Force-Induced Dissolution of Imaginary Mode in Mechanochemical Reaction: Dibenzophenazine Synthesis
Naoki Haruta, Paulo Filho Marques De Oliveira, Tohru Sato, Kazuyoshi Tanaka, Michel Baron

To cite this version:
Naoki Haruta, Paulo Filho Marques De Oliveira, Tohru Sato, Kazuyoshi Tanaka, Michel Baron. Force-Induced Dissolution of Imaginary Mode in Mechanochemical Reaction: Dibenzophenazine Synthesis. Journal of Physical Chemistry C, American Chemical Society, 2019, 123 (35), pp.21581-21587. 10.1021/acs.jpcc.9b05582. hal-02264273

HAL Id: hal-02264273
https://hal-mines-albi.archives-ouvertes.fr/hal-02264273
Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Force-Induced Dissolution of Imaginary Mode in Mechanochemical Reaction: Dibenzophenazine Synthesis

Naoki Haruta,‡* Paulo Filho Marques de Oliveira,⊥‡ Tohru Sato,⊥⊥ Kazuyoshi Tanaka,‡* and Michel Baron∥

1Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyu-ku, Kyoto 606-8103, Japan
2Department of Molecular Engineering, Graduate School of Engineering and 3Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
3Université de Toulouse, IMT Mines Albi, UMR CNRS 5302, Centre RAPSODEE, Campus Jarlard, 81013 Albi Cedex 09, France
4Institute of Chemistry, The University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, SP, Brazil

ABSTRACT: Dibenzophenazine was recently synthesized mechanochemically at a high yield. On the basis of experimental kinetics and theoretical vibronic coupling density analysis, this efficient synthesis has been expected to involve two types of reaction mechanisms. In this study, the reaction pathways, including the catalytic effect of water, are determined using density functional theory. The lowest-energy path involves stepwise formation of two C–N bonds, and a concerted path with a higher barrier is also found. The highest-energy point along the latter path is not a transition state but a higher-order saddle point. Therefore, the concerted path is not generally accepted as a reaction path. However, even a small mechanical force dissolves imaginary frequencies so that the higher-order saddle point is changed to a transition state. This mechanical dissolution of imaginary frequencies is a new feature of theoretical mechanochemistry.

1. INTRODUCTION

Mechanochemistry,1,2 is the study of chemical phenomena using mechanical actions such as grinding. In particular, mechanochemistry related to friction is well known as tribochemistry.3–5 Friction sometimes causes mechanical excitation on the order of eV, leading to luminescence called triboluminescence.6 Such mechanical excitation can also drive chemical reactions. Mechanochemical reactions have attracted much attention recently because of their eco-friendliness as no solvent is needed. In conventional reactions, thermal excitation is a driving force that overcomes reaction barriers. However, mechanochemical reactions are not always conventional thermal reactions. Mechanochemical conditions sometimes cause unexpected chemical reactions. For example, Hickenboth et al. have reported that the Woodward–Hoffmann rule7 can be broken in mechanochemistry. To explain these unique features of mechanochemistry, Ribas-Arino et al. have proposed that mechanical force modifies the potential energy surface and changes the reaction barriers.8–10

One typical example of mechanochemical reactions is the synthesis of dibenzophenazine (DBPZ), a well-known quinoxaline-containing molecule (see Figure 1). The quinoxaline structure is an important building block of organic semiconductors and pharmacologically active compounds.11 DBPZ has been synthesized in various ways.12–50 Conventional syntheses require both a solvent and a catalyst. More specifically, Bronsted acids,12,15,16,18,22,26,28,30,33,44 metal oxide nanoparticles,16,18,19,22,25,27,28,30,36,42,43 and ionic liquids17,37,38,40,46 have been used. Recently, however, Carlier et al. have synthesized DBPZ using only mechanical ball-milling15 without any solvent or catalyst and have obtained a very high yield (>99%).

To investigate the efficient mechanochemical synthesis of DBPZ, experimental and theoretical studies have been reported.51–53 The yield obtained 24 h after mechanical grinding is greater than that obtained immediately after grinding.11 That is, the product is generated even after grinding is complete. The yield obtained immediately after grinding is proportional to the grinding time, whereas the yield obtained 24 h after grinding is not. In addition, the reaction...
heat flow has two peaks, that is, early and delayed ones. These experimental facts suggest the possibility of different reaction mechanisms.

In our previous work, DBPZ synthesis was theoretically investigated using vibronic coupling density (VCD) analysis. One of the reactants, \(\sigma \)-phenylenediamine (PDA), has a high-lying highest occupied molecular orbital (HOMO). Another reactant, 9,10-phenanthrenequinone (PQ), has a low-lying lowest unoccupied molecular orbital (LUMO). According to the frontier orbital theory, the regioselectivity should be indicated by these frontier orbitals. However, the frontier orbital theory fails to predict its regioselectivity.

The frontier orbital theory takes into account only stabilization due to charge-transfer (orbital) interaction and does not consider any molecular deformation. In contrast, the VCD theory takes into account stabilization due to molecular deformation. The VCD can be regarded as a reactivity index in the framework of the conceptual density functional theory (DFT). VCD analysis has identified reactive regions in fullerenes, nanographenes, and so on, for which the frontier orbital theory is not effective. We have applied VCD analysis to PDA and PQ and successfully identified their reactive sites.

PDA has two conformers with \(C_2 \) and \(C_3 \) symmetries depending on the conformation of its two pyramidal amino groups.\(C_2 \) PDA is the most stable one, whereas \(C_3 \) PDA is unstable with one imaginary frequency. According to VCD analysis, \(C_2 \) PDA favors stepwise formation of \(C-N \) bonds between the two reactants, whereas \(C_3 \) PDA favors concerted formation. Because the mechanical force must increase the amount of \(C_3 \) PDA during grinding, the concerted reaction is considered to be possible under mechanochemical conditions.

Although VCD analysis predicts both stepwise and concerted mechanisms, these reaction pathways and their energy barriers, which are indispensable for quantitative and even qualitative discussion, have not been determined to date. Our goal in this study is to identify all the transition states and their reaction barriers and then propose reaction pathways under mechanochemical conditions from a theoretical viewpoint. In addition, more importantly, a novel concept of mechanical modification of a reaction pathway is also proposed: force-induced dissolution of imaginary frequencies.

2. COMPUTATIONAL DETAILS

We performed geometry optimizations and vibrational analyses of all the reactants, intermediates, transition states, and products using DFT calculations. We calculated the intrinsic reaction coordinates to confirm the validity of the obtained transition states. We also calculated the internal energies, enthalpies, and Gibbs free energies of all the species at 298.15 K and 1.0000 atm to examine the thermochemistry. All the energies presented in this paper include zero-point vibrational energy corrections. These DFT calculations were performed at the B3LYP/6-311G(d,p) level of theory using the Gaussian 09 program.

3. RESULTS AND DISCUSSION

3.1. Reaction Pathways. DBPZ synthesis consists of two \(C-N \) bond formations and two dehydration processes. Figure 2 shows the obtained energy diagram of the reaction pathways and their activation energies. The structures of the reactants and products, intermediates, and transition states are shown in Figures 3–5, respectively. The lowest-energy reaction path was found to be the stepwise path, which involves successive formation of two \(C-N \) bonds. In the stepwise path, both the first and second \(C-N \) bond formations have almost the same high reaction barriers: 161.8 and 141.4 kJ mol\(^{-1} \), respectively. Furthermore, the subsequent dehydration process requires higher energy than these \(C-N \) bond formations. Thus, the first dehydration process seems to be the rate-determining step. Note, however, that a water molecule produced in the same or a neighboring system catalyzes both the first and second dehydration processes, as discussed later. The catalytic water greatly reduces the activation energies.
In addition to the stepwise path, a concerted one was also identified; it involves simultaneous formation of two C−N bonds. In the concerted path, the formation of two C−N bonds has the highest energy barrier. Because the subsequent dehydration processes have much lower barriers, they are considered to occur rapidly. Although the concerted path has a higher barrier than the stepwise path, the difference is only 184.9 kJ mol\(^{-1}\), which can be overcome by mechanical excitation (on the order of eV)\(^{6}\) but not by thermal excitation.

Regarding the concerted path, we should note that PDA, TS1', and I2'' have \(C_1\) symmetry with the imaginary frequencies of \(a''\) modes, which are symmetry-lowering modes. Thus, the concerted path is not generally accepted as a reaction path (see Figure 6) because a transition state should have only one imaginary frequency by definition. Later, we show that the instability of this path can be resolved by applying an external mechanical force.

Table 1 shows the calculated heat of reaction. This reaction is exothermic and produces a large amount of heat because of aromatization and hydrogen-bond formation between DBPZ and two water molecules (see Figure 3d). These hydrogen bonds stabilize the final product by 51.4 kJ mol\(^{-1}\). The energy of hydrogen-bond formation was found to account for \(\sim 40\%\) of the overall heat of reaction. The rest can be attributed mainly to aromatization.

Table 1. Obtained Heat of Reaction\(^{**}\)

<table>
<thead>
<tr>
<th>System</th>
<th>(\Delta E) (kJ mol(^{-1}))</th>
<th>(\Delta U) (kJ mol(^{-1}))</th>
<th>(\Delta H) (kJ mol(^{-1}))</th>
<th>(\Delta G) (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>two hydrogen</td>
<td>−51.4</td>
<td>−49.1</td>
<td>−54.1</td>
<td>18.7</td>
</tr>
<tr>
<td>bonds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aromatization</td>
<td>−70.3</td>
<td>−65.3</td>
<td>−62.8</td>
<td>−92.9</td>
</tr>
<tr>
<td>overall</td>
<td>−121.7</td>
<td>−114.4</td>
<td>−116.9</td>
<td>−74.2</td>
</tr>
</tbody>
</table>

\(\Delta E, \Delta U, \Delta H,\) and \(\Delta G\) denote the change in electronic and nuclear–nuclear repulsive energies, change in internal energy, change in enthalpy, and change in Gibbs free energy, respectively, at 298.15 K and 1.0000 atm.

Figure 5. Optimized structures of (a) TS1, (b) TS2, (c) TS1', (d) TS3, and (e) TS4. The red dashed line indicates a hydrogen bond. Note that TS1' has \(C_1\) symmetry with the imaginary frequencies of \(a''\) modes as well as the \(a'\) reaction mode.

Figure 6. Schematic representation of stepwise and concerted pathways on potential energy surface. A concerted path with multiple imaginary frequencies is not generally accepted as a reaction path. However, an external force can dissolve imaginary frequencies.

Figure 7. Energy diagram showing the catalytic effect of water. The energy of an additional water molecule was properly subtracted. Although water catalysis requires breaking of a hydrogen bond, the bond energy is sufficiently small (\(\sim 25.7\) kJ mol\(^{-1}\)), as shown in Table 1. Values adjacent to transition states indicate activation energies in kJ mol\(^{-1}\).

Figure 8. Optimized structures of (a) I4, (b) TS3', (c) I5, (d) I6, (e) TS4', and (f) DBPZ with two water molecules produced by water catalysis. The red dashed lines indicate hydrogen bonds.
chemical conditions, mechanical action can generate sufficient energy (on the order of eV) locally. Therefore, both the stepwise and concerted paths are possible during grinding. After grinding, the energy difference between the two paths cannot be ignored. The stepwise path, with its lower barriers, must be favored. However, even these barriers are too high. In solid-state reactions, energy transfer can occur among neighboring reactants, intermediates, and products. Therefore, the supplied mechanical energy and large heat of reaction can be reused to conduct the reaction successively. This is in contrast to reactions in a solution, in which solvents separate reactant molecules from each other. We recently reported a detailed analysis of the experimentally observed reaction heat flow and kinetics that supports the findings of the present study.32

3.3. Removal of Instability by External Force. The obtained concerted path has the imaginary frequencies of the a" modes, which are symmetry-lowering modes. They originate from the instability of Cs, PDA (see Figure 9a). Consequently, the concerted path is not generally accepted as a reaction path. We are interested in whether the instability is conserved under mechanical conditions.

![Figure 9](image)

Table 2. PDAs Deformed by the Totally Symmetric Deformation Mode and the Frequencies of the a"(1) Normal Mode

<table>
<thead>
<tr>
<th>Deformation Mode</th>
<th>Frequency (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>totally symmetric</td>
<td>01 2 3 4</td>
</tr>
</tbody>
</table>

Table 2. PDAs Deformed by the Totally Symmetric Deformation Mode and the Frequencies of the a"(1) Normal Mode

The optimized geometry of Cs, PDA is the reference geometry. Its symmetry. That is, the deformed Cs, PDA is always fully optimized with respect to the a" mode.

The strength of the applied force can be estimated using a potential gradient δE/δQb, where E denotes the total electronic energy with the nuclear–nuclear potentials, and Qb is a mass-weighted coordinate of the a" deformation mode. As shown in Figure 10a, the strength of the force is proportional to the deformation. Figure 10b shows that increasing the force makes the curvature of the a" mode positive. The positive curvature is equivalent to a real frequency. A conceptual illustration is shown in Figure 10c.

![Figure 10](image)

This result shows that if Cs, PDA is mechanically deformed by the a" deformation mode, then the a" instability in the concerted path is resolved. That is, the mechanical action leads to a new reaction path. In practical terms, this effect could be attributed to the interfacial stacking of microcrystalline grains of PDA and PQ under mechanical pressure, as illustrated in Figure 10d. This effect is not possible under conventional thermal conditions. The mechanical force necessary to remove the instability is small (∼10⁻¹⁴ a.u.). Accordingly, it does not significantly change the obtained energy barriers of the concerted path.

3.4. Origin of Instability Removal. To elucidate the origin of the force-induced dissolution of the imaginary mode, a simple model potential was constructed, which depends only on two mass-weighted normal coordinates, Qα and Qβ. In this study, the two coordinates can be regarded as the normal coordinate of the a" imaginary mode and a" deformation coordinate, respectively. The model potential E is given by
The reaction pathways in mechanochemical synthesis of DBPZ were investigated using DFT. According to our computational results, the minimum-energy path involves stepwise C–N bond formations between two reactants. In addition, a concerted path with a higher energy barrier was also found. The latter is generally not accepted as a reaction path because the highest-energy point along the path is not a transition state but a higher-order saddle point. However, even a small mechanical force dissolves the imaginary frequencies so that the higher-order saddle point is changed into a transition state. The mechanical force identified here is one example of how to make the imaginary frequencies real. To find such forces in a mechanochemical reaction may become a central problem in theoretical mechanochemistry.

4. CONCLUSIONS

The reaction pathways in mechanochemical synthesis of DBPZ were investigated using DFT. According to our computational results, the minimum-energy path involves stepwise C–N bond formations between two reactants. In addition, a concerted path with a higher energy barrier was also found. The latter is generally not accepted as a reaction path because the highest-energy point along the path is not a transition state but a higher-order saddle point. However, even a small mechanical force dissolves the imaginary frequencies so that the higher-order saddle point is changed into a transition state. The mechanical force identified here is one example of how to make the imaginary frequencies real. To find such forces in a mechanochemical reaction may become a central problem in theoretical mechanochemistry.

−

