G. Wang, Mechanochemical Organic Synthesis, Chem. Soc. Rev, vol.42, pp.7668-7700, 2013.

S. M. Hsu, J. Zhang, and Z. Yin, The Nature and Origin of Tribochemistry, Tribol. Lett, vol.13, pp.131-139, 2002.

E. Boldyreva, Mechanochemistry of Inorganic and Organic Systems: What Is Similar, What Is Different?, Chem. Soc. Rev, vol.42, pp.7719-7738, 2013.

W. Tysoe, On Stress-Induced Tribochemical Reaction Rates, Tribol. Lett, p.48, 2017.

J. I. Zink and . Triboluminescence, Acc. Chem. Res, vol.11, pp.289-295, 1978.

R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Angew. Chem., Int. Ed. Engl, vol.8, pp.781-853, 1969.

C. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos, J. Baudry et al., Biasing Reaction Pathways with Mechanical Force, Nature, vol.446, pp.423-427, 2007.

J. Ribas-arino, M. Shiga, and D. Marx, Understanding Covalent Mechanochemistry, Angew. Chem., Int. Ed, vol.48, pp.4190-4193, 2009.

J. Ribas-arino, D. C. Marx, and . Mechanochemistry, Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics, Chem. Rev, vol.112, pp.5412-5487, 2012.

M. A. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol, and P. Machado, Solvent-Free Heterocyclic Synthesis, Chem. Rev, vol.109, pp.4140-4182, 2009.

A. Minsky, Y. Cohen, and M. Rabinovitz, Novel Polycyclic Dianions: Metal Reduction of Nitrogen Heterocycles, J. Am. Chem. Soc, vol.107, pp.1501-1505, 1985.

K. Kumamoto, H. Iida, H. Hamana, H. Kotsuki, and K. Matsumoto, Are Multicomponent Strecker Reactions of Diketones with Diamines Under High Pressure Amenable to Heterocyclic Synthesis?, Heterocycles, vol.66, pp.675-681, 2005.

O. A. Farus, K. P. Balashev, M. A. Ivanov, T. A. Tkacheva, and A. G. Panova, Preparation and Spectroscopic and Electrochemical Properties of Complexes of dibenzo-and Dipyrido-substituted 1,4-Diazines, Russ. J. Gen. Chem, vol.76, pp.311-316, 2006.

K. Niknam, M. A. Zolfigol, Z. Tavakoli, and Z. Heydari, Metal Hydrogen Sulfates M(HSO 4 ) n : As Efficient Catalysts for the Synthesis of Quinoxalines in EtOH at Room Temperature, J. Chin. Chem. Soc, vol.55, pp.1373-1378, 2008.

K. Niknam, D. Saberi, and M. Mohagheghnejad, Silica Bonded SSulfonic Acid: A Recyclable Catalyst for the Synthesis of Quinoxalines at Room Temperature, Molecules, vol.14, 1915.

A. Zare, A. Hasaninejad, A. Parhami, A. R. Moosavi-zare, F. Khedri et al., Ionic Liquid 1-Butyl-3-methylimidazolium Bromide ([bmim]Br): A Green and Neutral Reaction Media for the Efficient, Catalyst-free Synthesis of Quinoxaline Derivatives, J. Serb. Chem. Soc, vol.75, pp.1315-1324, 2010.

F. Rashedian, D. Saberi, and K. Niknam, Silica-Bonded N-Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines, 1,8-Dioxo-octahydroxanthenes and Quinoxalines, J. Chin. Chem. Soc, vol.57, pp.998-1006, 2010.

R. K. Sharma and C. Sharma, Zirconium(IV)-modified Silica Gel: Preparation, Characterization and Catalytic Activity in the Synthesis of Some Biologically Important Molecules, Catal. Commun, vol.12, pp.327-331, 2011.

L. Carlier, M. Baron, A. Chamayou, and G. Couarraze, Use of Cogrinding as a Solvent-free Solid State Method to Synthesize Dibenzophenazines, Tetrahedron Lett, pp.52-4686, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01631590

H. V. Chavan, L. K. Adsul, and B. P. Bandgar, Polyethylene Glycol in Water: A Simple, Efficient and Green Protocol for the Synthesis of Quinoxalines, J. Chem. Sci, vol.123, pp.477-483, 2011.

B. Karami, S. Khodabakhshi, and M. Nikrooz, Synthesis of AzaPolycyclic Compounds: Novel Phenazines and Quinoxalines Using Molybdate Sulfuric Acid (MSA), Polycyclic Aromat. Compd, pp.31-97, 2011.

H. M. Bachhav, S. B. Bhagat, and V. N. Telvekar, Efficient Protocol for the Synthesis of Quinoxaline, Benzoxazole and Benzimidazole Derivatives Using Glycerol as Green Solvent, Tetrahedron Lett, pp.52-5697, 2011.

B. Karami and S. Khodabakhshi, A Facile Synthesis of Phenazine and Quinoxaline (new 1,4-benzo diazine) Derivatives Using Magnesium Sulfate Heptahydrate as a Catalyst, J. Serb. Chem. Soc, pp.76-1191, 2011.

H. Alinezhad, M. Tajbakhsh, F. Salehian, and P. Biparva, Synthesis of Quinoxaline Derivatives Using TiO 2 Nanoparticles as an Efficient and Recyclable Catalyst, Bull. Korean Chem. Soc, vol.32, pp.3720-3725, 2011.

A. Kumbhar, S. Kamble, M. Barge, G. Rashinkar, and R. Salunkhe, Brønsted Acid Hydrotrope Combined Catalyst for Environmentally Benign Synthesis of Quinoxalines and Pyrido[2,3-b]-pyrazines in Aqueous Medium, Tetrahedron Lett, vol.53, 2012.

A. Hasaninejad, M. Shekouhy, and A. Zare, Silica nanoparticles Efficiently Catalyzed Synthesis of Quinolines and Quinoxalines, Catal. Sci. Technol, 2012.

B. Karami, S. Khodabakhshi, and M. Nikrooz, A Modified Synthesis of Some Novel Polycyclic Aromatic Phenazines and Quinoxalines by Using the Tungstate Sulfuric Acid (TSA) as a Reusable Catalyst Under Solvent-free Conditions, J. Chin. Chem. Soc, vol.59, pp.187-192, 2012.

B. Karami, R. Rooydel, and S. Khodabakhshi, A Rapid Synthesis of Some 1,4-aryldiazines by the Use of Lithium Chloride as an Effective Catalyst, Acta Chim. Slov, vol.59, pp.183-188, 2012.

S. Khodabakhshi and B. Karami, A Rapid and Eco-friendly Synthesis of Novel and Known Benzopyrazines Using Silica Tungstic Acid (STA) as a New and Recyclable Catalyst, Catal. Sci. Technol, vol.2, 1940.

R. Soleymani, N. Niakan, S. Tayeb, and S. Hakimi, Synthesis of Novel Aryl Quinoxaline Derivatives by New Catalytic Methods, Orient. J. Chem, vol.28, pp.687-701, 2012.

S. Habibzadeh, 3-Dibromo-5,5-dimethylhydantoin (DBH): A Novel and Efficient Catalyst for the Synthesis of Quinoxaline Derivatives Under Solvent-free Conditions, Org. Chem.: Indian J, vol.1, pp.473-476, 2012.

S. Sajjadifar, M. A. Zolfigol, S. A. Mirshokraie, S. Miri, O. Louie et al., Facile Method of Quinoxaline Synthesis Using Phenol as a New, Efficient and Cheap Catalyst at Room Temperature, Am. J. Org. Chem, vol.2, pp.97-104, 2012.

H. K. Kadam, S. Khan, R. A. Kunkalkar, and S. G. Tilve, Graphite Catalyzed Green Synthesis of Quinoxalines, Tetrahedron Lett, vol.54, pp.1003-1007, 2013.

F. Shirini, S. Akbari-dadamahaleh, A. Mohammad-khah, A. Aliakbar, and . Husk, A Mild, Efficient, Green and Recyclable Catalyst for the Synthesis of 12-Aryl-8,9, C. R. Chim, vol.10, pp.207-216, 2013.

M. Jafarpour, A. Rezaeifard, M. Ghahramaninezhad, and T. Tabibi, Reusable ?-MoO 3 Nanobelts Catalyzes the Green and Heterogeneous Condensation of 1,2-Diamines with Carbonyl Compounds, New J. Chem, vol.37, 2013.

A. Mulik, D. Chandam, P. Patil, D. Patil, S. Jagdale et al., Proficient Synthesis of Quinoxaline and Phthalazinetrione Derivatives Using [C 8 dabco]Br Ionic Liquid as Catalyst in Aqueous Media, J. Mol. Liq, pp.179-104, 2013.

S. M. Vahdat and S. Baghery, Sulfonated Organic Salts: Recyclable Green Catalysts for the Facile and Rapid Route Synthesis of 2,3-Dissubstituted Quinoxaline Derivatives in Water, World Appl. Sci. J, vol.21, pp.394-401, 2013.

B. Karami and S. Khodabakhshi, A Novel and Simple Synthesis of Some New and Known Dibenzo Phenazine and Quinoxaline Derivatives Using Lead Dichloride, J. Chil. Chem. Soc, vol.58, pp.1655-1658, 2013.

S. M. Vahdat and S. Baghery, A Green and Efficient Protocol for the Synthesis of Quinoxaline, Benzoxazole and Benzimidazole Derivatives Using Heteropolyanion-Based Ionic Liquids: As a Recyclable Solid Catalyst, Comb. Chem. High Throughput Screening, vol.16, pp.618-627, 2013.

S. Sajjadifar, M. A. Zolfigol, G. Chehardoli, S. Miri, P. Moosavi et al., A Practical Efficient and Rapid Synthesis of New Quinoxalines Catalyzed by Citric Acid as a Trifunctional Brønsted Acid at Room Temperature Under Green Condition, Int. J. ChemTech Res, issue.5, pp.422-429, 2013.

B. Sadeghi and F. Karimi, ZnO Nanoparticles as an Efficient and Reusable Catalyst for Synthesis of Quinoxaline Under Solvent Free Condition, Iran. J. Catal, vol.3, pp.1-7, 2013.

M. Jafarpour, E. Rezapour, M. Ghahramaninezhad, and A. Rezaeifard, A Novel Protocol for Selective Synthesis of Monoclinic Zirconia Nanoparticles as a Heterogeneous Catalyst for Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds, New J. Chem, vol.38, pp.676-682, 2014.

K. Zhang, Y. Dai, X. Zhang, and Y. Xiao, Synthesis and Photophysical Properties of Three Ladder-type Chromophores with Large and Rigid Conjugation Structures, Dyes Pigm, vol.102, pp.1-5, 2014.

F. Jafari and S. Khodabakhshi, MnSO 4 .H 2 O: A Highly Efficient and Inexpensive Catalyst for the Synthesis of Benzo-2-pyrones and Benzopyrazines, Bulg. Chem. Commun, vol.46, pp.36-42, 2014.

S. Sajjadifar, E. R. Nezhad, and E. Khosravani, Synthesis of Quinoxaline Derivatives Using Sulfonic Acid Functionalized Imidazolium Salts as Highly Efficient and Reusable Brønsted Acidic Ionic Liquids Catalysts Under Solvent-free Conditions, Chem. Sci. Trans, vol.3, pp.292-302, 2014.

S. Samanta, A. Das-gupta, A. K. Mallik, and . Expedient, Onwater, Synthesis of Quinoxalines. Monatsh. Chem, vol.145, pp.1669-1673, 2014.

M. Tajbakhsh, M. Bazzar, S. F. Ramzanian, and M. Tajbakhsh, Sulfonated Nanoclay Minerals as a Recyclable Eco-friendly Catalyst for the Synthesis of Quinoxaline Derivatives in Green Media, Appl. Clay Sci, pp.88-89, 2014.

M. Jafarpour, G. Gorzin, and A. Rezaeifard, Green Condensation of Various 1,2-diamine and 1,2-dicarbonyl Compounds Catalyzed by Reusable Zirconium (IV) Tetradentate Schiff Base Complex, Curr. Catal, vol.3, pp.260-265, 2014.

S. Sajjadifar, S. Miri, and . Green, Synthesis of Quinoxaline Derivatives Using Phthalic Acid as Difunctional Brønsted Acid at Room Temperature, Int. J. ChemTech Res, vol.6, pp.5433-5440, 2014.

L. Carlier, M. Baron, A. Chamayou, and G. Couarraze, Greener Pharmacy Using Solvent-free Synthesis: Investigation of the Mechanism in the Case of Dibenzophenazine, Powder Technol, vol.240, pp.41-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01631584

P. F. De-oliveira, N. Haruta, A. Chamayou, B. Guidetti, M. Baltas et al., Comprehensive Experimental Investigation of Mechanically Induced 1,4-Diazines Synthesis in Solid State, Tetrahedron, vol.73, 2017.

N. Haruta, T. Sato, K. Tanaka, and M. Baron, Reaction Mechanism in the Mechanochemical Synthesis of Dibenzophenazine: Application of Vibronic Coupling Density Analysis, Tetrahedron Lett, vol.54, pp.5920-5923, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01632791

T. Sato, K. Tokunaga, and K. Tanaka, Vibronic Coupling in Naphthalene Anion: Vibronic Coupling Density Analysis for Totally Symmetric Vibrational Modes, J. Phys. Chem. A, vol.112, pp.758-767, 2008.

T. Sato, K. Tokunaga, N. Iwahara, K. Shizu, and K. Tanaka, The Jahn?Teller Effect: Fundamentals and Implications for Physics and Chemistry

H. Koppel, D. R. Yarkony, and H. Barentzen, Springer Series in Chemical Physics, vol.97, pp.99-129, 2009.

K. Fukui, T. Yonezawa, and H. Shingu, A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J. Chem. Phys, vol.20, pp.722-725, 1952.

K. Fukui, Recognition of Stereochemical Paths by Orbital Interaction, Acc. Chem. Res, vol.4, pp.57-64, 1971.

R. G. Parr and W. Yang, Density Functional Approach to the Frontier-electron Theory of Chemical Reactivity, J. Am. Chem. Soc, vol.106, pp.4049-4050, 1984.

P. Geerlings, F. De-proft, and W. Langenaeker, Conceptual Density Functional Theory, Chem. Rev, vol.103, pp.1793-1874, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01187515

T. Sato, N. Iwahara, N. Haruta, and K. Tanaka, C 60 Bearing Ethylene Moieties, Chem. Phys. Lett, vol.531, pp.257-260, 2012.

N. Haruta, T. Sato, and K. Tanaka, Chemical Reactivity in Nucleophilic Cycloaddition to C 70 : Vibronic Coupling Density and Vibronic Coupling Constants as Reactivity Indices, J. Org. Chem, vol.77, pp.9702-9706, 2012.

N. Haruta, T. Sato, N. Iwahara, and K. Tanaka, Vibronic Couplings in Cycloadditions to Fullerenes, J. Phys.: Conf. Ser, vol.428, p.12003, 2013.

T. Sato, M. Uejima, N. Iwahara, N. Haruta, K. Shizu et al., Vibronic Coupling Density and Related Concepts, J. Phys.: Conf. Ser, vol.428, p.12010, 2013.

N. Haruta, T. Sato, and K. Tanaka, Regioselectivity in Multiple Cycloadditions to Fullerene C 60 : Vibronic Coupling Density Analysis, Tetrahedron, vol.70, pp.3510-3513, 2014.

N. Haruta, T. Sato, and K. Tanaka, Reactivity of Endohedral Metallofullerene La 2 @C 80 in Nucleophilic and Electrophilic Attacks: Vibronic Coupling Density Approach, J. Org. Chem, vol.80, pp.141-147, 2015.

N. Haruta, T. Sato, and K. Tanaka, Reactivity Index for Diels? Alder Cycloadditions to Large Polycyclic Aromatic Hydrocarbons Using Vibronic Coupling Density, Tetrahedron Lett, vol.56, pp.590-594, 2015.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.