B. Achrai and H. D. Wagner, The turtle carapace as an optimized multi-scale biological composite armor-a review, J. Mech. Behav. Biomed. Mater, vol.73, pp.50-67, 2017.

T. R. Lyson, G. S. Bever, T. M. Scheyer, A. Y. Hsiang, and J. A. Gauthier, Evolutionary origin of the turtle shell, Curr. Biol, vol.23, issue.12, pp.1113-1119, 2013.

J. E. Moustakas-verho and G. O. Cherepanov, The integumental appendages of the turtle shell: an evo-devo perspective, J. Exp. Zool. Part B, vol.324, issue.B, pp.221-229, 2015.

G. A. Cordero, The turtle's shell, Curr. Biol, vol.27, issue.5, pp.168-169, 2017.

H. Rhee, M. Horstemeyer, Y. Hwang, H. Lim, H. E. Kadiri et al., A study on the structure and mechanical behavior of the Terrapene carolina carapace: a pathway to design bio-inspired synthetic composites, Mater. Sci. Eng. C, vol.29, issue.8, pp.2333-2339, 2009.

G. Rivera and C. T. Stayton, Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade-off between mechanical strength and hydrodynamic efficiency, J. Morphol, vol.272, issue.10, pp.1192-1203, 2011.

D. L. Hu, K. Sielert, and M. Gordon, Turtle shell and mammal skull resistance to fracture due to predator bites and ground impact, J. Mech. Mater. Struct, vol.6, issue.9, pp.1197-1211, 2011.

W. Zhang, C. Wu, C. Zhang, and Z. Chen, Numerical study of the mechanical response of turtle shell, J. Bionic. Eng, vol.9, issue.3, pp.330-335, 2012.

W. Zhang, C. Wu, C. Zhang, and Z. Chen, Microstructure and mechanical property of turtle shell, Theor. Appl. Mech. Lett, vol.2, issue.1, 2012.

Y. Shelef and B. Bar-on, Surface protection in bio-shields via a functional soft skin layer: lessons from the turtle shell, J. Mech. Behav. Biomed. Mater, vol.73, pp.68-75, 2017.

B. Achrai and H. D. Wagner, Micro-structure and mechanical properties of the turtle carapace as a biological composite shield, Acta Biomater, vol.9, issue.4, pp.5890-5902, 2013.

C. T. Stayton, Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace, Zoology, vol.114, issue.4, pp.213-223, 2011.

C. Vega and C. T. Stayton, Dimorphism in shell shape and strength in two species of emydid turtle, Herpetol, vol.67, issue.4, pp.397-405, 2011.

T. Tan, N. Rahbar, S. Allameh, S. Kwofie, D. Dissmore et al., Mechanical properties of functionally graded hierarchical bamboo structures, Acta Biomater, vol.7, issue.10, pp.3796-3803, 2011.

M. Chen, N. Hu, C. Zhou, X. Lin, H. Xie et al., The hierarchical structure and mechanical performance of a natural nanocomposite materials: The turtle shell, Colloids Surf. A Physicochem. Eng. Asp, vol.520, pp.97-104, 2017.

K. Balani, R. R. Patel, A. K. Keshri, D. Lahiri, and A. Agarwal, Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell, J. Mech. Behav. Biomed. Mater, vol.4, issue.7, pp.1440-1451, 2011.

P. M. Magwene and J. J. Socha, Biomechanics of turtle shells: how whole shells fail in compression, J. Exp. Zool. Part A, vol.319, pp.86-98, 2013.

I. H. Chen, W. Yang, and M. A. Meyers, Leatherback sea turtle shell: a tough and flexible biological design, Acta Biomater, vol.28, pp.2-12, 2015.

B. Achrai, B. Bar-on, and H. D. Wagner, Bending mechanics of the red-eared slider turtle carapace, J. Mech. Behav. Biomed. Mater, vol.30, pp.223-233, 2014.

B. Achrai and H. D. Wagner, The red-eared slider turtle carapace under fatigue loading: the effect of rib-suture arrangement, Mater. Sci. Eng. C, vol.53, pp.128-133, 2015.

R. Damiens, H. Rhee, Y. Hwang, S. Park, Y. Hammi et al., Compressive behavior of a turtle's shell: experiment, modeling, and simulation, J. Mech. Behav. Biomed. Mater, vol.6, pp.106-112, 2012.

J. Zhou, Mechanical Behavior of Open Cell Aluminum Foams PhD thesis, 2004.

J. Zhou, Z. Gao, A. Cuitino, and W. Soboyejo, Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams, Mater. Sci. Eng. A, vol.386, pp.118-128, 2004.

H. Rhee, M. T. Tucker, W. R. Whittington, M. F. Horstemeyer, and H. Lim, Structureproperty responses of bio-inspired synthetic foams at low and high strain rates, Sci. Eng. Compos. Mater, vol.22, issue.4, pp.365-373, 2015.

N. Jongpairojcosit and P. Jearanaisilawong, Mechanical properties and numerical simulation of Sulcata tortoise carapace, J. Mech. Behav. Biomed. Mater, vol.72, pp.261-267, 2017.

X. Zhang, Z. Cai, W. Li, and M. Zhu, Understanding hydration effects on mechanical and impacting properties of turtle shell, J. Mech. Behav. Biomed. Mater, vol.78, pp.116-123, 2018.

N. Rahbar, M. Jorjani, C. Riccardelli, G. Wheeler, I. Yakub et al., Mixed mode fracture of marble/adhesive interfaces, Mater. Sci. Eng. A, vol.527, pp.4939-4946, 2010.

T. Tan, N. Rahbar, A. Buono, G. Wheeler, and W. Soboyejo, Sub-critical crack growth in adhesive/marble interfaces, Mater. Sci. Eng. A, vol.528, pp.3697-3704, 2011.

V. L. Ferguson and S. E. Olesiak, Nanoindentation of Bone, The Handbook of Nanoindentation with Biological Applications, Pan Stanford, 2010.

W. Soboyejo, Mechanical Properties of Engineered Materials, 2002.

W. Soboyejo, J. Zhou, and S. Allameh, Multi-scale mechanical behavior of metallic foams: From struts to foams, 2005.

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 1999.

L. J. Gibson, M. F. Ashby, and B. A. Harley, Cellular Materials in Nature and Medicine, 2010.

T. A. Owoseni, , 2013.

M. Kay, R. Young, and A. Posner, Crystal structure of hydroxyapatite, Nature, vol.204, p.1050, 1964.

M. Mucalo, Hydroxyapatite (HAp) for Biomedical Applications, 2015.

D. Taylor, J. G. Hazenberg, and T. C. Lee, Living with cracks: damage and repair in human bone, Nat. Mater, vol.6, p.263, 2007.

D. Taylor, Fracture and repair of bone: a multiscale problem, J. Mater. Sci, vol.42, pp.8911-8918, 2007.

J. F. Vincent, Strength and fracture of grasses, J. Mater. Sci, vol.26, pp.1947-1950, 1991.

J. F. Vincent, The mechanical design of grass, J. Mater. Sci, vol.17, pp.856-860, 1982.

R. S. Fecchio, Y. Seki, S. G. Bodde, M. S. Gomes, J. Kolososki et al., Mechanical behavior of prosthesis in Toucan beak (Ramphastos toco), Mater. Sci. Eng. C, vol.30, pp.460-464, 2010.

N. Lee, M. F. Horstemeyer, H. Rhee, B. Nabors, J. Liao et al., Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak, J. R. Soc. Interface, vol.11, 2014.

P. Alam, I. Sanka, L. P. Alam, S. Wijaya, E. Sintya et al., The snapping shrimp dactyl plunger: a thermomechanical damagetolerant sandwich composite, Zoology, vol.126, pp.1-10, 2018.

M. Versluis, B. Schmitz, A. Der-heydt, and D. Lohse, How snapping shrimp snap: through cavitating bubbles, Science, vol.289, pp.2114-2117, 2000.

P. Alam, S. Amini, M. Tadayon, A. Miserez, and A. Chinsamy, Properties and architecture of the sperm whale skull amphitheatre, Zoology, vol.119, pp.42-51, 2016.

B. Wang, T. N. Sullivan, A. Pissarenko, A. Zaheri, H. D. Espinosa et al., Lessons from the ocean: whale baleen fracture resistance, Adv. Mater, vol.31, p.1804574, 2019.

Z. Hu, V. K. Gadipudi, and D. R. Salem, Topology optimization of lightweight lattice structural composites inspired by cuttlefish bone, Appl. Compos. Mater, vol.26, pp.15-27, 2019.

L. S. Dimas and M. J. Buehler, Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties, Soft Matter, vol.25, pp.4436-4442, 2014.