K. Zeng, D. Gauthier, P. M. Doan, E. Weiss-hortala, A. Nzihou et al., Characterization of solar fuels obtained from beech wood solar pyrolysis, Fuel, vol.188, pp.285-93, 2017.
DOI : 10.1016/j.fuel.2016.10.036

URL : https://hal.archives-ouvertes.fr/hal-01619246

S. E. Hosseini, M. A. Wahid, and A. Ganjehkaviri, An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia, Energy Convers Manag, vol.94, pp.415-444, 2015.

Y. Li, M. Q. Chen, Q. H. Li, and Y. W. Huang, Effect of microwave pretreatment on the combustion behavior of lignite/solid waste briquettes, Energy, vol.149, pp.730-770, 2018.

X. Li, Y. Xue, J. Feng, Q. Yi, W. Li et al., Co-pyrolysis of lignite and Shendong coal direct liquefaction residue, Fuel, vol.144, pp.342-350, 2015.
DOI : 10.1016/j.fuel.2014.12.049

S. Fan, X. Yuan, L. Zhao, L. Xu, T. Kang et al., Experimental and kinetic study of catalytic steam gasification of low rank coal with an environmentally friendly, inexpensive composite K2CO3-eggshell derived CaO catalyst, Fuel, vol.165, pp.397-404, 2016.

N. Siefert, D. Shekhawat, S. Litster, and D. Berry, Molten catalytic coal gasification with in situ carbon and sulphur capture, Energy Environ Sci, vol.5, issue.9, pp.8660-72, 2012.
DOI : 10.1039/c2ee21989a

M. Xu, H. Hu, Y. Yang, Y. Huang, K. Xie et al., A deep insight into carbon conversion during Zhundong coal molten salt gasification, Fuel, vol.220, pp.890-897, 2018.
DOI : 10.1016/j.fuel.2017.12.051

J. Li, X. Zhuang, X. Querol, O. Font, N. Moreno et al., Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Fuel, vol.95, issue.1, pp.446-56, 2012.

L. Liu, Z. Wang, H. Zhang, and Y. Xue, Solar energy development in China-A review, Renew Sustain Energy Rev, vol.14, issue.1, pp.301-312, 2010.

R. Adinberg, M. Epstein, and J. Karni, Solar gasification of biomass: a molten salt pyrolysis study, J Solar Energy Eng Trans ASME, vol.126, issue.3, pp.850-857, 2004.
DOI : 10.1115/1.1753577

S. Ratchahat, S. Kodama, W. Tanthapanichakoon, and H. Sekiguchi, CO2 gasification of biomass wastes enhanced by Ni/Al2O3 catalyst in molten eutectic carbonate salt, Int J Hydrogen Energy, vol.40, issue.35, pp.11809-11831, 2015.

H. Tang, M. Xu, H. Hu, F. Yang, Y. Yang et al., In-situ removal of sulfur from high sulfur solid waste during molten salt pyrolysis, Fuel, vol.231, pp.489-94, 2018.

Y. Tada and A. Yasunishi, Wood pyrolysis with molten-salt as heating medium, Kagaku Kogaku Ronbunshu, vol.13, issue.4, p.3, 1987.
DOI : 10.1252/kakoronbunshu.13.376

URL : https://www.jstage.jst.go.jp/article/kakoronbunshu1975/13/3/13_3_376/_pdf

D. Serrano, A. Horvat, C. Sobrino, and S. Sanchez-delgado, Thermochemical conversion of C. cardunculus L. in nitrate molten salts, Appl Thermal Energy, vol.148, pp.136-182, 2019.

B. Dou, H. Zhang, Y. Song, L. Zhao, B. Jiang et al., Hydrogen production from thermochemical conversion of biomass: issues and challenges, Sustain Energy Fuels, vol.3, pp.314-356, 2019.

J. Rizkiana, G. Guan, W. B. Widayatno, X. Hao, Z. Wang et al., Oil production from mild pyrolysis of low-rank coal in molten salts media, Appl Energy, vol.154, pp.944-50, 2015.

X. Cui, C. Qi, L. Li, Y. Li, and S. Li, Effect of Ni-Co ternary molten salt catalysts on coal catalytic pyrolysis process, Int J Thermophys, vol.38, 1168.

X. Li, J. Hayashi, and C. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel, vol.85, issue.12e13, pp.1700-1707, 2006.

S. Hu, L. Jiang, Y. Wang, S. Su, L. Sun et al., Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures, Bioresour Technol, vol.192, pp.23-30, 2015.
DOI : 10.1016/j.biortech.2015.05.042

K. Nagase, T. Shimodaira, M. Itoh, and Y. T. Zheng, Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reactions of solid carbon with the metal carbonates, Phys Chem Chem Phys, vol.1, issue.24, pp.5659-64, 1999.

Q. Tang, Y. Zheng, T. Liu, X. Ma, Y. Liao et al., Influence of vacuum pressure on the vacuum pyrolysis of plant oil asphalt to pyrolytic biodiesel, Chem Eng J, vol.207, pp.2-9, 2012.

B. J. Hathaway, J. H. Davidson, and D. B. Kittelson, Solar gasification of biomass: kinetics of pyrolysis and steam gasification in molten salt, J Solar Energy Eng Trans ASME, 2011.

L. Ding, Z. Zhou, Q. Guo, W. Huo, and G. Yu, Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification, Fuel, vol.142, pp.134-178, 2015.
DOI : 10.1016/j.fuel.2014.11.010

T. Popa, M. Fan, M. D. Argyle, R. B. Slimane, D. A. Bell et al., Catalytic gasification of a powder river basin coal, Fuel, vol.103, pp.161-70, 2013.
DOI : 10.1016/j.fuel.2012.08.049

B. J. Hathaway, M. Honda, D. B. Kittelson, and J. H. Davidson, Steam gasification of plant biomass using molten carbonate salts, Energy, vol.49, pp.211-218, 2013.
DOI : 10.1016/j.energy.2012.11.006

S. Yoshida, J. Matsunami, Y. Hosokawa, O. Yokota, Y. Tamaura et al., Coal/ CO2 gasification system using molten carbonate salt for solar/fossil energy hybridization, Energy Flues, vol.13, issue.5, pp.961-965, 1999.
DOI : 10.1021/ef980144n

J. Jiang, Q. Wang, Y. Wang, W. Tong, and B. Xiao, GC/MS analysis of coal tar composition produced from coal pyrolysis, Bull Chem Soc Ethiop, vol.21, issue.2, pp.229-269, 2007.
DOI : 10.4314/bcse.v21i2.21202

URL : https://www.ajol.info/index.php/bcse/article/download/21202/3926

J. Dong, Z. Cheng, and F. Li, PAHs emission from the pyrolysis of Western Chinese coal, J Anal Appl Pyrolysis, vol.104, pp.502-509, 2013.

M. Zhou, J. Li, K. Wang, H. Xia, J. Xu et al., Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: model reaction for upgrading of bio-oil, Fuel, vol.202, pp.1-11, 2017.

D. Mourant, Z. Wang, M. He, X. S. Wang, M. Garcia-perez et al., Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil, Fuel, vol.90, issue.9, pp.2915-2937, 2011.

K. Zeng, P. M. Doan, D. Gauthier, E. Weiss-hortala, A. Nzihou et al., The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood, Bioresour Technol, vol.182, pp.114-123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176348

V. Abdelsayed, D. Shekhawat, M. W. Smith, D. Link, and A. E. Stiegman, Microwaveassisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis, Fuel, vol.217, pp.656-67, 2018.
DOI : 10.1016/j.fuel.2017.12.099

Q. Dong, H. X. Zhang, Z. P. Zhu, and W. Ge, Evolution of structure properties during zhundong coal pyrolysis, Procedia engineering, pp.4-13, 2015.
DOI : 10.1016/j.proeng.2015.01.101

URL : https://doi.org/10.1016/j.proeng.2015.01.101

S. Frangini and A. Masi, Molten carbonates for advanced and sustainable energy applications: Part I. Revisiting molten carbonate properties from a sustainable viewpoint, Int J Hydrogen Energy, vol.41, issue.41, pp.18739-18785, 2016.
DOI : 10.1016/j.ijhydene.2016.08.076

V. Nunes, C. S. Queiros, M. Lourenco, F. Santos, N. De-castro et al., Molten salts as engineering fluids -a review Part I. Molten alkali nitrates, Appl Energy, vol.183, pp.603-614, 2016.
DOI : 10.1016/j.apenergy.2016.09.003

H. Yin, B. Lu, Y. Xu, D. Tang, X. Mao et al., Harvesting capacitive carbon by carbonization of waste biomass in molten salts, Environ Sci Technol, vol.48, issue.14, pp.8101-8109, 2014.

F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao et al., Characteristics of chars from low-temperature pyrolysis of lignite, Energy Fuels, vol.28, issue.1, pp.275-84, 2014.
DOI : 10.1021/ef401423s

T. Li, L. Zhang, L. Dong, and C. Li, Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal, Fuel, vol.117, pp.1190-1195, 2014.

K. Zhang, Y. Li, Z. Wang, Q. Li, R. Whiddon et al., Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures, Fuel, vol.185, pp.701-709, 2016.

K. Xu, S. Hu, S. Su, C. Xu, L. Sun et al., Study on char surface active sites and their relationship to gasification reactivity, Energy Fuels, vol.27, issue.1, pp.118-143, 2013.

J. Ibarra, E. Muñoz, and R. Moliner, FTIR study of the evolution of coal structure during the coalification process, Org Geochem, vol.24, issue.6, pp.725-760, 1996.

A. Georgakopoulos, A. Iordanidis, and V. Kapina, Study of low rank Greek coals using FTIR spectroscopy, Energy Sources, vol.25, issue.10, pp.995-1005, 2003.

J. Hu, Y. Chen, K. Qian, Z. Yang, H. Yang et al., Evolution of char structure during mengdong coal pyrolysis: influence of temperature and K2CO3, Fuel Process Technol, vol.159, pp.178-86, 2017.

Y. Li, H. Yang, J. Hu, X. Wang, and H. Chen, Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification, Fuel, vol.117, pp.1174-80, 2014.

Y. Wang, Z. Wang, J. Huang, and Y. Fang, Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char, J Therm Anal Calorim, vol.131, issue.2, pp.1213-1233, 2018.