D. Neves, H. Thunman, A. Matos, L. Tarelho, and A. Gomez-barea, Characterization and prediction of biomass pyrolysis products, Prog Energy Combust Sci, vol.37, pp.611-641, 2011.

K. Zeng, D. Gauthier, R. Li, and G. Flamant, Solar pyrolysis of beech wood: effects of pyrolysis parameters on the product distribution and gas product composition, Energy, vol.93, pp.1648-57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01315739

K. Zeng, D. Gauthier, J. Lu, and G. Flamant, Parametric study and process optimization for solar pyrolysis of beech wood, Energy Convers Manag, vol.106, pp.987-98, 2015.

K. Zeng, D. Gauthier, D. Pham, M. Weiss-hortala, E. Nzihou et al., Characterization of solar fuels obtained from beech wood solar pyrolysis, Fuel, vol.188, pp.285-93, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619246

K. Zeng, D. Gauthier, J. Soria, G. Mazza, and G. Flamant, Solar pyrolysis of carbonaceous feedstocks: a review, Sol Energy, vol.156, pp.73-92, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01892657

J. Lede, Solar thermochemical conversion of biomass, Sol Energy, vol.65, pp.3-13, 1999.

M. W. Hopkins, C. Dejenga, and M. J. Antal, The flash pyrolysis of cellulosic materials using concentrated visible light, Sol Energy, vol.32, pp.547-51, 1984.

K. Zeng, J. Soria, D. Gauthier, G. Mazza, and G. Flamant, Modeling of beech wood pellet pyrolysis under concentrated solar radiation, Renew Energy, vol.99, pp.721-730, 2016.

K. Zeng, D. Gauthier, R. Li, and G. Flamant, Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood, Energy, vol.125, pp.552-61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01887763

H. S. Nygård and E. Olsen, Review of thermal processing of biomass and waste in molten salts for production of renewable fuels and chemicals, Int J Low Carbon Technol, vol.7, pp.318-342, 2012.

B. J. Hathaway, J. H. Davidson, and D. B. Kittelson, Solar gasification of biomass: kinetics of pyrolysis and steam gasification in molten salt, J Sol Energy Eng Trans-ASME, vol.133, pp.21011-21012, 2011.

B. J. Hathaway, M. Honda, D. B. Kittelson, and J. H. Davidson, Steam gasification of plant biomass using molten carbonate salts, Energy, vol.49, pp.211-218, 2013.

S. Ratchahat, S. Kodama, W. Tanthapanichakoon, and H. Sekiguchi, Combined molten salt-Ni/Al2O3 as synergistic medium for high-quality syngas production, Chem Eng J, vol.278, pp.224-257, 2015.

A. Yasunishi and Y. Tada, Wood pyrolysis in molten-salt, Kagaku Kogaku Ronbunshu, vol.11, pp.346-355, 1985.

H. S. Nygard, F. Danielsen, and E. Olsen, Thermal history of wood particles in molten salt pyrolysis, Energy Fuels, vol.26, pp.6419-6444, 2012.

S. Caubet, P. Corte, C. Fahim, and J. P. Traverse, Thermochemical conversion of biomass: gasification by flash pyrolysis study, Sol Energy, vol.29, pp.565-72, 1982.

Y. Tada and A. Yasunishi, Wood pyrolysis with molten-salt as heating medium, Kagaku Kogaku Ronbunshu, vol.13, pp.376-385, 1987.

D. Serrano, A. Horvat, C. Sobrino, and S. Delgado, Thermochemical conversion of C. cardunculus L. in nitrate molten salts, Appl Therm Eng, vol.148, pp.136-182, 2019.

H. Jiang, A. N. Wang, M. , J. D. , and J. J. , Experimental study on thermal pyrolysis of biomass in molten salt media, Electrochemistry, vol.77, pp.730-735, 2009.

E. Sada, H. Kumazawa, and M. Kudsy, Pyrolysis of lignins in molten salt media, Ind Eng Chem Res, vol.31, pp.612-618, 1992.

M. Kudsy and H. Kumazawa, Pyrolysis of kraft lignin in the presence of molten ZnCl2-KCl mixture, Can J Chem Eng, vol.77, pp.1176-84, 1999.

R. Adinberg, M. Epstein, and J. Karni, Solar gasification of biomass: a molten salt pyrolysis study, J Sol Energy Eng Trans-ASME, vol.126, pp.850-857, 2004.

J. Rizkiana, G. Q. Guan, W. B. Widayatno, X. G. Hao, Z. D. Wang et al., Oil production from mild pyrolysis of low-rank coal in molten salts media, Appl Energy, vol.154, pp.944-50, 2015.

R. I. Olivares, C. Chen, and S. Wright, The thermal stability of molten lithiumesodiumepotassium carbonate and the influence of additives on the melting point, J Sol Energy Eng, vol.134, pp.41002-41003, 2012.

J. Xiao, X. Wei, R. N. Gilaber, Y. Zhang, and Z. Li, Design and characterization of a highflux non-coaxial concentrating solar simulator, Appl Therm Eng, vol.145, pp.201-212, 2018.

A. Gallo, A. Marzo, E. Fuentealba, and A. E. , High flux solar simulators for concentrated solar thermal research: a review, Renew Sustain Energy Rev, vol.77, pp.1385-402, 2017.

L. Arribas, N. Arconada, C. Gonz-alez-fern-andez, C. , G. Alez-aguilar et al., Solar-driven pyrolysis and gasification of low-grade carbonaceous materials, Int J Hydrogen Energy, vol.42, pp.13598-606, 2017.

F. Müller, P. Po-zivil, P. J. Van-eyk, A. Villarrazo, P. Haueter et al., A pressurized high-flux solar reactor for the efficient thermochemical gasification of carbonaceous feedstock, Fuel, vol.193, pp.432-475, 2017.

. Petrasch, P. Coray, A. Meier, M. Brack, P. H?-aberling et al., A novel 50 kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps, J Sol Energy Eng, vol.129, pp.405-416, 2007.

K. Zeng, Q. Yang, C. Q. Zhang, Y. Wang, X. Yang et al., Effects of temperature and Mg-based additives on properties of cotton stalk torrefaction products, Energy Fuels, vol.32, pp.9640-9649, 2018.

Y. Chen, H. Yang, X. Wang, S. Zhang, and H. Chen, Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature, Bioresour Technol, vol.107, pp.411-419, 2012.

K. Zeng, Q. Yang, Y. Zhang, Y. Mei, X. Wang et al., Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk, Bioresour Technol, vol.261, pp.62-71, 2018.

K. Zeng, D. Pham, M. Gauthier, D. Weiss-hortala, E. Nzihou et al., The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood, Bioresour Technol, vol.182, pp.114-123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01176348

A. Nzihou, B. Stanmore, and P. Sharrock, A review of catalysts for the gasification of biomass char, with some reference to coal, Energy, vol.58, pp.305-322, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01632394

C. G. Lee and H. Hur, Gasification of bamboo carbon with molten alkali carbonates, Korean J Chem Eng, vol.28, pp.1539-1584, 2011.

C. D. Blasi and A. Galgano, Influences of the chemical state of alkaline compounds and the nature of AlkaliMetal on wood pyrolysis, Ind Eng Chem Res, vol.48, pp.3359-69, 2009.

S. Hu, L. Jiang, Y. Wang, S. Su, L. Sun et al., Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures, Bioresour Technol, vol.192, pp.23-30, 2015.

K. Nagase, T. Shimodaira, M. Itoh, and Y. T. Zheng, Kinetics and mechanisms of the reverse Boudouard reaction over metal carbonates in connection with the reactions of solid carbon with the metal carbonates, Phys Chem Chem Phys, vol.1, pp.5659-64, 1999.

P. Morf, P. Hasler, and T. Nussbaumer, Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips, Fuel, vol.81, pp.843-53, 2002.

L. Ding, Z. Zhou, Q. Guo, W. Huo, and G. Yu, Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification, Fuel, vol.142, pp.134-178, 2015.

A. O. Xianquan, W. Hua, W. Yonggang, L. I. Kongzhai, and L. Mingchun, Reduction behavior of methane in alkali molten carbonates, J Fuel Chem Technol, vol.36, pp.455-61, 2008.

L. Zhou, Y. Jia, N. Tuan-huy, A. A. Adesina, and Z. Liu, Hydropyrolsis characteristics and kinetics of potassium-impregnated pine wood, Fuel Process Technol, vol.116, pp.149-57, 2013.

J. Akhtar and N. S. Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis, Renew Sustain Energy Rev, vol.16, pp.5101-5110, 2012.

F. Collard and J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sustain Energy Rev, vol.38, pp.594-608, 2014.

S. Wang, Z. Guo, Q. Cai, and L. Guo, Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production, Biomass Bioenergy, vol.45, pp.138-181, 2012.

S. D. Stefanidis, K. G. Kalogiannis, E. F. Iliopoulou, A. A. Lappas, and P. A. Pilavachi, In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor, Bioresour Technol, vol.102, pp.8261-8268, 2011.

M. Zhou, J. Li, K. Wang, H. Xia, J. Xu et al., Selective conversion of furfural to cyclopentanone over CNT-supported Cu based catalysts: model reaction for upgrading of bio-oil, Fuel, vol.202, pp.1-11, 2017.

D. Mourant, Z. Wang, M. He, X. S. Wang, M. Garcia-perez et al., Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil, Fuel, vol.90, pp.2915-2937, 2011.

M. Zabeti, T. S. Nguyen, L. Lefferts, H. J. Heeres, and K. Seshan, In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina, Bioresour Technol, vol.118, pp.374-81, 2012.

K. H. Kim, J. Kim, T. Cho, and J. W. Choi, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresour Technol, vol.118, pp.158-62, 2012.

H. Yin, B. Lu, Y. Xu, D. Tang, X. Mao et al., Harvesting capacitive carbon by carbonization of waste biomass in molten salts, Environ Sci Technol, vol.48, pp.8101-8109, 2014.