M. S. Holt, Sources of chemical contaminants and routes into the freshwater environment, Food Chem. Toxicol, vol.38, pp.21-27, 2000.

P. A. Carneiro, G. A. Umbuzeiro, D. P. Oliveira, and M. V. Zanoni, Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes, J. Hazard. Mater, vol.174, pp.694-699, 2010.

N. Nandi, A. Baral, K. Basu, S. Roy, and A. Banerjee, A dipeptide-based superhydrogel: Removal of toxic dyes and heavy metal ions from waste water, Biopolymers, vol.108, 2017.

K. Basu, N. Nandi, B. Mondal, A. Dehsorkhi, I. W. Hamley et al., Peptide-based ambidextrous bifunctional gelator: Applications in oil spill recovery and removal of toxic organic dyes for waste water management, Interface Focus, vol.7, 2017.

S. Chawla, H. Uppal, M. Yadav, N. Bahadur, and N. Singh, Zinc peroxide nanomaterial as an adsorbent for removal of Congo red dye from waste water, Ecotoxicol. Environ. Saf, vol.135, pp.68-74, 2017.

A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater, vol.167, pp.1-9, 2009.

S. Moosvi, H. Keharia, and D. Madamwar, Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1, World J. Microbiol. Biotechnol, vol.21, pp.667-672, 2005.

K. Shen and M. A. Gondal, Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground, J. Saudi Chem. Soc, vol.21, pp.120-127, 2017.

D. A. Gopakumar, D. Pasquini, M. A. Henrique, L. C. De-morais, Y. Grohens et al., Meldrum's acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal, ACS Sustain. Chem. Eng, vol.5, pp.2026-2033, 2017.

Z. Carmen and S. Daniela, Textile Organic Dyes-Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents-A Critical Overview. In Organic Pollutants Ten Years after the Stockholm Convention-Environmental and Analytical Update, 2012.

T. Nauclér and P. Enkvist, Pathways to a Low-Carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve, p.192, 2009.

N. Hüsing and U. Schubert, Aerogels-Airy Materials: Chemistry, Structure, and Properties, Angew. Chem. Int. Ed, vol.37, pp.22-45, 1998.

K. Richter, P. M. Norris, and C. Tien, Aerogels-Applications, Structure, and Heat Transfer Phenomena, Annu. Rev. Heat Transf, vol.6, pp.61-114, 1995.

Z. Zhang, G. Sèbe, D. Rentsch, T. Zimmermann, and P. Tingaut, Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water, Chem. Mater, vol.26, pp.2659-2668, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366155

W. Chen, Q. Li, Y. Wang, X. Yi, J. Zeng et al., Comparative study of aerogels obtained from differently prepared nanocellulose fibers, ChemSusChem, vol.7, pp.154-161, 2014.

M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors et al., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, vol.4, pp.2492-2499, 2008.

F. Jiang, Y. Hsieh, and . Lo, Amphiphilic superabsorbent cellulose nanofibril aerogels, J. Mater. Chem. A, vol.2, pp.6337-6342, 2014.
DOI : 10.1039/c4ta00743c

URL : https://cloudfront.escholarship.org/dist/prd/content/qt2dr8n6rj/qt2dr8n6rj.pdf?t=owwdfb

S. Wang, X. Peng, L. Zhong, J. Tan, S. Jing et al., An ultralight, elastic, costeffective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup, J. Mater. Chem. A, vol.3, pp.8772-8781, 2015.

C. Chaudemanche and P. Navard, Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers, Cellulose, vol.18, pp.1-15, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00570382

S. Zhou, P. Liu, M. Wang, H. Zhao, J. Yang et al., Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation, ACS Sustain. Chem. Eng, vol.4, pp.6409-6416, 2016.

J. T. Korhonen, M. Kettunen, R. H. Ras, and O. Ikkala, Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents, ACS Appl. Mater. Interfaces, vol.3, pp.1813-1816, 2011.

C. Jin, S. Han, J. Li, and Q. Sun, Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents, Carbohydr. Polym, vol.123, pp.150-156, 2015.

R. Lin, A. Li, T. Zheng, L. Lu, and Y. Cao, Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent, RSC Adv, vol.5, pp.82027-82033, 2015.

D. Wang, H. Yu, X. Fan, J. Gu, S. Ye et al., High Aspect Ratio Carboxylated Cellulose Nanofibers Cross-linked to Robust Aerogels for Superabsorption-Flocculants: Paving Way from Nanoscale to Macroscale, ACS Appl. Mater. Interfaces, vol.10, pp.20755-20766, 2018.

F. Jiang, D. M. Dinh, Y. Hsieh, and . Lo, Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels, Carbohydr. Polym, vol.173, pp.286-294, 2017.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties, Carbohydr. Polym, vol.157, pp.105-113, 2017.

R. Muthuraj, Y. Grohens, and B. Seantier, Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels, Nano-Struct, vol.12, pp.68-76, 2017.

C. Jiménez-saelices, B. Seantier, B. Cathala, and Y. Grohens, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels, J. Sol-Gel Sci. Technol, vol.84, pp.475-485, 2017.

D. A. Gopakumar, A. R. Pai, Y. B. Pottathara, D. Pasquini, L. Carlos-de-morais et al., Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band, ACS Appl. Mater. Interfaces, vol.10, 2018.

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer, Text. Res. J, vol.29, pp.786-794, 1959.

H. Qiao, Y. Zhou, F. Yu, E. Wang, Y. Min et al., Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals, Chemosphere, vol.141, pp.297-303, 2015.

M. Qin, T. Yin, and W. Shen, The Interaction Between Crystal Violet and Bovine Serum Albumin: Spectroscopic and Molecular Docking Investigations, J. Dispers. Sci. Technol, vol.37, pp.1623-1629, 2016.

S. Li, Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose, Bioresour. Technol, vol.101, pp.2197-2202, 2010.

M. S. Al-homoud, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ, vol.40, pp.353-366, 2005.

N. Song, D. Jiao, P. Ding, S. Cui, S. Tang et al., Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets, J. Mater. Chem. C, vol.4, pp.305-314, 2016.

J. Feng, D. Le, S. T. Nguyen, V. Tan-chin-nien, D. Jewell et al., Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications, Colloids Surf. Physicochem. Eng. Asp, vol.506, pp.298-305, 2016.

N. Song, D. Jiao, S. Cui, X. Hou, P. Ding et al., Highly anisotropic thermal conductivity of layer-bylayer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management, ACS Appl. Mater. Interfaces, vol.9, pp.2924-2932, 2017.

B. Seantier, D. Bendahou, A. Bendahou, Y. Grohens, and H. Kaddami, Multi-scale cellulose based new bioaerogel composites with thermal super-insulating and tunable mechanical properties, Carbohydr. Polym, vol.138, pp.335-348, 2016.

B. Fan, S. Chen, Q. Yao, Q. Sun, and C. Jin, Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation, Materials, vol.10, p.311, 2017.