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A B S T R A C T

The aim of this paper is to study the influence of the process parameters (cutting speed and feed) of the con-
ventional trimming on cutting forces, machining temperatures, tool wear and machining quality of Carbon
Fibers Reinforced Plastics (CFRP) using PCD tool. The machining quality was characterized using three different
techniques such as Scanning Electron Microscopy (SEM), 3D optical topography and X-ray tomography. The
originality of this work is based mainly on the multi-scale characterization of the machined surfaces. In fact, a
new parameter based on the measurement of the volume of craters is proposed and compared to the surface
roughness criterion (Sa) and the X-ray tomography images. The obtained results show that, with the crater
volume criterion as well as the X-ray tomography images, the effect of the machining parameters and the wear of
the tool on the textured surfaces are well correlated to surface roughness criterion (Sa). In addition, it was
observed that the feed speed and tool wear were the major factors affecting the cutting forces and the machining
temperatures.

1. Introduction

Composite materials have been used widely in recent decades,
especially fiber reinforced plastics composites (FRPs). This kind of
material has been attracted by various industrial fields like aerospace,
transportation, sports equipment, because of possessing valuable fea
tures such as high strength to weight ratio, high stiffness to weight
ratio, high corrosion and wear resistance [1]. To conform to each cer
tain application, composite parts are frequently fabricated to near net
shapes. In many cases, the machining operations are commonly needed
after demolding to get the final dimensions of the composite structures.
The applications of each cutting process mainly depend on specific
requirements of assembled composite parts. For instance, drilling is
applied to make holes for riveting of the panels [2 4], edge trimming is
used to remove excess materials in the sides (free edges) [5,6]. Al
though composite materials offer many advantages, their machinability
is a huge challenge and remains an open problem. Given that composite
materials consist of minimum two constituents, e.g. carbon fiber re
inforced and matrix owning different mechanical, thermal and physical
properties which make composite materials inhomogeneous and ani
sotropic. Thereby, machining of carbon/epoxy materials is

accompanied by a series of brittle fractures because of shearing and
cracking of matrix materials under applying of cutting forces due to the
interaction between cutting tool and workpiece [7 10]. As a result,
several kinds of damage such as delamination, uncut fibers, thermal
and/or mechanical degradation of the matrix, inter laminar cracks are
created, and making the machining surface becomes more irregular
than that of metallic materials [11 13]. In addition, cutting parameters,
tool wear and the relative angle between the direction of cutting speed
and fiber direction are crucial factors affecting the damage induced
[5,11,12]. In fact, in the experimental work of Morandeau et al. [14],
the influence of lead angle of the cutting tool on the cutting forces and
the machining quality during milling of multi directional composite
made of CFRP have been investigated. Authors have shown that, milling
with cutting tool which is characterized by a lead angle of 19° leads to
reduce the cutting force, rate of wear and the size of the delamination
compared to the case when milling is conducted with a cutting tool of
60° of lead angle. Recently, an acoustic emission (AE) technique has
been used by Prakash et al. [15] for on line monitoring of the tools wear
during trimming of unidirectional specimens made of CFRP. Thanks to
this technique of instrumentation, the relationship between AE signal
and length of machining for different kinds of geometry of tools has
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been identified. It was concluded that the geometry of the router tool
(burr tool) with a flat cutting edge has better performance by gen
erating lower cutting force and better surface finish compared to the
helical fluted tool. In addition, in the work of Slamani et al. [16], which
focuses on the statistical analysis technique when trimming of multi
directional specimens made CFRP, it was mentioned that the effect of
cutting speed on the cutting forces is found negligible. Sheikh Ahmad
et al. [12] have revealed that trimming of CFRP at high cutting speed
and low feed speed produces low values of theoretical chip thickness
and generates better surface quality. Inversely, the combination be
tween low cutting speed and high feed speed gives poor quality of
machined surfaces due to the high values of chip thickness which make
difficulties in trimming. On the contrary, Haddad et al. [5,17] have
shown that when trimming is conducted with high cutting speed
(1400m/min) and low feed speed (125mm/min), surface defects are
more than other cutting conditions used (less cutting speed and high
feed speed). The authors (Haddad et al. [17]) have explained that the
difference of results compared to the work of Sheikh Ahmad et al. [12]
is attributed mainly to the rapid wear rate of cutting tool used (which is
made of tungsten carbide). It means that when the feed speed decreases,
the contacting time between the CFRP specimen and cutting tool in
creases. Other hand, an increase in the cutting speed generates a wider
contacting surface between the machined specimen and the cutting
tool. Similar result has been obtained by Cadorin et al. [4] when drilling
of 3D composite made of carbon fiber. In this case, Cadorin et al. [4]
have proposed to use a cutting tool made of diamond grits to increase
the wear resistance and have made the texture of the machined surface
little independent of the contacting time of the tool with the machined
surface. Actually, when machining is conducted with cutting tool made
of tungsten carbide, the increasing of the contacting time and the
frictional phenomenon, make cutting tool rapidly wear and very high
machining temperatures induced. In fact, machining temperatures re
corded by Haddad et al. [17] at small feed speed and higher cutting
speed were higher than the glass transition temperature of the ma
chined composite materials. As known, the wear of cutting tool gen
erates poor surface integrity, higher cutting temperatures, and forces as
well [5,11]. The natural abrasive of the carbon fiber is an avoidable
reason causing tool wear. Consequently, the using of cutting tool ma
terials having the high wear resistance is necessary. These tool mate
rials like cemented tungsten carbides coated with diamond layer,
ceramics, and polycrystalline diamond (PCD) have been used in com
posite machining. Among mentioned tool materials, PCD tool provides
good thermal conductivity, low coefficient of friction, superior tool life,
and higher productivity. Hence, cutting PCD tool is widely re
commended for machining of composite materials. However, the cost of
the PCD tool is much higher compared to the tungsten carbide cutting
tools or other materials, few authors have investigated the machin
ability of CFRP with cutting tools made of PCD inserts [18 25]. In the
work of [24], authors have focused on the influence of the machining
parameters on the cutting forces and the machining quality during
trimming of unidirectional specimens made of carbon/epoxy laminates.
In this work the machining surface is characterized by the average
roughness criterion (Ra). In fact, the presence of machining defects in
structures in service creates many stress concentration sites which can
affect the mechanical properties of composite structures [26 28].
Hence, machining quality should be correlated to mechanical proper
ties to identify the impact of the machining quality on the structural
integrity. The surface roughness criterion (such as Ra or Sa), initially
used for the qualification of the surface quality of metal, is widely
adopted to characterize the quality of composites too. However, ex
tending the utilization of this parameter for composites to correlate the
machining damage to the mechanical behavior has given rise to am
biguity in research communities. For example, if we refer to the work of
Squires et al. [29] it is observed that an increase in surface roughness
(Ra) leads to reduction in the compressive strength. Based on this re
sult, it seems that the surface roughness (Ra) is a good indicator to

characterize the machined surface of composite materials. Never
theless, the results of the tension tests conducted by Ghidossi et al. [30]
on unidirectional (UD) specimens made of glass/epoxy have showed a
totally converse results, i.e. tensile strength increases with the in
creasing of the surface roughness (Ra). In addition, for the multi
directional (MD) laminates, recently Haddad et al. [28] have revealed
that the compressive strength of the machined specimens is strongly
influenced by the machining quality and mainly the temperature of
machining. Their results reveal that the compressive strength of spe
cimens characterized by a temperature of machining superior or equal
to 290 °C is 30% lower to the compressive strength of specimens with a
temperature of machining around 130 °C. Although this reduction of
the compressive strength is accompanied with increasing surface
roughness, it cannot make any conclusions about the relationships be
tween the surface roughness and the compressive strengths. Moreover,
the incapability of surface roughness in characterization of machining
damage of composite has been also documented by other studies such
as [31 34].Thus, it can besaid that surface roughness does not hold
good for composites, its correlation with mechanical properties is to
tally absurd, hence a new parameter is proposed which will better
quantify the machining damage and correlates to mechanical proper
ties. Recently, in the work conducted by Hejjaji et al. [35] it is observed
that generated the machining quality obtained after milling of CFRP
with the abrasive water jet process, can be quantified as crater volume,
which was well correlated to the tensile strength rather than the surface
roughness (Ra).

The main objective of this work is to analyze the impact of cutting
parameters and tool wear on the cutting forces, temperatures of cutting
as well as the machining damage during trimming of CFRP structures.
The trimming process is conducted using PCD tool with different
techniques of instrumentations which include dynamometer and in
frared camera. Machining quality and the surface texturing are char
acterized using SEM observations, X ray tomography technique and 3D
optical topography measurements. The quantification of machining
damage is conducted using the surface roughness criterion and the
crater volume thanks to 3D contour processing technique.

2. Experimental procedure

2.1. Material preparation

The CFRP laminates used in this study were made of unidirectional
Prepregs supplied by Hexcel Composite Company and referenced under
HEXPLY US T700 268 M21 34% (T700 M21). Twenty layers of prepregs
corresponding to the dimension of 300mm×300mm and a thickness
of 0.25mm were stacked together to create plates with a theoretical
thickness of 5.2 mm with the following layup with respect to feed di
rection: [90°/90°/−45°/0°/45°/90°/−45°/90°/45°/90°]s. These plates
were compacted using a vacuum pump in a controlled atmosphere. A
mold for the laminate was prepared and placed in a vacuum bagging
and evacuated to 0.7 bar (Fig. 1). Curing was then carried out at 180 °C
for 120min during which the pressure was maintained at 7 bars in an
autoclave. The mechanical properties of the ply T700 M21 are detailed
in [36]. This stacking sequence is used in the structural part of the A350
aircraft of Airbus [27,28]. To reduce the variability of the mechanical
properties due to the process of manufacturing, all the specimens used
in this study are cured in the same mold. For more detail about the
mechanical properties of composite materials, it is referred to the
Table 1.

2.2. Cutting parameters

A full factorial design of cutting condition including three levels of
feed speeds and two levels of cutting speeds was studied. In order to
correlate our results to those of the literature work, a radial depth of cut
of 2mm is used for all the specimens tested [5,17,27,28]. In addition,
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the cutting edge, the friction phenomena increases and this can result,
on the one side increase of the temperature of machining, and on the
other side to the degradation of the machining quality.

If we refer to the work of Haddad et al. [17], which focuses on the
trimming of the same CFRPs with burr tool made of tungsten carbide,
the machining temperatures were found much higher compared to
those obtained when trimming is conducted with PCD tool. In fact, the
small values of cutting temperatures recorded in this study can be ex
plained by the fact that, the PCD tools are characterized, on the one side
by a high wear resistance, and on the other side by the small coefficient
of friction in contact with the composite materials as well as high
coefficient of thermal conduction. Indeed, with the small coefficient of
friction and the high coefficient of thermal conduction the machining
quality can be improved and in particular the thermal degradation in
duced by the physics of cutting can be reduced or removed. To confirm
that, different technique of surface characterization has been conducted
for the different specimens as it was mentioned above. The obtained
results are presented in the next chapter.

3.3. Analysis of machining quality

3.3.1. Machining surface analysis
In the Fig. 11 is presented the evolution of the roughness (Sa) as a

function of the machining parameters as well as the cutting distance.
From this figure it is clear that for a distance of machining of 0.28m the
values of the parameter Sa remain small and inferior to 3 µm. However
with the increasing of the distance of machining important values of the
parameter are recorded. For example, when trimming is conducted at
small feed speed (500mm/min) and high cutting speed the value of
measured Sa after a distance of machining of 0.28m is around 1.7 µm.
However, with the increasing of the distance of machining (till 1.68 m),
the recorded value of Sa reaches 5.5 µm. These differences can be re
lated to the high values of the cutting forces recorded as well as the
wear mechanisms observed when trimming is carried out at lower feed
speed and high cutting speed. In fact, with the apparition of the wear
phenomenon on the active part of the tool and in particular the aug
mentation of the radius cutting edge of the tool the machining quality
can be impacted (Fig. 8 b). Trimming at high cutting speeds leads to
accelerated tool wear phenomenon and especially when low feed
speeds are combined with high cutting speeds. In fact, in this situation,
the rate of tool wear and the temperature of machining is much higher
compared to the case when the machining is conducted as high feed
speeds. This phenomenon is also acknowledged by several authors and
for different tool geometries as in Haddad et al. [5] and Prakash et al.
[15]. It is important to notice that, when trimming is conducted with
cutting speed of 250m/min and low feed rate of 500mm/min a high
surface roughness is obtained (Fig. 11) after machining 1.68m. This

combination of feed speed and cutting speed induces rapid tool wear,
and after machining 1.68m the nose radius of the tool is increased. This
leads to increase in the cutting forces which favours the generation of
the damages. These damages which have the form of crater and fibre
pull outs (Fig. 14 and Fig. 15) have a real consequence on the aug
mentation of the surface roughness. To confirm that SEM images have
been conducted for all the trimmed specimens.

The SEM images conducted on the different machined specimens
after a distance of cutting of 0.28m are illustrated in the Fig. 12. From
these images it can be noticed that, when trimming is carried out with
small feed speed (500mm/min), the machining quality can be con
sidered as good (Fig. 12 a). In fact, with this condition of machining the
obtained surface is smooth and it is difficult to distinguish between the
different plies of orientations of the laminates. However, with the raise
of the feed speed (e.g. 1000mm/min), it can be observed the evolution
of small mechanical damage or mechanical degradation of the matrix
on the machined surface. These damages are located mainly on the fi

bres oriented at +45°. It is important to mention that, with the con
figuration of trimming selected (down milling) the relative angle be
tween the direction of the cutting speed and the plies oriented at +45°,
is equal to 135° or −45°. In fact, in this machining configuration, the
experimental tests of the orthogonal cutting conducted on unidirec
tional specimens by Zitoune et al. [10], reveals that with the raise of the
depth of cut, macro cracks are generated on the free edge of the spe
cimen and several zones of damages on the machined surface are ob
served. However, good machining qualities have been observed for the
specimens oriented at 0° and +45°. In fact, these results have been
explained by the physic of cutting which is strongly influenced by the
relative angle measured between the ply orientation and the cutting
speed direction.

The SEM images conducted after a distance of cutting of 1.68m
reveal that when the trimming is carried out with a feed speed superior
or equal to 1000mm/min, the augmentation of the cutting distance
does not show a real impact on the machining quality (Figs. 12 c and
13 c). However, when the machining is conducted with small feed
speed (500mm/min), the SEM images of the Figs. 12 a and 13 a show
the generation of important zones of craters and mechanical degrada
tion of the matrix. This result can be clearly related to the wear phe
nomenon which impacted the local modification of the radius of the
cutting edge of the tool.

Thanks to the surface characterization by confocal microscope,
measurements conducted on the different trimmed specimens reveal
that, with the augmentation of the cutting distance the maximum depth
of the damaged zone measured after a distance of machining of 1.68m
can be three times superior to the one measured after a distance of
machining of 0.28m. For example, when trimming is conducted with a
feed speed of 500mm/min and cutting speed of 250m/min, the max
imum damage depth measured by the confocal microscope is around
50 µm after a distance of machining of 0.28m. However, with the same
condition of machining and after a distance of machining of 1.68m, the
maximum damage depth recorded is around 160 µm. Based on these
images the volume of the craters generated by the process of cutting
have been quantified in function of the machining parameters (Fig. 14).

It is important to mention that the confocal microscope allows
giving surface information and the measured values of the depths of the
damage (craters) as well as the roughness parameters, Sa, can be dis
torted by the presence of the fibres pull out or by the micro cracks.
Indeed, to overcome this problem, the use of the X ray tomography
technique, to predict the internal depth and form of the damage (craters
and cracks), seems to be the ideal technique of measurement.

3.3.2. Depth damage analysis by X ray tomography
The X ray tomography has been conducted on all the machined

specimens and for two different distances of cutting. The selected dis
tances are 0.28m and 1.68m. The reference image is the first image
which characterize the machined surface and corresponds to the plane

Fig. 11. Evolution of surface roughness, Sa, versus cutting parameters at two
cutting distances.
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the X ray tomography technique. As seen in the case of Cv, DoS
damage also increased with decreasing feed speed and increasing
cutting distance. In fact, it was observed that, the DoS damage
varied from 28 µm to 140 µm with the increase of the cutting dis
tance from 0.28m to 1.68m when trimming was conducted at
500mm/min.
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