S. Bethanis, C. R. Cheeseman, and C. J. Sollars, Properties and microstructure of sintered incinerator bottom ash, Ceram. Int, vol.28, issue.02, pp.68-76, 2002.

C. R. Cheeseman, A. Makinde, and S. Bethanis, Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash, Resour. Conserv. Recycl, vol.43, pp.147-162, 2005.

A. Bourtsalas, L. J. Vandeperre, S. M. Grimes, N. Themelis, and C. R. Cheeseman, Production of pyroxene ceramics from the fine fraction of incinerator bottom ash, Waste Manag, vol.45, pp.217-225, 2014.

R. Taurino, A. Karamanov, R. Rosa, E. Karamanova, L. Barbieri et al., New ceramic materials from MSWI bottom ash obtained by an innovative microwave-assisted sintering process, J. Eur. Ceram. Soc, vol.37, pp.323-331, 2017.

L. M. Schabbach, F. Andreola, E. Karamanova, I. Lancellotti, A. Karamanov et al., Integrated approach to establish the sinter-crystallization ability of glasses from secondary raw material, J. Non Cryst. Solids, vol.357, pp.10-17, 2011.

L. Barbieri, A. Karamanov, A. Corradi, I. Lancellotti, M. Pelino et al., Structure, chemical durability and crystallization behavior of incinerator-based glassy systems, J. Non Cryst. Solids, vol.354, pp.521-528, 2008.

X. Py, N. Calvet, R. Olives, A. Meffre, P. Echegut et al., Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants, J. Sol. Energy Eng, vol.133, p.31008, 2011.

A. Kere, G. Dejean, N. Sadiki, R. Olives, V. Goetz et al., Vitrified Industrial wastes as thermal energy storage materials for high temperature applications, Int. Conf. Eng. Waste Biomass Valoris, 2012.

X. Py, R. Olives, V. Goetz, Q. Falcoz, A. Meffre et al.,

K. Crillesen, J. Skaarup, and K. Bojsen, International Solid Waste Association: Management of bottom ash from WTE plants-an overview of management options and treatment methods. ISWA, Chiffres clés des énergies renouvelables, 2006.

, International Solid Waste Association: Waste-to-Energy Stateof-the-Art, 2012.

D. H. Vu, K. Wang, J. Chen, B. X. Nam, and B. H. Bac, Glass-ceramic from mixtures of bottom ash and fly ash, Waste Manag, vol.32, pp.2306-2314, 2012.

M. Aloisi, A. Karamanov, G. Taglieri, F. Ferrante, and M. Pelino, Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes, J. Hazard. Mater, vol.137, pp.138-143, 2006.

P. Appendino, M. Ferraris, I. Matekovits, and M. Salvo, Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators, J. Eur. Ceram. Soc, vol.24, issue.03, pp.264-268, 2004.

L. Barbieri, A. Corradi, and I. Lancellotti, Bulk and sintered glassceramics by recycling municipal incinerator bottom ash, J. Eur. Ceram. Soc, vol.20, issue.00, pp.32-39, 2000.

, Acceptabilité environnementale de matériaux alternatifs en technique routière-Les mâchefers d'incinération de déchets non dangereux (MIDND), Sétra, Ministère de l'Ecologie, 2006.

E. Rambaldi, L. Esposito, F. Andreola, L. Barbieri, I. Lancellotti et al., The recycling of MSWI bottom ash in silicate based ceramic, Ceram. Int, vol.36, pp.2469-2476, 2010.

N. Lopez-ferber, Q. Falcoz, D. P. Minh, J. F. Hoffmann, A. Meffre et al., Flexibility and robustness of a high-temperature air/ceramic thermocline heat storage pilot, J. Energy Storage, vol.21, pp.393-404, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01969631

G. Dejean, Valorisation de laitiers sidérurgiques comme matériaux de stockage thermique pour procédés énergétiques durables, 2014.

A. Kere, N. Sadiki, X. Py, and V. Goetz, Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions, Energy Convers. Manag, vol.88, pp.113-119, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178176

, European Commission, Document de référence sur les meilleures techniques disponibles-Fabrication des céramiques, 2007.

R. Taurino, E. Karamanova, L. Barbieri, S. Atanasova-vladimirova, F. Andreola et al., New fired bricks based on municipal solid waste incinerator bottom ash, Waste Manag. Res, vol.35, pp.1055-1063, 2017.

S. A. Zavattoni, M. C. Barbato, A. Pedretti, G. Zanganeh, and A. Steinfeld, High temperature rock-bed TES system suitable for industrial-scale CSP Plant-CFD analysis under charge/discharge cyclic conditions, Energy Procedia, vol.46, pp.124-133, 2014.

. Iupac, Compendium of Chemical Terminology-Gold Book, 2014.

F. Becquart, F. Bernard, N. E. Abriak, and R. Zentar, Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction, Waste Manag, vol.29, pp.1320-1329, 2009.

M. N. Rahaman, Ceramic Processing, 2017.

C. R. Cheeseman, S. Monteiro-da-rocha, C. Sollars, S. Bethanis, and A. R. Boccaccini, Ceramic processing of incinerator bottom ash, Waste Manag, vol.23, pp.39-43, 2003.

L. M. Schabbach, F. Andreola, L. Barbieri, I. Lancellotti, E. Karamanova et al., Post-treated incinerator bottom ash as alternative raw material for ceramic manufacturing, J. Eur. Ceram. Soc, vol.32, pp.2843-2852, 2012.

, Techniques de l'ingénieur, Frittage: aspects physico-chimiques Partie 1: frittage en phase solide, 2005.

T. Kato, K. Ohashi, M. Fuji, and M. Takahashi, Water absorption and retention of porous ceramics fabricated by waste resources, J. Ceram. Soc. Jpn, vol.116, pp.212-215, 1350.

S. Vichaphund and P. Thavorniti, Properties of ceramic produced from clay and MSW incineration bottom ash mixtures. Sci. Technol, Asia, vol.15, pp.89-93, 2010.

L. M. Anovitz and J. G. Blencoe, Dry melting of high albite, Am. Mineral, vol.84, pp.1830-1842, 1999.

P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, Tech. Res. Cent. Finl, vol.1792, p.26, 1996.

J. E. Funk and D. R. Dinger, Predictive Process Control of Crowded Particulate Suspensions-Applied to Ceramic Manufacturing, 1994.

S. A. Fennis and J. C. Walraven, Using particle packing technology for sustainable concrete mixture design, vol.57, pp.73-102, 2012.

C. Shi, Z. Wu, K. Lv, and L. Wu, A review on mixture design methods for self-compacting concrete, Constr. Build. Mater, vol.84, pp.387-398, 2015.

J. Zheng, P. F. Johnson, and J. S. Reed, Improved equation of the continuous particle size distribution for dense packing, J. Am. Ceram. Soc, vol.73, issue.5, pp.1392-1398, 1990.

Y. K. Kalpakli, Effects of particle size distribution on the refractory properties and corrosion mechanism of ultra-low cement castables, Arch. Mater. Sci. Eng, vol.34, pp.81-88, 2008.