P. Mckendry, Energy production from biomass, Conversion technologies, vol.83, pp.47-54, 2002.

P. Basu, Biomass gasification and pyrolysis: practical design and theory, 2010.

H. Schmidt, 55 Uses of Biochar, Ithaka J, vol.25, issue.1, pp.13-25, 2012.

I. Ghouma, M. Jeguirim, S. Dorge, L. Limousy, M. Ghimbeu et al., Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature, Comptes Rendus Chim, vol.18, issue.1, pp.63-74, 2015.

C. Guizani, E. Sanz, F. J. Salvador, and S. , Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2, Fuel Process Technol, vol.134, pp.175-88, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01662704

T. Kan, V. Strezov, and T. J. Evans, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renew Sustain Energy Rev, vol.57, pp.126-1140, 2016.

K. Crombie, O. Ma?ek, S. P. Sohi, P. Brownsort, and A. Cross, The effect of pyrolysis conditions on biochar stability as determined by three methods, GCB Bioenergy, vol.5, issue.2, pp.122-153, 2013.

P. T. Williams and S. Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass, Renew Energy, vol.7, issue.3, pp.233-50, 1996.

K. Yip, M. Xu, C. Z. Li, S. P. Jiang, and H. Wu, Biochar as a fuel: 3. Mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity, Energy Fuels, vol.25, issue.1, pp.406-420, 2011.

M. Uchimiya, L. H. Wartelle, K. T. Klasson, C. A. Fortier, and I. M. Lima, Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil, J Agric Food Chem, vol.59, issue.6, pp.2501-2511, 2011.

O. Onay and O. M. Kockar, Slow, fast and flash pyrolysis of rapeseed, Renew Energy, vol.28, issue.15, pp.2417-2450, 2003.

P. Kim, Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis, Energy Fuels, vol.25, issue.10, pp.4693-703, 2011.

J. L. Figueiredo, M. Pereira, M. Freitas, and J. Orfao, Modification of the surface chemistry of activated carbons, Fuel, vol.37, pp.1379-89, 1999.

J. Bourke, M. Manley-harris, C. Fushimi, K. Dowaki, T. Nunoura et al., Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal, Ind Eng Chem Res, vol.46, pp.5954-67, 2007.

J. Mcdonald-wharry, M. Manley-harris, and K. Pickering, Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy, Carbon NY, vol.59, pp.383-405, 2013.

D. M. Keown, X. Li, J. I. Hayashi, and C. Z. Li, Characterization of the structural features of char from the pyrolysis of cane trash using Fourier transform-Raman spectroscopy, Energy Fuels, vol.21, issue.3, pp.1816-1837, 2007.

L. Zhao, X. Cao, O. Ma?ek, and A. Zimmerman, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J Hazard Mater, pp.256-257, 2013.

C. E. Brewer, K. Schmidt-rohr, J. A. Satrio, and R. C. Brown, Characterization of biochar from fast pyrolysis and gasification systems, Environ Prog Sustain Energy, vol.28, issue.3, 2009.

Z. Bouraoui, M. Jeguirim, C. Guizani, L. Limousy, C. Dupont et al., Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity, Energy, vol.88, pp.703-713, 2015.

J. Mcdonald-wharry, Biochars and carbonised biomass: a new zealand perspective with a focus on chemistry, Chem New Zeal, vol.2014, pp.29-33, 2014.

M. Morin, S. Pécate, M. Hémati, and Y. Kara, Pyrolysis of biomass in a batch fluidized bed reactor: effect of the pyrolysis conditions and the nature of the biomass on the physicochemical properties and the reactivity of char, J Anal Appl Pyrol, vol.122, pp.511-534, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01907322

S. Potgieter-vermaak, N. Maledi, N. Wagner, J. Van-heerden, R. Van-grieken et al., Raman spectroscopy for the analysis of coal: A review, J Raman Spectrosc, vol.42, issue.2, pp.123-132, 2011.

E. Bar-ziv, A. Zaida, P. Salatino, and O. Senneca, Diagnostics of carbon gasification by raman microprobe spectroscopy, Proc Combust Inst, vol.28, issue.2, pp.2369-74, 2000.

A. Zaida, E. Bar-ziv, L. R. Radovic, and Y. Lee, Further development of Raman Microprobe spectroscopy for characterization of char reactivity, vol.31, pp.1881-1888, 2007.

C. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel, vol.86, pp.2316-2340, 2007.

C. Guizani, S. Valin, J. Billaud, M. Peyrot, and S. Salvador, Biomass fast pyrolysis in a drop tube reactor for bio oil production: experiments and modeling, J. Anal. Appl Pyrolysis, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581812

J. Billaud, S. Valin, M. Peyrot, and S. Salvador, Influence of H2O, CO2 and O2 addition on biomass gasification in entrained flow reactor conditions: Experiments and modelling, Fuel, vol.166, pp.166-78, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01609022

C. Guizani, M. Jeguirim, S. Valin, L. Limousy, and S. Salvador, Biomass chars: the effects of pyrolysis conditions on their morphology, structure, chemical properties and reactivity, Energies, vol.10, issue.6, p.796, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619257

C. Guizani, K. Haddad, L. Limousy, and M. Jeguirim, New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis, Carbon NY, vol.119, 2017.

H. A. Ruiz, M. H. Thomsen, and H. L. Trajano, Hydrothermal processing in biorefineries: production of bioethanol and high added-value compounds of second and third generation, 2017.

A. Jeder, The severity factor as a useful tool for producing hydrochars and derived carbon materials, Environ Sci Pollut Res, vol.25, issue.2, pp.1497-507, 2018.

L. A. Pyle, W. C. Hockaday, T. Boutton, K. Zygourakis, T. J. Kinney et al., Chemical and isotopic thresholds in charring: implications for the interpretation of charcoal mass and isotopic data, Environ Sci Technol, 2015.

J. M. Commandré, S. Salvador, V. Steene, L. Gadiou, and R. , The formation and reduction of no during the combustion of powdered petroleum coke-The case of cement plant precalciner conditions, Combust Sci Technol, vol.177, issue.3, pp.579-611, 2005.

S. Stringel and S. , High temperature gasification of millimetric wood particles between 800 °C and 1400 °C, 2011.

J. Billaud, S. Valin, G. Ratel, S. Thiery, and S. Salvador, Biomass gasification between 800 and 1, 400 °C in the presence of O2: drop tube reactor experiments and simulation, Chem Eng Trans, vol.37, pp.163-171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01625029

S. Septien, S. Valin, C. Dupont, M. Peyrot, and S. Salvador, Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000-1400 °C), Fuel, vol.97, pp.202-212, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01688405

L. Chen, Fast pyrolysis of millimetric wood particles between 800 ° C and 1000 °C, 2009.

C. W. Gorton, R. J. Kovac, J. A. Knight, and T. I. Nygaard, Modeling pyrolysis oil production in an entrained-flow reactor, Biomass, vol.21, pp.1-10, 1990.

C. Gheorghe, C. Marculescu, A. Badea, C. Dinca, T. Apostol et al., Effect of pyrolysis conditions on bio-char production from biomass. 3rd WSEAS Int, Conf. Renew. Energy Sources, pp.239-280, 2009.

A. Trubetskaya, P. A. Jensen, A. D. Jensen, M. Steibel, H. Spliethoff et al., Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars, Fuel Process Technol, vol.140, pp.205-219, 2015.

K. Elyounssi, J. Blin, and M. Halim, High-yield charcoal production by two-step pyrolysis, J Anal Appl Pyrol, vol.87, issue.1, pp.138-181, 2010.

K. Yip, M. Xu, C. Li, S. P. Jiang, and H. Wu, Biochar as a Fuel: 3. mechanistic understanding on biochar thermal annealing at mild temperatures and its effect on biochar reactivity. Energy Fuels, vol.25, pp.406-420, 2011.

A. Paethanom and K. Yoshikawa, Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability, Energies, vol.5, issue.12, pp.4941-51, 2012.

M. W. Smith, Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles, Carbon NY, vol.100, pp.678-92, 2016.

M. Asadullah, S. Zhang, Z. Min, P. Yimsiri, and C. Li, Effects of biomass char structure on its gasification reactivity, Bioresour Technol, vol.101, issue.20, pp.7935-7978, 2010.

. Fig, Evolution of R 2 for the different identified correlations as a function of T. Ref, vol.8

R. Azargohar, S. Nanda, J. A. Kozinski, A. K. Dalai, and R. Sutarto, Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass, Fuel, vol.125, pp.90-100, 2014.

X. Li, J. Hayashi, and C. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel Sep, vol.85, pp.1700-1707, 2006.

A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects, Solid State Commun, vol.143, issue.1-2, pp.47-57, 2007.