J. Terrapon-pfaff, C. Dienst, J. Koenig, and W. Ortiz, A Cross-Sectional Review: Impacts and Sustainability of Small-Scale Renewable Energy Projects in Developing Countries. Renewable Sustainable Energy Rev, vol.40, pp.1-10, 2014.

A. M. Gonza?ez, H. Sandoval, P. Acosta, and F. Henao, On the Acceptance and Sustainability of Renewable Energy Projects-a Systems Thinking Perspective. Sustainability, vol.8, p.1171, 2016.

P. Basu, Gasification Theory. Biomass Gasification, Pyrolysis and Torrefaction, 2013.

J. D. Martínez, K. Mahkamov, R. V. Andrade, and E. E. Silva-lora, Syngas Production in Downdraft Biomass Gasifiers and Its Application Using Internal Combustion Engines, Renewable Energy, vol.38, issue.1, pp.1-9, 2012.

Y. Shen, Chars as Carbonaceous Adsorbents/Catalysts for Tar Elimination during Biomass Pyrolysis or Gasi Fi Cation. Renewable Sustainable Energy Rev, vol.43, pp.281-295, 2015.

, Figure 7. Total CO and CO 2 desorption vs S BET of chars at the same gasification conditions

D. Wang, W. Yuan, and W. Ji, Char and Char-Supported Nickel Catalysts for Secondary Syngas Cleanup and Conditioning, Appl. Energy, vol.88, issue.5, pp.1656-1663, 2011.

D. Dias, N. Lapa, M. Bernardo, D. Godinho, I. Fonseca et al., Properties of Chars from the Gasification and Pyrolysis of Rice Waste Streams towards Their Valorisation as Adsorbent Materials. Waste Manage, vol.65, pp.186-194, 2017.

I. H. Hwang, J. Kobayashi, and K. Kawamoto, Characterization of Products Obtained from Pyrolysis and Steam Gasification of Wood Waste, RDF, and RPF. Waste Manage, vol.34, pp.402-410, 2014.

C. Guizani, F. J. Escudero-sanz, M. Jeguirim, R. Gadiou, and S. Salvador, The Effects of Textural Modifications on Beech Wood-Char Gasification Rate under Alternate Atmospheres of CO2 and H2O, Fuel Process. Technol, vol.138, pp.687-694, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01609218

T. Maneerung, J. Liew, Y. Dai, S. Kawi, C. Chong et al., Activated Carbon Derived from Carbon Residue from Biomass Gasification and Its Application for Dye Adsorption: Kinetics, Isotherms and Thermodynamic Studies, Bioresour. Technol, pp.350-359, 0200.

V. Benedetti, F. Patuzzi, and M. Baratieri, Gasification Char as a Potential Substitute of Activated Carbon in Adsorption Applications, Energy Procedia, vol.105, pp.712-717, 2017.

S. Kilpimaa, H. Runtti, T. Kangas, U. Lassi, and T. Kuokkanen, Physical Activation of Carbon Residue from Biomass Gasification: Novel Sorbent for the Removal of Phosphates and Nitrates from Aqueous Solution, J. Ind. Eng. Chem, vol.21, pp.1354-1364, 2015.

N. Klinghoffer, M. J. Castaldi, and A. Nzihou, Catalyst Properties and Catalytic Performance of Char from Biomass Gasification, Ind. Eng. Chem. Res, vol.51, pp.13113-13122, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01632400

V. Hansen, D. Muller-stover, J. Ahrenfeldt, J. K. Holm, U. B. Henriksen et al., Gasification Biochar as a Valuable By-Product for Carbon Sequestration and Soil Amendment

, Biomass Bioenergy, vol.72, issue.1, pp.300-308, 2015.

S. Roma?, B. Ledesma, A. A?lvarez-murillo, A. Al-kassir, T. Yusaf et al., Dependence of the Microporosity of Activated Carbons on the Lignocellulosic Composition of the Precursors, vol.10, pp.37-47, 2015.

W. M. Daud and W. S. Ali, Comparison on Pore Development of Activated Carbon Produced from Palm Shell and Coconut Shell, Bioresour. Technol, vol.93, issue.1, pp.63-69, 2004.

L. M. Romero-milla?, F. E. Sierra-vargas, and A. Nzihou, Steam Gasification Behavior of Tropical Agrowaste: A New Modeling Approach Based on the Inorganic Composition, Fuel, vol.235, pp.45-53, 2019.

C. Hognon, C. Dupont, M. Grateau, F. Delrue, M. Perander et al., Comparison of Steam Gasification Reactivity of Algal and Lignocellulosic Biomass: Influence of Inorganic Elements, Bioresour. Technol, vol.164, issue.20, pp.464-472, 2014.

K. Kirtania, J. Axelsson, L. Matsakas, P. Christakopoulos, K. Umeki et al., Kinetic Study of Catalytic Gasification of Wood Char Impregnated with Different Alkali Salts, vol.118, pp.1055-1065, 2017.

L. M. Romero-millan, F. E. Sierra-vargas, and A. Nzihou, Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis, BioEnergy Res, vol.10, issue.3, pp.832-845, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581811

J. Zhou, Z. Sui, J. Zhu, P. Li, D. Chen et al., Characterization of Surface Oxygen Complexes on Carbon Nanofibers by TPD, XPS and FT-IR, Carbon, vol.45, issue.4, pp.785-796, 2007.

T. Ishii and T. Kyotani, Temperature Programmed Desorption. Materials Science and Engineering of Carbon, pp.287-305, 2016.

Y. Bai, S. Zhu, K. Luo, M. Gao, L. Yan et al., Coal Char Gasification in H 2 O/CO 2: Release of Alkali and Alkaline Earth Metallic Species and Their Effects on, Reactivity. Appl. Therm. Eng, vol.112, pp.156-163, 2017.

M. Asadullah, S. Zhang, Z. Min, P. Yimsiri, and C. Li, Effects of Biomass Char Structure on Its Gasification Reactivity, vol.101, pp.7935-7943, 2010.

M. Kajita, T. Kimura, K. Norinaga, C. Li, and J. Hayashi, Catalytic and Noncatalytic Mechanisms in Steam Gasification of Char from the Pyrolysis of Biomass, Energy Fuels, vol.24, pp.108-116, 2010.

D. Blasi and C. , Combustion and Gasification Rates of Lignocellulosic Chars, Prog. Energy Combust. Sci, vol.35, issue.2, pp.121-140, 2009.

C. Dupont, S. Jacob, K. O. Marrakchy, C. Hognon, M. Grateau et al., How Inorganic Elements of Biomass Influence Char Steam Gasification Kinetics, vol.109, pp.430-435, 2016.

K. Umeki, A. Moilanen, A. Go?ez-barea, and J. Konttinen, A Model of Biomass Char Gasification Describing the Change in Catalytic Activity of Ash, Chem. Eng. J, pp.616-624, 2012.

Y. Zhang, M. Ashizawa, S. Kajitani, and K. Miura, Proposal of a Semi-Empirical Kinetic Model to Reconcile with Gasification Reactivity Profiles of Biomass Chars, Fuel, vol.87, pp.475-481, 2008.

Y. Huang, X. Yin, C. Wu, C. Wang, J. Xie et al., Effects of Metal Catalysts on CO 2 Gasification Reactivity of Biomass Char, Biotechnol. Adv, vol.27, pp.568-572, 2009.

A. Nzihou, B. Stanmore, and P. Sharrock, A Review of Catalysts for the Gasification of Biomass Char, with Some Reference to Coal, vol.58, pp.305-317, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01632394

H. Marsh, Activated Carbon, 2006.

M. A. Yahya, Z. Al-qodah, and C. W. Ngah, Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renewable Sustainable Energy Rev, vol.46, pp.218-235, 2015.

E. David and J. Kopac, Activated Carbons Derived from Residual Biomass Pyrolysis and Their CO2 Adsorption Capacity, J. Anal. Appl. Pyrolysis, vol.110, pp.322-332, 2014.

P. Gonza?ez-garcía, Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renewable Sustainable Energy Rev, vol.82, pp.1393-1414, 2018.

A. Paethanom and K. Yoshikawa, Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability, Energies, vol.2012, issue.12, pp.4941-4951

A. M. Cunliffe and P. T. Williams, Influence of Process Conditions on the Rate of Activation of Chars Derived from Pyrolysis of Used Tires, Energy Fuels, vol.13, pp.166-175, 1999.

C. Rodriguez-correa, T. Otto, and A. Kruse, Influence of the Biomass Components on the Pore Formation of Activated Carbon, Biomass Bioenergy, vol.97, pp.53-64, 2017.

Y. Zhang, Z. Xing, Z. Duan, Y. Wang, and M. Li, Effects of Steam Activation on the Pore Structure and Surface Chemistry of Activated Carbon Derived from Bamboo Waste, Appl. Surf. Sci, vol.315, pp.279-286, 2014.

A. E. Harman-ware, M. Crocker, R. B. Pace, A. Placido, S. Morton et al., Characterization of Endocarp Biomass and Extracted Lignin Using Pyrolysis and Spectroscopic Methods, BioEnergy Res, vol.8, issue.1, pp.350-368, 2015.

V. Mendu, A. E. Harman-ware, M. Crocker, J. Jae, J. Stork et al., Identification and Thermochemical Analysis of High-Lignin Feedstocks for Biofuel and Biochemical Production, Biotechnol. Biofuels, 2011.

F. Rodriguez-reinoso, Controlled Gasification of Carbon and Pore Structure Development. Fundamental Issues in Control of Carbon Gasification Reactivity, pp.533-571, 1991.

M. Molina-sabio, M. T. Gonzalez, F. Rodriguez-reinoso, and A. Sepu?veda-escribano, Effect of Steam and Carbon Dioxide Activation in the Micropore Size Distribution of Activated Carbon, Carbon, vol.34, issue.4, pp.505-509, 1996.

I. Ghouma, M. Jeguirim, S. Dorge, L. Limousy, C. Matei-ghimbeu et al., Activated Carbon Prepared by Physical Activation of Olive Stones for the Removal of NO 2 at Ambient Temperature Pre?aration Par Voie Physique de Carbones Active? Obtenus a?Partir de Noyaux d'olives Destine? a?l'adsorption de NO 2 a?Tempe?ature A, C. R. Chim, vol.18, pp.63-74, 2015.

T. M. Abdel-fattah, M. E. Mahmoud, S. B. Ahmed, M. D. Huff, J. W. Lee et al., Biochar from Woody Biomass for Removing Metal Contaminants and Carbon Sequestration, J. Ind. Eng. Chem, vol.22, pp.103-109, 2015.

X. Hu, T. Hanaoka, K. Sakanishi, T. Shinagawa, S. Matsui et al., Removal of Tar Model Compounds Produced from Biomass Gasification Using Activated Carbons, J. Japan Inst. Energy, vol.86, pp.707-7011, 2007.

F. Li, K. Shen, X. Long, J. Wen, X. Xie et al., Preparation and Characterization of Biochars from Eichornia Crassipes for Cadmium Removal in Aqueous Solutions, PLoS One, vol.11, issue.2, 2016.

M. Uchimiya, S. Chang, and K. T. Klasson, Screening Biochars for Heavy Metal Retention in Soil: Role of Oxygen Functional Groups, J. Hazard. Mater, vol.190, pp.432-441, 2011.

Y. Chen, Y. Zhu, Z. Wang, Y. Li, L. Wang et al., Application Studies of Activated Carbon Derived from Rice Husks Produced by Chemical-Thermal Process?A Review, Adv. Colloid Interface Sci, vol.163, pp.39-52, 2011.

N. Borchard, A. Wolf, V. Laabs, R. Aeckersberg, H. W. Scherer et al., Physical Activation of Biochar and Its Meaning for Soil Fertility and Nutrient Leaching -a Greenhouse Experiment. Soil Use Manage, vol.28, pp.177-184, 2012.

M. Ko?towski, I. Hilber, T. D. Bucheli, B. Charmas, J. Skubiszewska-zieba et al., Activated Biochars Reduce the Exposure of Polycyclic Aromatic Hydrocarbons in Industrially Contaminated Soils, Chem. Eng. J, vol.310, pp.33-40, 2017.

M. A. Montes-mora?, D. Sua?ez, J. A. Mene?dez, and E. Fuente, On the Nature of Basic Sites on Carbon Surfaces: An Overview, Carbon, vol.42, issue.7, pp.1219-1224, 2004.

L. A. Alves, A. H. De-castro, F. G. De-mendonca, and J. P. De-mesquita, Characterization of Acid Functional Groups of Carbon Dots by Nonlinear Regression Data Fitting of Potentiometric Titration Curves, Appl. Surf. Sci, vol.370, pp.486-495, 2016.

M. S. Shafeeyan, W. M. Daud, A. Houshmand, and A. Shamiri, A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption, J. Anal. Appl. Pyrolysis, vol.89, pp.143-151, 2010.

C. Bouchelta, M. S. Medjram, O. Bertrand, and J. Bellat, Preparation and Characterization of Activated Carbon from Date Stones by Physical Activation with Steam, J. Anal. Appl. Pyrolysis, vol.82, issue.1, pp.70-77, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00467785

P. G. Gonza?ez and Y. B. Pliego-cuervo, Physicochemical and Microtextural Characterization of Activated Carbons Produced from Water Steam Activation of Three Bamboo Species, J. Anal. Appl. Pyrolysis, vol.99, pp.32-39, 2013.

R. Arriagada, R. García, M. Molina-sabio, and F. Rodriguez-reinoso, Effect of Steam Activation on the Porosity and Chemical Nature of Activated Carbons from Eucalyptus Globulus and Peach Stones. Microporous Mater, vol.8, pp.123-130, 1997.

A. Gundogdu, C. Duran, H. B. Senturk, M. Soylak, M. Imamoglu et al., Physicochemical Characteristics of a Novel Activated Carbon Produced from Tea Industry Waste, J. Anal. Appl. Pyrolysis, vol.104, pp.249-259, 2013.

T. Mahmood, A. Naeem, M. Hamayun, M. Aslam, and R. Ali, Potential of Used Camellia Sinensis Leaves as Precursor for Activated Carbon Preparation by Chemical Activation with H3PO4; Optimization Using Response Surface Methodology, Process Saf. Environ. Prot, vol.2017, issue.2, pp.548-563

X. Xu, Y. Zhao, J. Sima, L. Zhao, O. Mas?k et al., Indispensable Role of Biochar-Inherent Mineral Constituents in Its Environmental Applications: A Review, Bioresour. Technol, pp.887-899, 2017.

H. Li, X. Dong, E. B. Da-silva, L. M. De-oliveira, Y. Chen et al., Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications, vol.178, pp.466-478, 2017.

X. Cao and W. Harris, Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation, Bioresour. Technol, vol.101, issue.14, pp.5222-5228, 2010.

M. A. Yahya, Z. Al-qodah, and C. W. Ngah, Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renewable Sustainable Energy Rev, vol.46, pp.218-235, 2015.