redefined partial utility values associated to final preferences as well as sometime and sometime-before preferences.

Definition 20 (Utility of Final Preferences in A_2). Let I_M be a pddl3/maut problem, $t = (s_0, \ldots, s)$ a trajectory, ϕ the formula associated to the final preference represented by the maaut criterion $k \in MC$ and u_k the partial utility function depicted in Fig. 2. The semantically redefined utility associated to the maaut criterion k on the trajectory t is computed as:

$$
\tilde{u}'_k = \begin{cases}
 u_c\left(\frac{FF(I_M, s_0, \phi)}{FF(I_M, s_0, \phi)} \right) & \text{if } FF(I_M, s_0, \phi) \neq 0 \\
 1 & \text{if } FF(I_M, s_0, \phi) = 0 \text{ and } FF(I_M, s, \phi) = 0 \\
 0 & \text{if } FF(I_M, s_0, \phi) = 0 \text{ and } FF(I_M, s, \phi) \neq 0
\end{cases}
$$

Definition 21 (Utility of Sometime Preferences in A_2). Let I_M be a pddl3/maut problem, $t = (s_0, \ldots, s)$ a trajectory, ϕ the formula associated to the sometime preference represented by the maaut criterion $k \in MC$ and u_k the partial utility function depicted in Fig. 2. The semantically redefined utility associated to the maaut criterion k on the trajectory t is computed as:

$$
\tilde{u}'_k = \begin{cases}
 u_c\left(\frac{FF(I_M, s_0, \phi)}{FF(I_M, s_0, \phi)} \right) & \text{if } FF(I_M, s_0, \phi) \neq 0 \\
 1 & \text{if } FF(I_M, s, \phi) = 0 \text{ and } FF(I_M, s, \phi) = 0 \\
 0 & \text{if } FF(I_M, s_0, \phi) = 0 \text{ and } FF(I_M, s, \phi) \neq 0
\end{cases}
$$

Definition 22 (Utility of Sometime-before Preferences in A_2). Let I_M be a pddl3/maut problem, $t = (s_0, \ldots, s)$ a trajectory, $\phi \psi$ a sometime-before $(\phi \psi)$ preference represented by the maaut criterion $k \in MC$ and u_k the partial utility function depicted in Fig. 2. The semantically redefined utility associated to the criterion k on the trajectory t is computed as:

$$
\tilde{u}'_k = \begin{cases}
 u_c\left(\frac{FF(I_M, s_0, \phi)}{FF(I_M, s_0, \phi)} \right) & \text{if } t \triangleright p \\
 \text{and } FF(I_M, s_0, \phi) \neq 0 \\
 1 & \text{if } t \triangleright p \text{ and } FF(I_M, s_0, \phi) = 0 \\
 \text{and } FF(I_M, s, \phi) = 0 \\
 0 & \text{if } t \triangleright p \text{ and } FF(I_M, s_0, \phi) = 0 \\
 \text{and } FF(I_M, s, \phi) \neq 0 \\
 0 & \text{if } t \triangleright \neg p
\end{cases}
$$
As always and at-most-once preferences do not have a natural fuzzy interpretation, we define their utility in A_1 as $u'_k = u_k$ where u_k is defined according to Definition 14. Thanks to Definitions 20 to 22, we can now describe the A_1 estimate as well as the h^2 heuristic.

Definition 23 (Estimate A_2(I_M, s)). Let I_M be an instance of a PDDL3/MAUT problem, C_p its Choquet integral and u'_1, \ldots, u'_n the semantically redefined partial utility values of the p criteria of I_M regarding the trajectory $t = (s_0, \ldots, s_t)$, then:

$$A_2(I_M, s) = C_p(u'_1, \ldots, u'_n)$$

Definition 24 (Heuristic h^2). Let I_M be a PDDL3/MAUT problem and C_p be a Choquet integral,

$$h^2(ICM, s) = C_p(A_1(IM, s) \cdot A_2(IM, s))$$

The Choquet integral C_p which is used to aggregate the goal and preference criteria of h^1 and h^2 should not be confused with the Choquet integral C_p which is used to aggregate the various preferences of the problem. In order to fully describe a Choquet-based heuristic, the capacity p must be specified. It turns out that defining p in a domain-independent way is not trivial. This problem is addressed in the next session.

5.3. Algorithm using Choquet-based heuristics

Algorithm 1 has been designed to solve PBP problems. The latter uses standard planning techniques namely a forward search in a graph (selectionRule) using a best first approach (BFS) based on the aforementioned Choquet heuristics. In addition, it relies on two standard pruning rules (pruningRules) that respectively sort out actions whose prerequisites are not satisfied in the current state s and actions whose execution would lead to a state s' in which one of the trajectory constraints (also known as extended goals) of the problem would be violated.

In a nutshell, the algorithm works as follows: first, the neighbourhood of the initial state s_0 is constructed (selectionRule.initFrontier(s_0)) by considering all the states s that can be obtained by executing an action a of the problem in s_0 (IsApplicable(current, action)). During this step, the various pruning rules are triggered (IsPrunable(pruningRules, current, action)) in order to not include in the neighbourhood of s_0 states that cannot be reached from s_0 as well as the states violating one of the trajectory constraints of the problem. Next, the various states constituting the neighbourhood of s_0 are added to the list of nodes to be considered (Expland(current, action) and selectionRule.updateFrontier(child)). This list is sorted according to the chosen Choquet-based heuristic (h^1 or h^2) and the state s with the best score is picked (selectionRule.selectNode()). The algorithm continues by adding the neighbourhood of s to the aforementioned list. This process is repeated until a state satisfying all the goals of the problem (current.evaluate(G)) is found. Finally, the utility (i.e. the plan metric) of the solution is computed (current.getUtility()).

Algorithm 1 is iterative and as such does not terminate when a solution is found (solution.add(current)) but instead continues to look for better solutions, thus incrementally producing plans of increased quality. This mechanism constitutes one of the key features of the algorithm as it is used in order to avoid the formalization of the heuristics’ capacity p. Indeed, the algorithm will restart from the beginning (selectionRule.nextIteration(s_0)) using a different capacity p each time a new solution is found. The capacity is chosen so that each solution is generally harder to find than the previous ones but is likely to have a better quality according to preferences. Using Möbius representation, this can be done starting from capacity m^0 (see Table 2) by decreasing the weight of δ by a and increasing the weight of δ/A by a each time a solution is found until we get the capacity m^p that models a perfect complementarity between goal and preference criteria. Using this strategy, the Choquet-based heuristic is guided only by goals at first but these become less and less important in favour of preferences each time a new solution is found. This approach fully exploits the expressiveness of the Choquet integral. Indeed, the capacity p is constructed by considering a positive interaction $I_{s/A}$ between goal and preference criteria thus modelling a complementarity between them. The higher a is, the more difficult the problem becomes to solve between two iterations. It is therefore advisable to pick a small a while ensuring that the quality improvement between two consecutive solutions does not become negligible. Performed experimental tests suggest that the empirical value $a = 0.1$ is a good choice. Besides, varying the value of a over the interval $[0.05, 0.15]$ have only a marginal impact on the algorithm’s performances.

Algorithm 1: Choquet-based PBP algorithm

Input: s_0 initial state of the problem G goal formula of the problem A set of actions of the problem

Output: solution list of solutions to the problem

Data: selectionRule heuristic-based BFS pruningRules set of pruning rules current current node used in the search child node expanding current

Algorithm Search(s_0, G, A, \succeq)

selectionRule.initFrontier(s_0)

while ResourcesNotExhausted and selectionRule.isFrontierEmpty() = False do

current ← selectionRule.selectNode()

if current.evaluate(G) = True then

if current.getUtility() > solution.getBestUtility() then

solution.add(current)

end

selectionRule.nextIteration(s_0)

else

for all action ∈ A do

if IsApplicable(current, action) and IsPrunable(pruningRules, current, action) = False then

child ← Expand(current, action)

selectionRule.updateFrontier(child)

end

end

end

return solution
6. Implementation and evaluation

The proof-of-concept planner ChoPlan implements the algorithm and heuristics presented in Section 5. It relies on the pddl4 library (Pel-lier, 2015), solves mutt-encoded PBP problems and supports all pddl3 operators except those relying on time (within for instance).

In order to evaluate ChoPlan’s performances, we have considered problems from International Planning Competitions (IPC) involving the whole set of pddl3 operators. Problems from the qualitative preferences track of IPCs (Gerevini et al., 2009) are the only ones satisfying these conditions. We have restricted ourselves to the Rovers and Openstacks domains as the three other candidates (Storage, TPP and Tracks) are defined using forall and exists pddl keywords that are not yet supported by ChoPlan. These domains are associated with 20 problems (denoted as SP) using final preferences only as well as 20 problems (denoted as QP) using any trajectory preferences. We have also created 20 problems (denoted as MP) using several numeric preferences and involving interactions between preferences for both considered domains. In addition, we have designed 20 MP problems for the Tourism domain introduced in Section 4.1. These problems aim to illustrate that preference modelling is easier to perform using the pddl3/maut extension.

ChoPlan has been compared to all planners that have attempted Rovers and Openstacks domains during IPCs namely SGPlan 5.1 (Hsu et al., 2006), HPLAN-P (Baier et al., 2009) and mips-xxl (Erkens and Helmert, 2001). As SGPlan 5.1 performs some domain specific optimizations, we have also included a variant SGPlan-w that disables the aforementioned optimizations following the procedure described by Coles and Coles (2011). We have also considered the lprpg-p planner (Coles and Coles, 2011) as well as three configurations of our planner. The ChoPlan 1 and ChoPlan 2 configurations are respectively instantiated with heuristics h_1^1 and h_2^1. The Control configuration is a non-iterative version of the algorithm presented in Section 5.3 instantiated with heuristic h_1. Consequently, executing the Control planner is equivalent to performing a best-first search with the fast-forward heuristic.

All the tests have been executed on the same machine, the latter using a 3.4 GHz i5-3570K CPU. Planners have been allowed to use at most 10 min of CPU-time to solve each problem and only the best solution found for each problem have been considered. Furthermore, plan metric was computed using the plan validator val (Howey et al., 2004). Val permits to compare ChoPlan to other planners in a meaningful way even if the latter solves mutt-encoded versions of the pddl problems.

Tables 3 and 4 respectively shows the number of solutions found by each planner and the IPC score obtained by each planner (IPC score computation is explained in Table 4 caption). We stress that these results only constitute a preliminary evaluation of ChoPlan as they exclusively include planning domains supported by the current implementation of ChoPlan. In particular, one should note that this evaluation is intrinsically biased against lprpg-p. Indeed, the latter cannot solve the Openstacks problems but can solve some problems that have not been considered here (see Coles and Coles, 2011 for a precise evaluation of lprpg-p). Overall, SGPlan 5.1 is the best performing planner. Nevertheless, its performances seems to heavily rely on the domain-specific optimizations it employs as SGPlan-w is globally outperformed by all other planners. Of the remaining planners, ChoPlan obtains the best IPC scores on both SP and QP problems for the considered domains. However, given the number of solutions it found on various problems, ChoPlan might scale less efficiently than some other planners. Regarding MP problems, both ChoPlan 1 and ChoPlan 2 bring significant improvements with respect to the Control planner.

IPC scores of ChoPlan 1 and ChoPlan 2 respectively corresponds to performance improvements of 45% and 65% with respect to the Control planner. Therefore, the h_2^1 heuristic brings a greater improvement of plans’ quality than heuristic h_1^1. This result is not surprising as the A_2 estimate can be seen as a more refined variant of the A_1 estimate (see Section 5.2). Nevertheless, despite better overall performances, ChoPlan 2 does not always outperform ChoPlan 1. On the contrary, the latter obtains superior results in three out of seven types of considered problems.

As appreciating planners’ relative performances using only the IPC score may be complex (especially when some planners do not solve the same problems than others), a comparison based on mutually solved problems is provided in Fig. 3. It shows that regarding the two considered domains, ChoPlan 1 is outperformed by SGPlan 5.1 and HPLAN-P but outperforms SGPlan-w, mips-xxl and lprpg-p. Similarly, ChoPlan 2 is outperformed by SGPlan 5.1, behaves similarly as HPLAN-P and outperforms SGPlan-w, mips-xxl and lprpg-p. Ultimately, results from Tables 3 and 4 as well as Fig. 3 suggest that Choquet-based heuristics are interesting candidates in order to solve PBP problems.
7. Applications

In this section, we briefly discuss the use of automated planning in crisis management contexts. This domain constitutes a natural application for this work as it can greatly benefit from our MCDA-based planning with preferences approach. One can define a crisis as “a situation with long-term consequences due to an event that has caused extensive damage and losses resulting in an interruption of one or more critical activities within some part of the world” (CCA, 2014). Such situations may, for instance, result from natural disasters (tsunamis, earthquakes, floods...) or from industrial accidents. Planning problems for crisis management are rather different from traditional automated planning problems. They tend to be easier to solve as they are usually less combinatorial while being much harder to model. Indeed, it is quite difficult to represent the goals to achieve as determining the best strategy to handle the situation efficiently is generally crisis-specific and might be subject to debate amongst decision-makers. Planning in crisis management contexts requires to use a user-centric approach in order to convince the decision-makers that the proposed solutions are of interest.
An example of crisis management planning illustrating the use of our mcda-based approach is provided in Bidoux et al. (2017b). In the considered scenario, decision-makers have to handle the crisis that is going to be caused by a massive flood event in Northern Europe using the capabilities of various first responder teams. To this end, decision-makers realize several preference models using the following criteria and their respective interactions: (i) the effectiveness of rescue operations, (ii) the comfort of the inhabitants of an area exposed to an isolation risk (which depends on whether food is supplied to them), (iii) the financial cost of the response, (iv) the necessity to resort on international aid proposed by neighbouring countries and (v) the capability to provide electricity to a critical company during some part of the crisis response. We defer the interested reader to Bidoux et al. (2017b) and Bidoux (2016) for additional details on the solution plans found by ChoPlan with respect to each preference model considered by the decision makers.

8. Conclusion

In this paper, we have explored the problem of planning with preferences expressed within the maut formalism along with a 2-additive Choquet integral. It turns out that planning can benefit from this mcda formalism on both practical and theoretical viewpoints. On the practical side, we have shown that the PDDL3/MAUT extension has almost the same expressiveness as the PDDL3 language while facilitating preference modelling. On the theoretical side, we have introduced two Choquet-based heuristics as well as a new algorithm for BPB. This algorithm has been implemented in the ChoPlan planner whose performances have been compared to state of the art planners. Experimental results suggest that ChoPlan is an efficient planner for solving problems in which trade-offs between many goals and preferences have to be made. In addition, ChoPlan can be employed to address real operational planning problems as it has been incorporated in an information system for planning in crisis management contexts. Future work may include the improvement of ChoPlan to support all quantifiers, the improvement of the PDDL3/MAUT extension to support time-based operators as well as the creation of new Choquet-based heuristics based on more advanced estimates.

Acknowledgments

Authors would like to thank Jorge Baier and Sheila McIlraith for their assistance regarding the use of HPan-P. This work has been partially funded by ANRT under the grant 2012/1334.

References