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Abstract— This paper deals with the problem of obstacle
avoidance during an automated preflight inspection. During this
mission, safety appears to be a key issue, as numerous obstacles
are lying in a close neighborhood of the aircraft. They are very
different in terms of size, shape and mobility and are often
unforeseen. To cope with this highly evolutive environment, it
is necessary to design a method sufficiently generic to deal
with the obstacles variety and efficient enough to guarantee
non collision and avoid classical problems such as local minima,
singularities, etc. In this paper, we have proposed a new sensor-
based control strategy fulfilling these two requirements. It
consists in defining and following an adaptative spiral around
the encountered obstacles while performing preflight inspection.
It relies on two main elements: (i) the definition of a spiral whose
parameters are continuously updated depending on the robot
motion and on the environment; (ii) the coupling of two sensor-
based controllers allowing to track the spiral while avoiding
singularities. Experimental results conducted on our robot show
the relevance and the efficiency of the proposed control strategy.

I. INTRODUCTION

With nearly one hundred thousand commercial flights
per day and one thousand aircraft inspections per hour
across the globe, reducing the aircraft downtime and main-
tenance costs represent a challenging topic for the robotic
community [1]. Because 70% of the inspections are still
visually conducted by co-pilots and maintenance operators,
the Air-Cobot project has been developed [1]. Its objective
is to develop a mobile robot working in collaboration with
agents to automate visual inspection procedures. This robot
is intended to help co-pilots and maintenance operators to
perform their duties faster, more reliably with repeatable
precision. To realize visual inspections, the Air-cobot sys-
tem has to autonomously navigate on the airport tarmac.
This environment is a highly dynamical workplace: aircrafts
are driving back and forth, human agents are working in
their vicinity (refueling, freight loading/unloading, passen-
gers boarding/disembarking, ...). Moreover, the encountered
obstacles belong to different categories depending on their
shape and size (aircrafts, trucks, freight, humans) and on
their mobility: static (buildings), semi-static (freight that can
be moved) or mobile (pedestrians, vehicles, etc.). Thus, the
Air-Cobot robot must show strong autonomous capabilities
by adapting its own behaviour to the encountered obstacles.
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To deal with this highly scalable and dynamical environ-
ment, the navigation strategy developed in the Air-Cobot
project relies on both metric and topological maps. The first
one provides a metric representation of the airport and is used
to help the robot to localize itself, i.e., to estimate its state
in the Cartesian space. This latter is then used to calculate
the controller allowing the robot to move from the hangar
to the tarmac. Airports being made of roads and buildings
which are well-known and not subject to any changes or
modifications, metric maps are therefore well adapted to
model them [2], [3], [4]. The topological map is used when
the robot reaches the to-be-inspected aircraft neighborhood.
Indeed, due to the presence of previously unforeseen obsta-
cles, it is challenging to maintain an up-to-date metric map
of the environment, although some improvements have been
done [5], [6], [7]. For this reason, a topological map, made
of the pre-flight inspection checkpoints, appears to be more
suitable. It then offers a representation of the goals to reach,
robust to the presence of previously unforeseen obstacles,
and minimizes the need for updates of the scene model.
Because of this minimal representation of the environment,
it is usually suitable to couple these maps with sensor-based
controllers to navigate. Because of their reactivity, these
controllers easily deal with unknown environments, such as
obstacles, and mostly rely on the acquired data to achieve
their task.

In this paper, it is proposed to develop sensor-based
controllers guaranteeing non-collision with unforeseen
obstacles, when navigating in the aircraft vicinity between
two checkpoints. Instead of using already developed obstacle
avoidance techniques such as potential fields [8], [9], or
Vector Field Histogram (VFH) [10], [11], [12], which are
known to be sensitive to local minima, one proposes to
investigate obstacle avoidance based on splines [13] or
on spiral following. Indeed, relying on the spiral model
presented in [14], obstacle avoidance techniques for
unmanned aerial vehicles were developed in [15] and [16].
Moreover, spiral-based avoidance was also used for a ground
robot in [17] and [18]. In these works, the choice for spiral
following is mostly motivated by (i) the reactivity of the
controller and (ii) the possibility of using the same method
with several sensors. In this paper, our goal is to extend
the works presented in [17], where the authors have defined
the avoidance spiral using a unique center. This choice
reduces the method generality which is restricted to the sole
static obstacles with a geometric shape either circular or
with a geometric aspect ratio close to one. Furthermore, the
robot is controlled using a simple PID controller, reducing



performances. Thus, in order to improve both the method
generality and the control performances, a solution relying
on a suitable dynamical update of the spiral parameters is
proposed. It consists in re-computing the spiral shape and
center using both sensory data and the robot motion. In the
proposed approach, the spiral center point (SCP) is moved
with respect to the robot motion and to the newly-discovered
parts of the obstacle, making the technique be able to handle
any kind of obstacles. In addition to the SCP choice, it
is also necessary to design a suitable sensor-based control
law, to fulfill the following requirements: (i) production of
a stable and smooth trajectory around the obstacles and
(ii) generation of a control input compatible with the robot
kinematics. The proposed control strategy extends previous
works done in [17] and [18]. It relies on the switch between
two sensor-based controllers: the first one, based on a
state-to-input linearization, is presented for the first time in
this paper, whereas the second one was already introduced
in [18]. Thus, the proposed solution takes into account
their respective advantages and drawbacks to overcome
singularities and local minima issues. The performances are
then significantly increased.

The paper is organized as follows. Sections II and III
introduce the spiral model and the spiral parameters update,
while sections IV and V are focused on the control design
and the navigation strategy. Finally, section VI presents
experimental results showing the interest of the approach.

II. PROBLEM MODELING

A. Spiral modeling

The section focuses on parameters used to define the
equiangular spiral. As shown in figure 1a, the spiral is
described by the point Op moving on a plane with respect
to a fixed point Os. This point is considered as the center
of the spiral.

−→
v∗ is the velocity vector applied to Op and its

norm is denoted v∗(t). Moreover
−→
d∗ is the vector connecting

Os to Op whose norm is d∗(t). Finally α∗(t) is defined as
the oriented angle between

−→
v∗ and

−→
d∗.

In [14] it is shown that if both v∗(t) and α∗(t) are constant
then Op describes a spiral whose center is Os. They are
then respectively denoted by v∗ and α∗ in the sequel. More-
over [14] provides an important equation regarding d∗(t):

ḋ∗(t) = −v∗ cos(α∗) (1)

Analyzing the above equation shows that the executed
spiral only depends on the value of parameter α∗. Its sign
allows to define the sense of motion (clockwise if negative,
anticlockwise if positive), while its value fixes the type of
spiral: inward if 0 ≤ α∗ < π/2 or 0 ≤ α∗ < −π/2, outward
if π/2 < α∗ ≤ π or −π/2 < α∗ ≤ −π, circle if α∗ = ±π/2.
From this analysis, it follows that this concept can be easily
adapted to perform an obstacle avoidance motion. Indeed,
fixing the spiral center point (SCP) on the obstacle surface
and selecting a suitable couple of α∗ and d∗ allows us first
to choose the sense of motion for the avoidance around the

obstacle, and then to control the desired distance d∗ and its
evolution. This paper states how to choose these parameters
from the available sensory data to perform an efficient and
safe avoidance motion.
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Fig. 1: Spiral and robot modelling

B. Robot modelling

The Air-Cobot robot is based on the Sterela 4MOB
platform. It has four-wheel skid steering drive, which allows
the robot to turn on itself. Its model is presented in figure 1b.
Fw = (Ow,

−→xw,−→yw,−→zw) is the frame linked to the world,
while Fr = (Or,

−→xr,−→yr ,−→zr ) is the frame attached to the
robot. χ(t) = [x(t), y(t), θ(t)]T represents the pose of the
robot in the world frame, where x(t) and y(t) are the
coordinates of Or in Fw and θ(t) is the angle between −→xw
and −→xr. Os is the center of the spiral to be followed, while−→
d represents the vector connecting Os to Or and α(t) is the
angle between −→xr and

−→
d . β(t) is the angle between −→xw and−→

d . It should be noticed that:

α(t) = π − θ(t) + β(t) (2)

α̇(t) = −θ̇(t) + β̇(t) = −ω(t) + v(t)

d(t)
sin(α(t)) (3)

Consequently, d(t) represents the distance between Os and
Or. It is shown in [14] that:

ḋ(t) = −v(t) cos(α(t)) (4)

III. SPIRAL PARAMETERS UPDATE

A. Choice of α∗

The choice of α∗ allows to define the way the robot will
move with respect to the obstacle. An angle lower than π

2
(inward spiral) makes the robot go closer and closer to the
obstacle, leading to potential collision. An angle greater than
π
2 (outward spiral) is not suitable either, because it makes the
robot go further and further from the obstacle, leading to a
longer trajectory. Therefore, we have imposed α∗ = ±π2 .
The sign of α∗ depends on the sense of motion around the
obstacle, and will be discussed later in section V.

B. Choice of d∗

d∗ has been fixed to a constant value to be consistent with
the choice of α∗, according to equation (4). It is chosen to
ensure that the robot will not move closer than this distance
to any detected obstacle.



C. Choice of the SCP

We propose to define a moving SCP instead of a static one
as in [1] and [18]. The SCP must be chosen to guarantee that:
(i) the non collision and the robot safety are insured ; (ii)
obstacles of various shapes (convex or concave, with sharp
angles, etc.) and sizes (small or large) are handled in an
equal way ; (iii) a smooth trajectory of the robot around the
obstacles with important variations of shape is guaranteed,
which means that the potential unknown parts of the obstacle
have to be taken into account ; (iv) the control input must
suit the robot kinematics. The SCP evolution thus depends
on the robot motion and on the LiDAR data.

a) Algorithm: The proposed method consists in com-
puting the spiral center point using these three steps :
- Step 1 : After a LiDAR acquisition around the robot, the
closest point from the robot Oc is computed (see figure 2).
- Step 2 : All the LiDAR points within a 2d∗ meters radius
circle centered on Oc are used to compute their barycenter
Ob. This 2d∗ radius circle is taken in order to encompass the
safety distance around the robot (blue circles on figure 2).
- Step 3 : The distance db (respectively, dc) between Ob
(respectively, Oc) and the robot is computed. The SCP Os is
given by the closest point to the robot, that is: Ob if db < dc
and Os if db ≥ dc.

b) SCP motion for different obstacles: The figure 2
shows how the SCP is computed for different kinds of
obstacles during the avoidance. In green are displayed the
LiDAR points, while the blue and red circles respectively
materialize the robot safety distance and the 2d∗ meters
radius circle centered on Oc which is used to compute the
barycenter. Concerning case (a.), the algorithm first computes
Oc which is the orthogonal projection of the robot on the
wall. Second, Ob is computed as the barycenter of all the
points which are within the red circle. In this case, because
only one segment is perceived, Ob coincides with Oc, which
leads to: Os = Ob = Oc. In case (b.), Oc is at the corner of
a squared (thus convex) obstacle. The barycenter Ob then
lies inside the obstacle shape. Consequently, Os = Oc.
Concerning case (c.), similarly to (a.), Oc is obtained on
the wall. The green points lying in the red circles are then
considered to deduce the barycenter and are used to compute
point Ob. This latter being closer to the robot than Oc, it
follows that Os = Ob. Thus, in case of straight or convex
obstacles, Os = Oc and Os follows the edges of the obstacle.
As for concave obstacles, Os = Ob and Os is in the
free space. This nice property anticipates the forthcoming
concave shape of the obstacle, allowing to prevent local
minima.

IV. DESIGN OF THE AVOIDANCE CONTROL LAWS

To perform the avoidance, the robot must first reach the
desired spiral, and then follow it around the obstacle. Two
controllers are proposed. The first one is designed using an
exact input to state linearization method. The second one is
inspired by [18]. As it will be highlighted, the first controller
is efficient at maintaining the robot on the correct trajectory,

a. b. c.

Fig. 2: SCP computation for three kinds of obstacles:
(a.) Straight. - (b.) Convex. - (c.) Concave.

but suffers from singularities. The second one is singularity-
free, and is more suitable during the approach phase.

A. Definition of the errors

To properly avoid obstacles, it is necessary to keep the
robot at a given distance and orientation from them. To do so,
the two following errors must be vanished: eα = α(t)− α∗
and ed = d(t) − d∗(t). In [18], in order to track a spiral
defined by its SCP together with v∗ and α∗, it is proposed
to impose v(t) = v∗ 6= 0.

B. First controller design

This section proposes to design an output feedback con-
trol law which makes the errors eα and ed asymptotically
converge toward zero. As the system is nonlinear, the main
idea is to use an exact input-to-state linearization method
proposed by [19]. The errors dynamics are defined by:{

ėd(t) = v? [cos(α?)− cos(α(t))]

ėα(t) = −ω(t) + v?

d(t) sin(α(t))
(5)

Which can be written as follows:{
ėd(t) = v? [cos(α?)− cos(eα(t) + α?)]

ėα(t) = −ω(t) + v?

ed(t)+d?(t)
sin(eα(t) + α?)

(6)

The main idea is to linearize the error system. To this end,
consider the transformation:

z =

[
z1
z2

]
=

[
ed(t)

v? [cos(α?)− cos(eα(t) + α?)]

]
= T (e) (7)

Notice that T (0) = 0 and in the domain D defined by:

D =
{
(ed, eα) ∈ <2‖ed ∈ <, eα ∈]− α?,−α? + π[} (8)

T defines a diffeomorphism. Applying this transformation to
the error system leads to:{

ż1 = z2
ż2 = v? sin(eα(t) + α?)(−ω(t) + v? sin(eα(t)+α

?)
ed(t)+d?(t)

)

Taking

ω̃(t) = v? sin(eα(t) + α?)(−ω(t) + v? sin(eα(t) + α?)

ed(t) + d?(t)
)

we obtain : {
ż1 = z2
ż2 = ω̃(t)

(9)



where ω̃(t) is a new control law, which has to be designed.
At this stage, as the system (9) is linear, a classical linear
control law:

ω̃(t) = −λ1 z1(t)− λ2 z2(t) (10)

with λ1, λ2 > 0, allows to stabilize asymptotically system
(9). Finally, from (9) and (10), the following control law ω
is obtained:

ω(t) = − ω̃(t)

v? sin(eα(t) + α?)
+
v? sin(eα(t) + α?)

ed(t) + d?(t)
(11)

In the sequel, this control law will be denoted by ωA. Now,
we propose the following theorem:

Theorem 1: Consider two positive scalars, λ1, λ2, the
error system (5) in closed loop with the control law (9),
(9), (10), where z = T (e) in (7) is locally asymptotically
stable.

Proof: It is sufficient to notice that z converges asymp-
totically to zero and z = T (e) defines a local diffeomorphism
with T (0) = 0.

Remark 1: By construction, this controller will maintain
the robot along the desired spiral. λ1 and λ2 are used to tune
the speed of convergence of the closed loop system

Remark 2: The term sin(eα(t)+α
∗) at the denominator of

equation (11) introduces singularities when α(t) = kπ, k ∈
N. This term appears because of the second order derivation
of the error ed(t). Thus, the idea is to define a new error to
obtain a singularity-free controller.

C. Second controller design

The previous analysis has highlighted the need for a
another controller. It has been shown that the singularities
in ωA mainly come from the use of the second derivative
of ed(t) in the controller design. So, the first idea would
be to define an error independent of this term. However, in
this case, the robot reaches a spiral which is not necessarily
the one located at the right distance from the obstacle, as
shown in [18]. Thus, this solution is not suitable because the
so-designed controller does not allow to control the distance
error ed(t). It is then necessary to keep a term depending on
the distance in the error to ensure a safe distance from the
obstacle. We introduce the following hybrid error [18]:

eS(t) = eα(t)− αS(t, d) (12)

eS(t) relies on eα(t), and on a term αS(t, d) depending on
time t and on the current distance d(t) between the robot
and the obstacle. Now that the error to be vanished has been
defined, we focus on the controller design problem. As a first
step, we propose to compute the error derivative with respect
to time to identify the terms involved in its dynamics:

ėS(t) = −ω(t) +
v(t)

d(t)
sin(α(t))− α̇S(t, d) (13)

In order to make eS(t) vanish, we impose an exponential
decrease. It leads to the following controller ωB :

ωB(t) = λSeS(t) +
v(t)

d(t)
sin(α(t))− α̇S(t, d) (14)

where λS is a positive scalar. As we can see, the control input
is singularity-free if the term α̇S(t, d) is singularity-free too.
We propose the following definition for αS(t, d):

αS(t, d) = ε(t)αD (15)

ε(t) is the normalized error between d∗(t) and d(t). It has
been saturated to ±1:

ε(t) = sign(d∗(t)− d(t))min(|d∗(t)− d(t)|, n)
n

(16)

where n ∈ N∗. ε(t) belongs to the domain [0, 1] if
d∗(t) > d(t) or [−1, 0] if d∗(t) < d(t). Indeed, ε(t) has
its norm equal to 1 when ||d(t) − d∗(t)|| is greater than
an arbitrary value n, and equal to 0 when d(t) = d∗(t).
Additionally, αD is defined as:

αD =

{
sign(α∗)× π − α∗ if d∗(0) > d(0)

α∗ if d∗(0) < d(0)
(17)

As shown in [18], this controller is guaranteed to be locally
asymptotically stable once the α(t) overpasses α∗(t).

D. Switching strategy

Two controllers ωA(t) and ωB(t) have been previously
introduced. The ωA(t) controller suffers from a singularity
problem which occurs when α vanishes. This problem might
happen in two cases: (i) During the start of the avoidance
process, if the robot is facing the obstacle ; (ii) During the
avoidance motion, if a sudden variation of the environment
(due to a corner for example) occurs, leading to a sudden
variation of the SCP which in turn brings α close to 0. The
following switching conditions have been chosen to insure a
proper use of ωA(t).

1) Switching conditions: At the beginning of the obstacle
avoidance, the robot uses the second controller ωB(t) to
avoid any singularity problem (see the above case (i)).
As previously mentioned, this controller makes the vehicle
converge towards the spiral. When the error eα(t) drops
below a threshold eswitchα , i.e., when it is guaranteed that
the value of this angle is far enough from the singularity, the
ωA(t) controller is applied to the robot. This reasoning leads
to the following switching conditions:
• If |eα(t)| < eswitchα , use the ωA controller.
• Else use the ωB controller.

Note that eswitchα must be set low enough to keep ωA(t)
within admissible limits. In addition, it allows to express
how far from the singularity α must be before applying
ωA(t) controller. Finally, some chattering may occur between
ωA and ωB when eα(t) ' eswitchα , because of the small
variations of α(t) due to the sensor noise and the environ-
ment evolution. To prevent this phenomenon, the switching
threshold is implemented as an hysteresis switching function.

2) Control law smoothening: When a switch occurs,
a discontinuity in the control inputs may appear. To deal
with this problem, a moving average window has been
implemented to smoothen the resulting control law. Thus,
when the switch between ωA and ωB is activated, the



resulting angular control ωR is computed as follows:

ωR(t) =
i

p
× ωlastA +

p− i
p
× ωB(t) (18)

ωlastA is the last ωA command computed before the switch,
p ∈ N∗ is the number of iterations used to handle the switch
and i ∈ [0, ..., p].

V. NAVIGATION STRATEGY

As explained before, the navigation task consists in
reaching a goal Og whose coordinates are defined by
(xg, yg) in the world frame Fw. To do so, two controllers
are applied to the robot: a Go-To-Goal controller (GTG) in
the free space and the above mentioned Spiral Avoidance
controller (SA) when a collision risk occurs. The first one
is a basic proportional controller correcting the heading
of the robot to reach Og (the orientation problem is not
considered here). A supervisor is responsible for switching
between these two control laws depending on the LiDAR
data. Considering three angles αb, αc and αg such as:

αb = (−→xr,
−−−→
OrOb) αc = (−→xr,

−−−→
OrOc)

αg = (−→xr,
−−−→
OrOg) = atan2(yg − y, xg − x)− θ

We define two guarding conditions (1) and (2) :

(1)

{
dc < dtrc and
| αg − αc |< π/2

(2)

{
db < dtrb and
| αg − αb |< π/2

with dtrc , dtrb two trigger distances defined such as :

dtrc = d∗ + d∗(1− |αc|π/2 )

dtrb = d∗ + d∗(1− |αb|π/2 )

}
if GtG controller

dtrc = 2d∗

dtrb = 2d∗

}
if SA controller

The SA controller is active if at least one of the conditions
(1) or (2) is true. Two cases need to be separated :
• The robot is using the GtG controller : dtrc and dtrb are

between d∗ and 2d∗. These values depend on the angles
with which the robot enters the obstacle neighborhood.
If the obstacle is in front of the robot, the avoidance
should be triggered early (at 2d∗). If it is not the case,
there is no need for such an anticipation.

• The robot is using the SA controller : dtrc and dtrb are
both equal to 2d∗.

In order to avoid any discontinuity during the switch, a mov-
ing average window technique similar to the one presented in
section IV has been implemented. When this switch occurs,
the avoidance sense of motion (SOM) is determined. This
sense of motion is chosen to lead to the shortest avoidance
trajectory around the obstacle, based on the knowledge of
the obstacle the robot has when the avoidance is activated.
Consequently, the values of αb and αg are compared to
choose the adequate sense of motion :
• If αb ≤ αg , the largest part of the obstacle lies on the

robot left hand side. Avoidance must then be performed

following the obstacle right hand side and the SOM is
counter-clockwise.

• If αb > αg , the largest part of the obstacle lies on the
robot right hand side. The SOM is then clockwise.
Remark 3: The SOM is chosen when the switch to
the SA controller occurs, and remains the same until
the GTG controller is applied again. Since the robot
operates at a constant linear velocity v(t) = v∗ 6= 0, it
will keep going around the obstacles until the leaving
condition becomes true. Thus, it is not possible for the
robot to become stuck in a local minima.

Figure 3 exhibits two examples :
• Example (a) : the obstacle is small and spherical, thus
Ob ' Oc. In this case αb < αg and a counter clockwise
sense of motion is chosen.

• Example (b) : several obstacles lie within the LiDAR
sensor range. Because these obstacles are closer from
2d∗ to each others, they are all taken into account to
compute Ob. Consequently, αb < αg , and a clockwise
sense of motion is chosen.

SOM : c.c.w.

SOM : c.w.

(a) (b)

Fig. 3: Choice of the sense of motion

VI. EXPERIMENTS AND RESULTS

The section describes the experimentation of the naviga-
tion of Air-Cobot in an environment with different obstacles
(small obstacles compared to people, car and building). The
performances of the robot in terms of trajectory, errors and
control are analysed.

A. Robot presentation

The robot is equipped with an embedded unit (carrying
the computer), and several sensors. Among these sensors,
three of them will be used for this experiment: an Iner-
tial Measurement Unit (IMU), four incremental sensors on
the wheels (odometry) and two Hokuyo UTM-30LX Laser
Range Finders (LRF), providing a 360◦ information about
the robot environment, at a 0.25◦ angular resolution. Using
an Extended Kalman Filter, the informations from the IMU
and the odometry are merged to compute a resulting pose
information. This pose information is given with respect to
the initial frame of the robot.

B. Experiment of navigation in an cluttered environment

This experiment aims to show the robot ability to move
in an airport-like environment, by detecting and avoiding
obstacles. Experimental tests on a real airport environment



are costly and require a lot of logistic. Thus, an environment
has been designed at LAAS-CNRS in order to reproduce
situations the robot could be facing in an airport area. As
shown in figure 4, starting from its initial position Ow,
the robot has to move toward a specified goal Og whose
coordinates in the initial robot frame are [xg, yg] = [60,−5].
Between the robot and its goal lay several obstacles : a cluster
of small obstacles (trash bins, lamp, tank, etc...) (A), a parked
car (B) and two big buildings (C) and (D) (see figure 4). This
outdoor environment represents the typical area the robot will
need to navigate through.

The linear velocity v∗ has been fixed to 0.25 m.s−1. To
ensure a safe motion taking into account the size of the robot
(roughly 150x80cm), d∗ = 3m is chosen. The gains for the
controllers are set as follows: λ1 = 0.1, λ2 = 0.1, λS =
0.5 and n = 5. The switch threshold eswitchα is selected as
eswitchα = π

12 .

C. Analysis of the Air-Cobot performances

A

C

BD

Fig. 4: Robot trajectory during the real experiment: in
black line: GtG controller, in red line: ωB(t) controller, in
blue line: ωA(t) controller.

The performances of the Air-Cobot are analysed through
its trajectory, the errors, in particular the error in distance
between the robot and the obstacle, and the control law
resulting from different controllers. Figure 4 shows the
trajectory of the robot in its environment. It can be seen
that the robot is able to reach its goal while avoiding all
obstacles: the car, the point obstacles and the building1.
Figure 5-a. and 5-b. exhibits the evolution of the distance
error ed(t) and of the angular error eα(t). Figure 5-c. shows
the evolution of the angular velocity as well as the selected
current controller. The performances analysis is carried out
according to different kind of obstacles as follows:

1) Avoidance of cluster of obstacles (A): As shown by
figure 4, at the beginning, the robot starts at Ow. The area
in front of it being all clear, it immediately heads toward
the goal Og using the GtG controller. At t = 16s, the
avoidance is triggered. Using the conditions explained in

1The full video of the experiment can be found at the following address:
http://homepages.laas.fr/cadenat/ECC19/ECC19AircobotExperiment.mp4

section V, a counter-clockwise SOM is selected, because
most of the visible obstacles is on the robot left hand side.
Initially, there is a distance error ed(t) ' 1.5m, due to the
trigger conditions. Because the robot is nearly facing the
first obstacle of the cluster (A), there is also an angular
error eα(t) ' −1.2rad. This angular error is greater than
eswitchα = π/12 ' 0.26rad. Consequently, according to
condition IV-D.1, the second controller ωB is used to start
the avoidance. At t ' 24s, the angular error starts to be
low enough to switch to the first controller ωA. The switch
occurs without any visible discontinuity on the control law
thanks to equation (18). From t = 16s to t = 150s, the robot
avoids the succession of small obstacles that are in the cluster
(A). The robot then switches several times between the two
avoidance controllers in order to bypass each small obstacles.
The cluster (A) being a group of close small obstacles, it can
be seen on figure 4 that, thanks to the choice of the SCP, the
robot is able to avoid this cluster as a whole: it does not try to
enter the gap between each obstacle, thus avoiding the risk of
getting stuck in a local minima. Because the environment is
unforeseen and the SCP is evolving with it, the errors ed(t)
and eα(t) are variating around 0. At t ' 150s, the robot
considers that the cluster (A) is avoided, and goes toward
the goal using the GtG controller.

2) Avoidance of obstacle (B): At t ' 164s, the robot en-
counters the car (B). It decides a clockwise SOM, and starts
using the ωB controller before switching to the ωA controller.
The robot could have avoided (B) counter-clockwise through
the gap between (B) and (D), but because this gap was
smaller than 2d∗, safety was not guaranteed. This highlights
the interest of using Og to determine the SCP. Because the
distance between (B) and (D) was small enough, a part of
(D) was taken for the computation of Og , moving it to the
robot left hand side, and leading to a clockwise SOM. From
t ' 192s and t ' 225s, ωA controller is used and is able to
bring and keep the errors close to 0. At t ' 227s, the car is
avoided, and the robot goes back to the GtG controller until
it encounters the building (C) at t ' 235s.

3) Avoidance of obstacle (C) and end of the experiment:
At this time, the robot turns around the corners. Finally, it
switches to the GtG controller and moves toward the goal.

This experiment validates several desired behaviors:
• Safety: As shown by figure 5, the distance error ed(t)

has never dropped below -1.5m, which means that Air-
Cobot has not gone closer than 1.5 meters from any
obstacle. In spite of the unknown and highly-variable
environment, the robot has succeeded in maintaining a
safe distance to each obstacle. Additionally, the avoid-
ance is triggered at a distance greater than d∗, in order
to have enough time to turn before reaching d = d∗.

• Low sensitivity to the obstacles size or shape: Air-
Cobot was able to avoid successfully a large cluster
of obstacles, a car, and a large building. The robot
can bypass inner and outer corners, cluster of several
obstacles, as well as large walls. It is then able to deal
with different kinds of objects.

• Relevant navigation strategy: The SOM is determined
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Fig. 5: a. Angular error (in rad) – b. Distance error (in meters) – c. Angular velocity and controller used. For the controller
plot : GtG controller = 0.5; ωB controller = 1 and ωA controller = 0.75.

to produce the shortest path ensuring safety, taking into
account the knowledge the robot has from the environ-
ment at the decision instant. Additionally, the robot does
not extend the avoidance further than necessary. As soon
as the robot considers the front area as free, it resumes
to a GtG controller. Finally, by choosing a new SOM
each time the SA controller is activated, and keeping
it constant during the avoidance, it prevents the robot
from being stuck in a local minima.

VII. CONCLUSION

This paper was focused on the problem of obstacle avoid-
ance. It has proposed a novel control strategy sufficiently
generic to deal with a large variety of obstacles and effi-
cient enough to guarantee non collision and avoid classi-
cal problems such as local minima, singularities, etc. This
strategy extends previous works and consists in defining and
following a suitable spiral around the encountered obstacles
during the mission. Two main contributions are at the core of
this paper: (i) the continuous update of the spiral parameters
by defining a suitable barycenter able to guarantee smooth
trajectory and control inputs; and (ii) the coupling of two
sensor-based controllers allowing to track the spiral while
avoiding singularities. A complete navigation strategy has
also been proposed by switching between the spiral based
avoidance technique and the dedicated go to goal controller
thanks to adequate guarding conditions. The approach has
been experimented in LAAS on our Air-Cobot system. The
obtained results have shown its relevance and interest for the
considered mission.

However, the proposed approach is still limited to unfore-
seen static or semi-static objects. Therefore, our next step is
to extend it to dynamic obstacles.
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