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A B S T R A C T

The French Atomic and alternative Energy Commission (CEA) aims to reuse its sodium fire (carbonate base)
extinguishing powder after long term storage (stock from the dismantlement of its old sodium facilities). As the
composition of the powder appears to change during the storage, the efficiency on the extinction as a function of
the physicochemical properties was questioned. Small sodium fire extinction experiments were carried out with
powders of different compositions. The results demonstrated a dominant role of water of crystallization on the
extinction. Two steps are proposed for the extinction mechanism that includes: (1) the formation of liquid
sodium hydroxide and (2) the melting of carbonate mixture at eutectic composition. The sodium hydroxide
behaves as a protective layer and insulates the sodium surface from prolonged contact with oxygen.
Consequently, it provides rapid decrease of temperature, unlike the slow melting of carbonates eutectic and its
porous layer formed due to its higher viscosity. The presence of trona (aging product) does not alter the ex-
tinction capacity of the powder. To extrapolate the results to large fires, 35 g of water of crystallization are
necessary to extinguish 1m2 of sodium pool fire. Finally, the particle size appears to be a non-significant
parameter to the quality of extinction except for the spreading performance.

1. Introduction and background

Sodium has attractive properties that make it suitable to be used as a
coolant in Sodium cooled Fast Reactors (SFR): large temperature range
in the liquid state (97.8–883 °C at atmospheric pressure), excellent
thermal conductivity, low activation under neutron flux, compatibility
with stainless steels (Sakamoto, 2013). However, it is also a very strong
reductant, and its significant chemical reactivity with water and air
requires specific operating conditions and safety equipment. In case of
leak out of the circuits, liquid sodium may ignite spontaneously upon
contact with air or oxygen above 130 °C. Thus, all the sodium circuits
are usually operated under inert atmosphere. A leak detection system
on the pipe welding is also necessary to prevent and limit the con-
sequences of a sodium fire after sodium release (Sylvia, 2012). Fur-
thermore, efficient solutions for the mitigation of sodium fire must be
developed to satisfy safety recommendations, and in particular to
achieve its rapid extinction.

Many researches have proposed various extinction methods, either
by passive devices such as leak collection trays (Diwakar, 2011;
Newman, 1979; Schneider, 2009) or by active means like extinguishing

powders (Newman, 1979; Jeong, 2002; Reuillon et al., 1979; Sarrut,
1979). In 1978, CEA developed an extinguishing powder (Reuillon
et al., 1979), the so called Marcalina®, which was proven to be very
effective to put out sodium fires at low and high temperatures. Small
quantity (5 g) of powders were needed to extinguish small scale sodium
fires (10 g of Na) at temperatures of 550 °C, 301 °C, and 275 °C
(Reuillon, 1976). This powder is composed mainly of lithium carbonate
(Li2CO3) and low-hydrated sodium carbonate (Na2CO3, H2O) in a near
eutectic proportion, with a melting temperature of 498 °C (Reuillon
et al., 1979), and contains graphite (≈10 %w). It was produced in
France (by CACI) between the 1980s to the 1990s, but the production
was then ceased in absence of new industrial order. The opportunity to
reuse these powders raised the questions about their capacity to ex-
tinguish a sodium fire after long term storage and to ensure the safety of
sodium facilities (experimental loops or reactors) for projects in the
future.

Three powders named powders A, B, and C, were chosen as re-
presentative samples from different storage locations. The physico-
chemical analyses related to these powders were conducted and dis-
cussed in Kusumanindyah et al. (2015); they are summarized in
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Table 1. The results were compared to the formulation specifications
provided in the literature. The chemical analysis with X-Ray Diffraction
(XRD) highlights the presence of “trona” (Na2CO3·NaHCO3·2H2O) and
LiNaCO3, two compounds that are not mentioned in the patent. Cou-
pled Thermo Gravimetric Analysis (TGA)-micro Gas Chromatography
(µGC) and Atomic Absorption Spectroscopy (AAS) were able to perform
quantitative analysis of these powders. Several physical analyses
(Scanning Electron Microscopy (SEM), LASER particle size analysis, FT4
powder rheometry) were also conducted in our previous work to
characterize the powders (Kusumanindyah et., 2015). Some results are
shown in Supplementary materials 1. The content in water of crystal-
lization originates from Na2CO3, H2O and trona (the two water con-
taining compounds) contained in the powders.

Two categories of powders could be distinguished based on their
water of crystallization content (specifications of the manufacturer
ranged between 3.5 and 5.4 (± 1) %w):

• Powder within specifications (i.e. powder A), composed of a high
amount of LiNaCO3 and a small amount of trona. It had small par-
ticle sizes and demonstrated cohesive properties.

• Powders out of specifications (i.e. powders B and C), composed of a
high amount of trona and a small amount of LiNaCO3. Powder B had
relatively large particles (easy flowing), while powder C had small
particles but was considered to be less cohesive than powder A.

We found (Kusumanindyah et al., 2015) that trona
(Na2CO3·NaHCO3·2H2O) was actually an aging product whose forma-
tion depends highly on relative humidity and on the presence of CO2.
Meanwhile lithium sodium carbonate (LiNaCO3) was produced by the
mechanochemical reactions that happened during fabrication through
the grinding process (due to the heat released throughout this opera-
tion). However a high humidity condition and limited presence of CO2

was favorable to its decomposition. These results implied that storage
condition could influence the powder composition. The analysis of
powder B revealed that it experienced both reactions of trona formation
and LiNaCO3 decomposition, while the latter was unachieved (likely
slower than the former one) in case of powder C.

In this paper, powders of different compositions (A, B, C and other
synthetic ones) are compared through sodium fire extinction tests. This
study aims to understand the role of each component on the extinction
performance, particularly in relation to the water of crystallization
content, which may be increased by the presence of trona or the

decomposition of LiNaCO3. The effect of melting temperatures and
especially of an easier carbonate melting (due to the presence of
LiNaCO3 in the mixture) is also studied. As its presence in the powder is
likely unintentional, due to a co-grinding of Na2CO3, H2O and Li2CO3

during powder processing, the relevancy of this compound in the
powder was questionable.

The aim of these tests was to provide valuable information to de-
termine optimized powder specifications and to propose a phenomen-
ological description of the extinction mechanism with Marcalina
powder.

2. Materials and methods

2.1. Materials

Powders A, B, and C were used as the Marcalina powder samples
representative of the different storage conditions. Powder A had the
smallest content of trona with only 4.7 w% of water content. Powder B
did not contain LiNaCO3 but more water (partly in the form of water of
crystallization contained in: 29 w% of Na2CO3, H2O and 20 w% of
trona, as well as an added 4 w% of free water). It also contained38 w%
of Li2CO3, and 8 w% graphite). Powder C contained both trona and
LiNaCO3 with 7.5 w% of water of crystallization content.

Besides these powders, synthetic powders of different chemical
compositions were also prepared for extinction tests dedicated to the
study of different parameters. Fig. 1 provides the classification of the
different synthetic powders produced along with the different para-
meters to be studied for the comprehension of extinction mechanism.
The role of the water of crystallization was mainly studied through the
comparison of Powders 1, 2, 3 and 4 (from 0 %w to 18.1 %w of water of
crystallization.

The role of the melting of carbonates (at eutectic temperature) was
studied through the comparison of Powders 5, 6 and 7 (with only so-
dium carbonate, an eutectic mixture of sodium and lithium carbonates,
or with the LiNaCO3 compound, respectively). These powders con-
tained no water of crystallization. The eutectic and LiNaCO3 melting
temperatures are 499.754 ± 0.057 °C and 500.757 ± 0.005 °C re-
spectively (Cairns and Macdonald, 1962).

The influence of spreading method was studied through the com-
parison of Powders 8, 9, 10 and 11, which contains water of crystal-
lization amounts varying from 2.9 %w to 13.2 %w.

The raw materials were first milled in a planetary ball mill and then

Table 1
Summary of the physicochemical results of powders A, B, and C (Kusumanindyah et al., 2015) vs specification from literature (Reuillon et al., 1979; Reuillon, 1976).

Characteristics Powder A Powder B Powder C Specification*

Physical

• LASER
Granulometry

5.6 µm 30.3 µm 7.4 µm <160 µm (Reuillon, 1976)

• FT4 powder
rheometry

Cohesive (++) Cohesive (−)
≈ easy flow

Cohesive (+)

• SEM Regular shaped of 5 µm rod-like,
with larger particles length
(20 µm)

Irregular shaped of 100 µm particles
(agglomerated needle shape
particles)

Similar to powder A

Chemical
(%w) (%w) (%w) (%w)

• XRD

• TGA

• µGC

• Graphite filtration

• AAS

- Na2CO3.H2O: 31
- Li2CO3: 33
- LiNaCO3: 26
- Trona: 1
- Graphite: 9
- Free water: 0

- Na2CO3.H2O: 29
- Li2CO3: 38
- LiNaCO3: 0
- Trona: 20
- Graphite: 8
- Free water: 4

- Na2CO3.H2O: 16
- Li2CO3: 35
- LiNaCO3: 18
- Trona: 26
- Graphite: 5
- Free water: 0

Graphite filtration & AAS (Kusumanindyah,
2016)

- Na2CO3: 43.2
- Li2CO3: 43
- Graphite: 9

water of crystallization: 4.7 water of crystallization: 8.4 water of crystallization:
7.5

water of crystallization: 3.5–5.4 (± 1)
(Reuillon, 1976) or 7 (from 48%w
Na2CO3.H2O in Reuillon et al. (1979))

DSC Tfusion= 498.9 °C Tfusion= 499.4 °C Tfusion= 498.5 °C Tfusion= 500 °C

a Physicochemical analyses of the specification were taken from literature (Reuillon et al., 1979; Reuillon, 1976).



sieved: only the particles of size≤ 63 µm (as mainly specified for
Marcalina) were retained. The sieved materials were then mixed in a
Turbula® T2F (WAB society), to get homogenized final powders. Each
sample produced was analyzed by XRD to verify its composition.

2.2. Experimental set up and procedure

The Chris(X)ti-Na experiment was developed to study the extin-
guishing properties of the powders in a small sodium pool fire
(Kusumanindyah, 2016). The sodium was conserved in an insulated
stainless steel crucible covered with a lid where temperature could be
raised up to 500 °C using an electric hotplate. The surface area of liquid
sodium in the crucible was 19.6 cm2. Ten grams of sodium were used in
each experiment, (0.7 cm height). As soon as the sodium temperature
reached 450 °C, the air circulation (aspiration system) was started and
the inerting argon gas circulation was stopped. The crucible lid was
then removed, allowing a direct contact of liquid sodium with air. Even
if there was a thin sodium oxide layer observed on the surface of liquid
sodium, the fire took place in a few seconds. After complete ignition of
the sodium fire (when sodium temperature is around 540 °C), the
powder in the tank located above the sodium container was spread.

Two spreading methods (Fig. 2a) were studied using two powder

spreader devices, (a) a powder vibrator for gradual spreading and (b) a
powder trapdoor for instantaneous spreading.

The vibrating sieves allowed the powder to be spread continuously
and progressively, which represents the actual application during ex-
tinction using powder extinguisher. However, a rather uneven
spreading was obtained. In this case, the vibration was stopped when no
more flame is observed. The difference between the initial mass of
powder stored in the spreader tank with the one lost during the ex-
periment indicated the mass of the powder used for extinction.

Whereas the trapdoor system (in a form of a manually mobile blade)
allowed powder to be spread all at once, with the same quantity of
powder (5 g) used for each test, so that the efficiency of the powders
could be compared in similar conditions. Therefore, the quantity of
powder employed as well as the extinction time might be more accurate
and then easier to be justified. In case of fire persistence, additional
powder was added manually until extinction was obtained. The powder
compositions (n°8-11) were chosen in order to check, in these spreading
conditions, the influence of two parameters: the water and LiNaCO3

contents.
Fire extinction for both systems was observed by the temperature

measurements and by video recording of the experiments. Four ther-
mocouples were placed inside the sodium container at four different

Fig. 1. Synthetic powders tested for sodium pool fire extinction tests in Chris(X)ti-Na.

Fig. 2. (a) Two spreading methods used in sodium extinction test (b) The position of thermocouples inside the sodium receptacle.



significant levels: inside the sodium, at the sodium pool surface, in the
flame (the flame of a sodium fire is located few millimeters above its
surface (Reuillon, 1976; Newman and Payne, 1978) and in the powder.
The positions of the thermocouples are detailed in Fig. 2b. The ex-
tinction residue was then cooled down to room temperature for sam-
pling and XRD analysis. For some powders, two tests were conducted.

2.3. Methods of characterization and analysis of experimental results

The temperature profile of thermocouples was synchronized with
the video camera, which allowed visualizing the local combustion and
extinction phenomena. The recorder evolutions were composed of two
different steps: combustion and extinction. The chemical characteriza-
tion of the extinction residue by XRD was realized in the laboratory
after sampling, when the materials were at around 25 °C.

2.3.1. Combustion
Generally, two types of sodium combustion were observed in the

experiments, the combustion that was preceded by an oxidation phase
without any flame (delay of ignition) and the spontaneous combustion
(without delay of ignition). The difference of ignition delay was ob-
served from the video and thermocouple recordings. The ignition was
relatively fast with an average time of 2 s on each test as observed in the
video. However, it was detected much later when measured by ther-
mocouples. This is due to the nodulation (preferential ignition point) on
the sodium surface that occurred in places at different distances from
thermocouples locations.

2.3.2. Extinction
The powder spreading started as soon as Tn (temperature in the

sodium pool) and Ts (temperature at the sodium surface) reached a
temperature around 500 °C. This temperature was chosen as it re-
presents the average sodium temperature operating condition in the
reactor. Besides, this ensured that the temperature at which the
spreading starts was always the same. However, it must be emphasized
that the flame temperatures indicated by both Tf (temperature in the
flame) and Tp (temperature in the powder layer after spreading) before
spreading might be different. Several conventions were adopted to
simplify the analysis of results:

• All of the thermocouples were immerged in the powder at the end of
extinction.

• Tf and Tp were chosen as the best representation of the temperature
profile indicating extinction (interpreted by the decrease of tem-
perature). The rate of temperature decrease and/or increase was
calculated by dividing the temperature difference by the time during
which it was observed.

• The extinction was considered to be achieved based on the absence
of flame checked from visual observation using video recording.

3. Experimental results

3.1. Role of water of crystallization (powders 1–4, A, B and C)

A series of extinction tests were carried out to study the influence of
water of crystallization on the capacity of extinction for continuous
spreading conditions. Typical temperature monitoring and images of
the fire and its extinction are shown in Fig. 3 for powder 1 (no water of
crystallization) and in Fig. 4 for powder 3 (13 w% of water of crystal-
lization). The results of these tests are tabulated in Table 2 and the
comparison of the temperature monitoring of the thermocouple Tp for
all the powders in Fig. 5. Shots of the video recording illustrating the
evolution of the sodium fire for powder 1 are reported in Fig. 6a–e.

Powders with no or a low content of water (1, A) struggled to melt
at the sodium surface (Fig. 6a–c), the temperature decrease was slow
(see Fig. 5) and manual intervention was required to cover with powder

re-ignition points near the border (6e). The higher was the water con-
tent, the faster was the temperature decrease and the shorter the time
needed to extinguish the fire (423 s for powder 1, 44 s for powder 4).
The final quantity of water of crystallization used for complete ex-
tinction is quite similar in all the experiments (from 0.5 to 0.9 g).

For the powders with higher water contents (n°3 and 4), two other
phenomena are observed: a fast temperature increase in the powder at
the beginning of the spreading and higher flames (about 5 cm, while
sodium fire flames are very short, < 2cm). For powder 4, flames could
be observed during 18 s. Meanwhile, this phenomenon was observed for
powder 3 only during the high spreading rate experiment. This flame
locally induced temperature increase for the highest thermocouple Tp.
It should also be noticed for these two high water content powders that,
after extinction, the temperature in the powder (300–450 °C) was much
lower than the temperature at the surface of the sodium (being constant
at about 530 °C). XRD analysis of the extinction residue showed higher
peaks of sodium hydroxide (NaOH) than for the powders of lower water
contents.

3.2. Role of LiNaCO3 compound (powders 5–7)

The results of the tests are reported in Table 2. All of the three
powders (n°5, 6, 7) encountered difficulties to melt at the sodium sur-
face. Therefore, the fire could not be extinguished on part of the surface
and a temperature rise of 9.3 °C/s was even observed in case of powder
6 (eutectic mixture of Li and Na carbonates). Operator intervention was
needed to achieve complete extinction in all cases. In case of powder 6,
a large amount of LiNaCO3 was found in the residue by XRD, which
means that the compounds likely melt (at least partially). Indeed,
dedicated DSC experiments (cf. Fig. A-3 Supplementary Materials 1)
and XRD analyses on eutectic composition mixtures showed that no
reaction occurs when Na2CO3 and Li2CO3 mixture are heated under
500 °C, and LiNaCO3 was found only after heating above the eutectic
point (500 °C). The performance of the powder 7 with LiNaCO3 was
only slightly better compared to the two others, so this compound does
not appear to play a predominant role on the sodium fire extinction.

These tests illustrated that having the carbonates in the form of a
“pre-mixed’ compound LiNaCO3 did not help in accelerating the
melting of the powder. Anhydrous carbonate compounds melting
seemed to happen slower than the ones containing water of crystal-
lization. Moreover, during cooling phase, the solidification of melted
LiNaCO3 formed a porous layer at the sodium surface. This might result
in cracking of these layers, thus provoking re-ignition as the tempera-
ture on the surface was still high (close to 500 °C).

3.3. Complementary extinction tests under direct spreading conditions
(powders 8–11)

Powders 8, 9, 10 and 11 were used to test the influence of direct
spreading conditions towards the extinction performance, and parti-
cularly on temperature evolution. The results are reported in Table 2.

The time of extinction and the quantity of powder needed to achieve
the extinction decreased with higher content of water of crystallization
in the powder, as shown in the tests with continuous spreading. NaOH
and LiNaCO3 were found in the residues, but more NaOH was observed
with powder 11, which had the highest water content (it should be
noted that NaOH was not only a reaction product but could have been
formed after the experiment by the contact of the residual sodium with
moisture).

In the case of the three powders with the lower water of crystal-
lization contents (8, 9 and 10), several temperature rises and re-igni-
tion, followed by temperature decrease, were observed. Re-ignitions
happened, needing additional powder to achieve a complete extinction.
Powder 8 with 2.9 %w water of crystallization slowly melted on the
sodium surface, the crust was porous, leading to several re-ignitions and
temperature rises.



In the case of powder 11 with 13.2 w% of water of crystallization, a
high vigorous flame was observed when the powder felt onto the fire for
around 47 s, with a high rate of temperature increase. The powder
melted rapidly, with a rate of temperature decrease ten times faster
than for the other powders.

The evolution of flame extinction using powder 11 is shown in
Fig. 6f–j. A high and sudden flame is produced after spreading (6f),

which is dominated by a yellow color with a bright white center, for
several seconds (6f and g). The bright center slowly disappeared after
the melting of powder at the surface (6h and i) that might be attributed
to the formation of sodium hydroxide.

During extinction with powder 10 (7%H2O), a relatively small flame
as compared to the one with powder 11 (13.8%H2O) was observed. It
had the same bright white light in the center, but appeared to be shorter

Fig. 3. The temperature of the Chris(X)ti-Na experiment with continuous spreading during extinction using powder 1 (and period corresponding to video shots in
Fig. 6a–e).

Fig. 4. The temperature of the Chris(X)ti-Na experiment with continuous spreading during extinction using powder 3 (and periods corresponding to video shots in
Fig. 6f–j).



than in the test with powder 11.
These different results confirmed the tendencies given by tests

carried out with continuous spreading conditions (presented in Sections
3.1 and 3.2). In particular, the measurements (temperature decrease
rate, time and mass of powder used for extinction) proved that the
extinction was faster and more efficient in the case of powders with
higher water content. Even if a transient temperature rise was observed
at the beginning, the extinction mechanism seemed to be enhanced
enough to cancel out this initial reactivity and to finally stop the sodium
fire more easily when the content of water of crystallization was more
important. Moreover, the presence of LiNaCO3 did not seem to have
such an efficient action in the extinction mechanism though its melting
was observed after a certain delay.

4. Discussion

4.1. Role of water of crystallization

For sodium fires, it was shown that the only way to put out a fire is
to separate the liquid surface from the air. Decreasing the liquid tem-
perature or blowing the flame appear to be inefficient (Sarrut, 1979).
Then, the role of the chemical compound in the powder is to constitute
a barrier to limit oxygen supply towards sodium surface, and which
may be either solid (but porous) or liquid by the melting of at least one
of the component of the powder. The water of crystallization can play
this role by reacting with sodium, although this reaction (1) is not
anecdotal due to H2 formation and its exothermicity.

Table 2
Results of small sodium pool fire tests.

Study Powder Significant
characteristics

Extinction rate (Tp)
°C.min-1

Time for
extinction (s)

Mass (g) for extinction (water of
crystallization)

High flame XRD results of
residues

Role of water of
crystalliza-tion

1 0 w% H2O 0.4 295 8.6 (0) No N.O.
A 4.7 w% H2O 0.4 423 10.4 (0.5) No NaOH (−)

Na
2
2nd run

7 w% H2O
High spread

3.4 th. 2.3
3.8 th. 9.2

173/
20

10.9 (0.8)/
7.3 (0.5)

No
No

N.O.
N.O.

C 7.5 w% H2O 4.7 78 6.2 (0.5) No NaOH (−)
Na

B 8.4 w% H2O 6 th. 9 43 8.5 (0.7) No NaOH (−)
LiNaCO3

3
2nd run

13 w% H2O
High spread

20 th. 10
22–30

70
20

5.5 (0.7)
13.9 (1.8)

No
Yes

NaOH (+)

4 18 w% H2O 15 44 5.1 (0.9) Yes (18s) NaOH (+)
Role of carbonate melting 5 High Tf 0.4 295 8.6 No N.O.

6 Eutectic mixture 0.5 214 7.6 No N.O.
7 LiNaCO3 0.6 430 10.3 No N.O.

Direct spreading
extinction

8 2.9 w% H2O 3.1 242 10 No NaOH (+) LiNaCO3

9 5.6 w% H2O 6.9 104 7.4 No NaOH (+) LiNaCO3

10 7 w% H2O 5.4 102 6.8 Yes (short) NaOH (+) LiNaCO3

11 13.2 w% H2O 6.4 78 5 Yes (47s) NaOH(++)
LiNaCO3

*) th.:then; N.O.=Not Observed.

Fig. 5. The comparison of temperature profile recorded by Tp for different water content in continuous spreading.



Na+H2O=NaOH+1/2H2 (1)

4.1.1. Role of liquid NaOH
A protective layer of liquid sodium hydroxide allows a total se-

paration of sodium and oxygen. NaOH is liquid above 323 °C and
moreover, an eutectic exists between NaOH and 7.2 w%Na2CO3 at
283 °C. NaOH is a low viscous fluid (at 500 °C, only twice the viscosity
of water at 25 °C) (Janz et al., 1983). In addition, the presence of water
vapor potentially released by powders heated by sodium fire, is likely to
form NaOH aerosols by reaction with sodium vapor. Since sodium hy-
droxide is a very hygroscopic compound, these aerosols may turn into
deliquescent hydrates. Thus, after NaOH formation, a liquid barrier can
be easily formed on the sodium surface or can fill the porosities of the
carbonate. As the melting point is low (283–323 °C), sodium hydroxide
should remain liquid during a major part of sodium fire and should
prevent efficiently from re-ignition. Moreover, two compounds can be
the source of water: sodium carbonate monohydrate and trona.

For the powders of lower water contents, the temperature decrease
is slow with no preceding temperature rise (see Fig. 5 for powders 1 and
2). The temperature profile of powders of higher water contents (i.e.
powders 3, 4, B and C) tends to demonstrate temperature rises prior to a
relatively fast extinction (see Fig. 4 for powder 3 and Fig. 5 for powders
3 and 4). Moreover, the temperatures tend to decrease more rapidly

afterwards, down to 350 °C, as compared to the other powders.
It appears that this trend is observed above 5.6 wt% of water. In

Fig. 7, these results were expressed in another form, which consists in
the evaluation of the global mass of water of crystallization (that was
potentially released during extinction and formed NaOH, see also
Table 2) contained in the powder spread over sodium to achieve
complete extinction. This figure shows that 0.5–0.9 g of water is needed
to extinguish quickly (in a time around 1min) the sodium pool fire in
the conditions (surface area) of our tests. To define relevant extinction
criteria, this mass must be reported to the surface area of the sodium
pool fire (19.6 cm2). It means that an average of 0.036 g of water/cm2 is
necessary. It implies that 1–2 g of NaOH (equivalent to 0.3–0.6mm
height of liquid NaOH for 19.6 cm2) is actually required to completely
cover the sodium surface. This value is completely consistent with
≈0.4 g of water used to extinguish 12 cm2 of sodium pool fire presented
in Reuillon’s thesis (5 g of Marcalina with 7.5% of water of crystal-
lization) (Reuillon, 1976), which represents 0.033 g of water/cm2. As
what was previously demonstrated by this author, a significant water
content is necessary to achieve a complete extinction and our experi-
mental results were in accordance with Reuillon’s finding. Extra-
polating this results to practical systems, an amount of ≈35 g of water
of crystallization contained in the powder is necessary for the extinction
of a sodium fire of 1m2. Experiments on sodium fires of larger areas are
in progress. Though the minimal values for the water quantity is not

Fig. 6. The evolution of flame prior to extinction using powder 1 (a–e) and powder 3 (f–j).

Fig. 7. Mass of hydration water release at extinction time for several powders with different hydration water contents.



still determined, the tests clearly show the importance of it on the ex-
tinction efficiency. As in the experiments on small fires, it is not easy to
perform uniform spreading of a powder on a fire, and then the spread
quantities generally exceed the one strictly necessary to stop the fire.

Even though there is obviously a slight temperature rise at the be-
ginning of the spreading due to the exothermic reaction of Na with H2O
at the surface, the fast decrease of temperature shows that the forma-
tion of liquid NaOH plays a key role in the extinguishing performance.
Comparing our results between powder C and powder 10 (cf. Table 2)
with similar water content but different compositions, it could be
concluded that whatever is the compound containing the water of
crystallization, trona of sodium carbonate monohydrate, it can con-
tribute efficiently to the fire extinction.

Powders with insufficient water of crystallization content appear to
be only capable to provide a slow smothering effect of the fire with the
formation of a porous layer that favors re-ignition. These powders are
still able to extinguish a sodium fire, but it may take a much longer time
and higher quantity so it questions their efficiency.

The minimum water content, which corresponds to a powder that is
still efficient in extinguishing a fire, is 5.6 w% that is the upper limit
range of water contents recommended by the producer several years
ago. Meanwhile, powders that are close to 13 w% of water of crystal-
lization seem more likely to produce a higher flames prior to the (rapid)
extinction.

4.1.2. H2 and the flash flames
A high rise of temperature recorded by Ts corresponds to the pre-

sence of the flame close to the thermocouple observed in the video
(Fig. 6f and g). It is likely that the higher flames are produced by the
burning of the hydrogen from the reaction of water with sodium. It is
planned to confirm this assumption by LASER spectrometer measure-
ments in order to detect H2 during the extinguishment of a large sodium
fire. Indeed, a higher water content may contribute to a higher pro-
duction of H2, but produces more liquid NaOH at the same time. Ac-
cording to Reuillon (Reuillon, 1976), more re-ignitions are observed
under the presence of 14.5–15% water content. Reuillon attributed the
flash flames to the spreading mode: direct spreading would increase the
quantity of sodium vapor and would provoke a vapor flame. From video
observations (e.g. Fig. 6f and g) and temperature recording in our ex-
periments (Fig. 4, and comparison of behavior with small or high water
amounts in Fig. 5), we can more likely correlate the flash flame with the
vapor content (chemical effect) than with the spreading mode (physical
effect) in the tests. Indeed, the high flames (and temperature rise) were
associated with the powders of higher water content, whatever the
spreading method was.

An analysis of reaction stoichiometry is carried out in order to un-
derstand and to compare the extinction behavior of both compounds
containing water: trona and Na2CO3·H2O The production of H2 is pos-
sible for reactions with sodium vapor (reactions (2) and (3)), but not
with sodium oxide Na2O (reaction (4) and (5), leading to the formation
of NaOH without any H2 production). If the following direct reactions
(2) and (3) with sodium vapor is considered, it appears that 0.008mol
of NaOH may be produced from 1 g of trona. The same amount of NaOH
is produced from 1 g of Na2CO3·H2O However, the latter produces
around 1.6 times less H2 (0.004mol) as compared to the one resulting
from the reaction with trona (0.0066mol). Besides, reactions with
Na2CO3.H2O are less energetic than the ones with trona. This might
indicate that Na2CO3.H2O is a more attractive compound as compared
to trona for sodium fire extinction. Therefore, a high content of trona
does not seem to actually improve the quality of extinction.

• Direct reaction of Na2CO3·H2O and trona with Na(g)+ → ++ =−° −
Na CO H O Na Na CO NaOH

H

·
1
2

s g l

g H

2 3 2 ( ) ( ) 2 3 ( )

2( ) ∆ 184kJ·molr (500 C) 1 (2)

+ → ++ = −° −
Na CO NaHCO H O Na Na CO NaOH

H H

· ·2 3 2 2
3
2
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2 3 3 2 ( ) ( ) 2 3 ( )
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• Direct reaction of Na2CO3·H2O and trona with Na2O(s)+ → += − °−Na CO H O Na O Na CO NaOH H· 2 ∆
71kJ·mol

s s l r2 3 2 ( ) 2 ( ) 2 3 ( ) (500 C)
1 (4)

+ →+ = −° −Na CO NaHCO H O Na O Na CO
NaOH H

· ·2 3 2
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s s

l r

2 3 3 2 ( ) 2 ( ) 2 3

( ) (500 C) 1
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The maximum trona content, produced during aging from
Marcalina composition, as mentioned in the patent, is predicted to be as
much as 58 w%, which would yield 11.6 w% of water. It is considered
as being a slow transformation and to happen faster under a high
moisture with no sealed condition (the role of CO2 is important in fa-
voring the reaction) (Kusumanindyah et al., 2015). In tests with 8.4 and
13.6 w% of water (11.6 w% being in between) the extinction was fast
but preceded by a more or less short temperature increase and higher
flames appearing. In the case of a larger sodium fire, it is not expected
that the hydrogen flames could be more damageable. Indeed, the same
amount of H2 should be released per unit area as on a small fire. Then,
though the flames are higher than the sodium flames (generally 2 cm
high), their height should not exceed a few cm. As a consequence, the
hazards and the methods for extinction are not dramatically changed.
First results on larger fire show that hydrogen flames should not be an
issue.

Hence, the complete aging of sodium carbonate into trona could be
considered as acceptable in the point of view of extinction efficiency.
However, it should be verified that it does not alter too much powder
transport properties under different storage conditions. A regular con-
trol of moisture, as well as the choice of packaging during storage,
would allow controlling the aging.

4.2. Role of compounds melting at high temperatures (carbonates eutectic)

Mixed carbonate compound LiNaCO3 in the Marcalina powder was
likely produced as a result of a mechanochemical reaction during
grinding. It is still questionable whether or not its presence is inter-
esting for improving the extinction efficiency by faster melting as
compared to the mixture of lithium and sodium carbonates (in separate
grains). The powders with LiNaCO3 as the major component (n°7, 8 and
9) exhibit a relatively slow melting during extinction, though the so-
dium surface is above its melting point (500.6 °C), and many re-igni-
tions were observed.

It was also clear from powders with the eutectic composition but
without LiNaCO3 at start (e.g. n°4), that the carbonates melted, as
LiNaCO3 was found in the residue of the powder after extinction.
Hence, the melting of the carbonate is not efficient in suppressing the
sodium fire by allowing a complete separation of Na and O2. One of the
reason can be that the carbonates are much more viscous than sodium
hydroxide (ten times (Newman and Payne, 1978), which might prevent
their easy spreading on the sodium surface and the filling of the pores in
the remaining powder. One other reason can be that the layer of Li-
NaCO3, that forms at freezing when the fire stops, cracks easily, while
the sodium temperature is still relatively high enough (≈500 °C), which
provokes re-ignitions.

It can be concluded that the presence of LiNaCO3 is not mandatory
to process an efficient extinguishing powder. The presence of an eu-
tectic itself might not be necessary, at least with sodium at temperature
around 500 °C.



4.3. Influence of particle sizes on extinction performance

It was claimed for the ancient sodium fire extinguishing powder,
Totalit M2, of particle size< 35 µm shows a better performance as
compared to other powders of bigger particle sizes (Reuillon, 1976). In
her work, Reuillon (Reuillon, 1976) recommended particle sizes to be
less than or equal to 160 µm, whilst several Marcalina batches have a
dominant particle size< 63 µm.

The powders tested in this work have a size range between 5 and
65 µm which is still within the range of particle size previously studied.
The effect of particle size on the extinction time can be seen in
“Supplementary data 2”. It appears that particles with smaller sizes
(mean particle size< 10 µm) do not contribute to improve the extinc-
tion performance unless it has sufficient content of water of crystal-
lization (i.e. 7.5 w% for powder C vs 4.7% for powder A). Likewise, the
synthetic powders with the highest water contents perform a better
extinction (in terms of extinction time) in comparison to the others with
less water, whether their particle sizes are relatively small (30 µm,
powder 4) or large (65 µm, powder 3). This demonstrates the pre-
dominant role of chemical composition in achieving efficient sodium
fire extinction.

The experimental results clearly demonstrate the little influence of
particle size on improving extinction capacity. It might only affect the
spreading performance. The smaller particles struggle to form a
homogenized layer thickness at the sodium surface since the powder is
more cohesive and does not spread easily.

4.4. Phenomenological description of the extinction mechanism

Based on the result of the experimental tests discussed above, two
contributions for the extinction mechanism might be proposed and il-
lustrated in Fig. 8: (a) the formation of NaOH and (b) the eutectic
melting of carbonates. The phenomenology is proposed as detailed
below:

1. The formation of NaOH (Fig. 8 steps 1 to 3):
– either from a direct formation
o from the reaction of Na2CO3·H2O with Na(g) and Na2O(s) , re-
spectively reactions (2) and (4)

o from the reaction of trona with Na(g) and Na2O(s) : respectively
reactions (3) and (5)

– or from indirect formation from the decomposition of trona or
Na2CO3·H2O followed by reaction with Na(g)-reaction (1)- or
Na2O(s).

Assuming the flash flame is an hydrogen flame, it can be stated that
there is a significant contributions of direct reactions (2) and (3) or that
during indirect formation, part of the released H2O reacts with Na (li-
quid or gas).

Birchall (1970) proposed an extinction mechanism for methane
flames with hydrated alkali salts based on the increase of the specific
surface of the powder (physical effect) at product decomposition (water
release) reaction. In his case, a sixtyfold increase of specific area was
observed, which can account for a large cooling effect. In our experi-
ments, such a large expand at water release was not observed. Instead,
this water release rather contributed to the formation of (liquid) NaOH.
In addition, the effect of small particle sizes is proved to be insignificant
for sodium fire extinction. The mechanisms induce the formation of H2

that might provoke the flash flame observed prior to extinction. These
reactions are significantly contributing to the rapid decrease of tem-
perature due to the formation of liquid, low viscous, sodium hydroxide
as a protective layer to cover the sodium surface from prolonged con-
tact with oxygen.

2. The melting of eutectic mixture of carbonates (Fig. 8 steps 1, 3 and
4)

If the water content is not sufficient to cover all the sodium pool, (as
illustrated in Fig. 8 step 4), isolation of the sodium from air can come
from the melting of the carbonates. The melting of eutectic mixture of

Fig. 8. The mechanism of sodium fire extinction.



carbonates happened at 500 °C with the fusion enthalpy of
11.1 kJ·mol−1. After cooling, LiNaCO3 may be formed according to
reaction (6). Hence, the presence of LiNaCO3 is a proof that the melting
of eutectic carbonates happened during extinction.+ →Na CO Li CO LiNaCOs s l2 3( ) 2 3( ) 3( ) (6)

Liquid carbonate has tenfold higher viscosity than NaOH (with ≈18
cP (Janz et al., 1980) as compared to 1.8 cP for NaOH at 500 °C (Janz,
1988). This property might make the liquid eutectic carbonate less ef-
ficient to achieve the formation of a protective layer (uncomplete filling
of pores as in Fig. 8 step 3). Besides, the melting reaction happens
slower than that of NaOH formation and requires a higher temperature.
Moreover, as the sodium temperature is still high when carbonates
solidify, the possible cracking of carbonates layer is likely to provoke
re-ignitions (illustrated in Fig. 8, step 4). Consequently, its role is less
significant especially if the sodium surface temperature is less or equal
to 500 °C (as it is close to its melting point). However, it can be con-
sidered that it could be more efficient for sodium fires with higher so-
dium surface temperature (more than 500 °C), although the problem of
the re-ignitions might still arise during sodium/carbonate cooling.

Reuillon tested a ternary mixture of sodium, lithium and potassium
carbonates (with hydrated sodium carbonate), which melting point is
390 °C. The mixture melted easily but sank in the sodium (Reuillon,
1976). This might be due to its slightly higher density as compared to
sodium-lithium carbonate mixture (at 500 °C 2.09 vs 2.00 g·cm−3) (Janz
et al., 1980). Once again, the melting of the carbonates does not appear
to be very helpful in extinguishing the fire by comparison of the effect
of water (Reuillon, 1976). The main interest in adding lithium carbo-
nate to hydrated sodium carbonate could be to lower the density of the
powder and to limit the aging (as Li2CO3 does not transform) and hence
conserve the physical properties of the powder.

5. Conclusion

In this study, an analysis of the performance of extinguishing
powders was presented to respond potential issues, related to the risk of
sodium fires, to be considered in sodium fast reactors. The influence of
the chemical composition, the potential aging of different compounds,
as well as the role of physical behavior of the powder were analyzed in
details in order to propose a consistent description of the extinction
mechanism. A series of different extinction tests using the various
powders (with real sodium fires at laboratory scale) were carried out to
understand the influence of the major parameters of this complex
phenomenon.

The results highlighted several points:

• The extinction time is considered to be much longer for powders
with no or small amounts of water of crystallization content (< 5.6
%w). The minimum water content, which corresponds to a powder
that is still efficient in extinguishing a fire, is 5.6 w% that is the upper
limit range of water contents recommended by the producer several
years ago.

• The water of crystallization appears to play an important role in
facilitating the extinction. This is due to the formation of liquid
sodium hydroxide thanks to the reaction with sodium and behaving
as an insulating layer that ensure the separation of sodium and
oxygen. Extrapolating our results to large sodium fires, a minimum
amount of ≈35 g of water in the powder per 1m2 fire surface seems
necessary to perform the extinction.

• More water of crystallization contributes to shorten the extinction
time. However, a transient increase of temperature and flash flame
are observed in certain tests prior to rapid extinction. This tem-
perature rise may correspond to the exothermic reaction of soda and
hydrogen production, and the flame to the hydrogen combustion
(which should be confirmed by spectrometer measurements).
Nevertheless, these detrimental effects are not expected to change

dramatically the management of extinction and the hazards for
operators. These conclusions have to be confirmed on larger sodium
fires (in progress).

• The ageing product trona is proven to not alter the extinction ca-
pacity of the powder. With the same amount of sodium hydroxide
produced as sodium carbonate monohydrate, trona releases more
quantity of H2 and is more exothermic. However this drawback, as
noted above, should not prevent the use of the aged powder.

• LiNaCO3 as a main component does not seem to give a significant
contribution to the extinction by facilitating the melting of the
carbonates.

• When the powder contains no or only few amounts of water, the
cracking of the carbonates at solidification and cooling at relatively
high temperature (500 °C) may lead to several re-ignitions.

The particle size apparently does not demonstrate a significant
contribution in the extinguishing performance except for affecting the
spreading before melting (bigger particles behaves better).

In addition to the basic smothering effect due to the spreading of
any extinguishing powder, two mechanisms of extinction are then
proposed based on the results of these tests:

1. The formation of liquid sodium hydroxide via the direct reaction of
trona and/or Na2CO3·H2O with Na(g) and/or Na2O(s) or indirectly
via the decomposition reaction of trona and Na2CO3·H2O prior to
reaction of H2O(g) released with Na and Na2O.

2. The melting of eutectic mixture of carbonates (less efficient and does
not prevent re-ignitions).

This study shows the great importance of the water of crystallization
content in the powder in order to have efficient sodium fire extinction.
However, the experiments were conducted on small fires (few cm2). For
the conclusion to be valid in real situation, powders of different water
contents should be tested on larger fires. Such tests are in progress.
Though the minimal values for the water quantity is not still de-
termined, the tests clearly show the importance of it on the extinction
efficiency. As in our experiments, it is not easy to perform uniform
spreading of a powder on a fire, and then the spread quantities gen-
erally exceed the one strictly necessary to stop the fire.

Finally, it could be concluded that slight modifications in the
composition or in the manufacturing of new extinguishing powders
would be interesting. The water content in the powder should be in-
creased to match current specifications, so does the particle size, thus
limiting the milling process. Both water of crystallization containing
compounds should be suitable for sodium fire extinction, sodium car-
bonate monohydrate brings enough water and less H2 release, trona
might be less expensive, less sensitive to aging and H2 excess release
appears rather easily manageable.
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