T. M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure , and properties, J. Propul. Power, vol.22, 2006.

C. T. Sims, A history of superalloy metallurgy for superalloy metallurgists, Superalloys 1984, pp.399-419, 1984.

A. Pineau and S. D. Antolovich, High temperature fatigue of nickel-base superalloys-a review with special emphasis on deformation modes and oxidation, Eng. Fail. Anal, vol.16, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00423793

. Fig, Evolution of the fraction of cracked NMIs as a function of the depth for a pre, vol.18

D. D. Krueger, The development of direct age 718 for gas turbine engine disk applications, Superalloys 718 Metall. Appl, pp.279-296, 1989.

Y. C. Fayman, Microstructural characterization and elemental partitioning in a direct-aged superalloy (DA 718), Mater. Sci. Eng, vol.92, pp.90166-90168, 1987.

D. Texier, A. Casanova-gomez, S. Pierret, J. Franchet, T. M. Pollock et al., Microstructural features controlling the variability in low cycle fatigue properties of alloy Inconel 718DA at intermediate temperature, Metall. Mater. Trans. A, vol.47, pp.1096-1109, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01644848

D. Texier, J. Cormier, P. Villechaise, J. C. Stinville, C. J. Torbet et al., Crack initiation sensitivity of wrought direct aged alloy 718 in the very high cycle fatigue regime: the role of non-metallic inclusions, Mater. Sci. Eng. A, vol.678, pp.122-136, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01662609

P. R. Bhowal and A. M. , Wusatowska-sarnek, Carbides and their influence on notched low cycle fatigue behavior of fine-grained IN718 gas turbine disk material, Superalloys 718, 625, 706 and Various Derivatives, pp.341-349, 2005.

B. Pieraggi and J. F. Uginet, Fatigue and creep properties in relation with alloy 718 microstructure, Superalloys 718, 625, 706 and Various Derivatives, 1994.

T. Denda, P. L. Bretz, and J. K. Tien, Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy, Metall. Trans. A, vol.23, pp.519-526, 1992.

L. A. James and W. J. Mills, Effect of heat-treatment and heat-to-heat variations in the fatigue-crack growth response of alloy 718, Eng. Fract. Mech, vol.22, pp.797-817, 1985.

N. Sp?-ath, V. Zerrouki, P. Poubanne, and J. Y. Guedou, 718 superalloy forging simulation: a way to improve process and material, Superalloys 718, 625, 706 and Various Derivatives, pp.173-183, 2001.

F. Alexandre, S. Deyber, and . Pineau, Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites, Scripta Mater, vol.50, pp.25-30, 2004.

F. Alexandre, R. Piques, S. Deyber, and A. Pineau, High temperature creep-fatigue crack initiation in 718-DA Ni based superalloy, Fract. Mech. Beyond, vol.14, 2000.

F. , Aspects probabilistes et microstructuraux de l'amorçage des fissures de fatigue dans l'alliage INCO 718, PhD Dissertation, 2004.

P. Kontis, D. M. Collins, S. Johansson, A. J. Wilkinson, J. J. Moverare et al., Crack initiation and propagation during thermal-mechanical fatigue of In792: effects of dwell time, Superalloys 2016, pp.763-772, 2016.

T. Connolley, M. J. Starink, and P. A. Reed, Effect of oxidation on high temperature fatigue crack initiation and short crack growth in Inconel 718, Superalloys 2000, pp.435-444, 2000.

T. Connolley, P. A. Reed, and M. J. Starink, Short crack initiation and growth at 600 C in notched specimens of Inconel718, Mater. Sci. Eng, vol.340, pp.169-176, 2003.

J. K. Hong, N. K. Park, S. J. Kim, and C. Y. Kang, Microstructures of oxidized primary carbides on superalloy Inconel, vol.718, pp.249-256, 2005.

P. Kontis, D. M. Collins, A. J. Wilkinson, R. C. Reed, D. Raabe et al., Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation, Scripta Mater, vol.147, pp.59-63, 2018.

P. R. Bhowal, D. Stolz, A. M. Wusatowska-sarnek, and R. Montero, Surface effects on low cycle fatigue behavior in IN718 alloy, Superalloys 2008, Champion (USA), pp.417-423, 2008.

H. Touazine, M. Jahazi, and P. Bocher, Accurate determination of damaged subsurface layers in machined Inconel 718, Int. J. Adv. Manuf. Technol, vol.88, pp.3419-3427, 2017.

T. Klotz, D. Delbergue, P. Bocher, M. Evesque, and M. Brochu, Surface characteristics and fatigue behavior of shot peened Inconel 718, Int. J. Fatig, vol.110, pp.10-21, 2018.

S. Deyber, F. Alexandre, J. Vaissaud, and A. Pineau, Probalistic life of DA718 for aircraft engine disks, Superalloys 718, 625, 706 and Various Derivatives, vol.718, pp.97-110, 2005.

D. D. Krueger, S. D. Antolovich, and R. H. Van-stone, Effects of grain size and precipitate size on the fatigue crack growth behavior of Alloy 718 at 427 C, Metall. Trans. A, vol.18, pp.1431-1449, 1987.

J. C. Stinville, M. P. Echlin, P. G. Callahan, V. M. Miller, D. Texier et al., Measurement of strain localization resulting from monotonic and cyclic loading at 650 +C in nickel base superalloys, Exp. Mech, vol.57, pp.1289-1309, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01662651

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, 2012.

I. S. Raju and J. C. Newman, Stress-intensity factors for a wide range of semielliptical surface cracks in finite-thickness plates, Eng. Frac. II (1979) 817e829, pp.90139-90144

J. Stinville, V. M. Miller, and T. M. Pollock, Effect of non-metallic ceramic inclusions on strain localization during low cycle fatigue of a polycrystalline superalloy, Superalloys 2016, pp.897-905, 2016.

W. Hermann, H. G. Sockel, J. Han, and A. Bertram, Elastic properties and determination of elastic constants of nickel-base superalloys by a free-free beam technique, Superalloys 1996, 1996.

J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, Elastic constants of single-crystal by line-focus acoustic microscopy nitride films measured, J. Appl. Phys, vol.72, pp.1805-1811, 1992.

N. Rathod, S. D. Gupta, S. K. Gupta, and P. K. Jha, First-principles study of structural, electronic, elastic, phonon, and thermodynamical properties of the niobium carbide, Solid State Phenom, vol.171, 2011.

R. Soundararajan, Behavior of TiN Inclusions and Their Influence in Random Grain Formation in Ni-based Superalloys, PhD Dissertation, The University of British Columbia, 1998.

A. Mitchell, S. L. Cockcroft, C. E. Schvezov, A. J. Schmalz, J. N. Loquet et al., Primary carbide and nitride precipitation in superalloys containing niobium, High Temp. Mater. Process, vol.15, pp.27-40, 1996.

A. Mitchell, The precipitation of primary carbides in IN718 and its relation to solidification, Superalloys 718, 625, 706 and Various Derivatives, pp.299-310, 2005.

M. M. Shenoy, R. S. Kumar, and D. L. Mcdowell, Modeling effects of nonmetallic inclusions on LCF in DS nickel-base superalloys, Int. J. Fatig, vol.27, pp.113-127, 2005.

J. Zhang, R. Prasannavenkatesan, M. M. Shenoy, and D. L. Mcdowell, Modeling fatigue crack nucleation at primary inclusions in carburized and shot-peened martensitic steel, Eng. Fract. Mech, vol.76, pp.315-334, 2009.

P. S. Karamched and A. J. Wilkinson, High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy, Acta Mater, vol.59, 2011.

H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, 1996.

R. E. Pawel and R. K. Williams, Survey of Physical Property Data for Several Alloys, 1985.

R. Prasannavenkatesan, C. P. Przybyla, N. Salajegheh, and D. L. Mcdowell, Simulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels, Eng. Fract. Mech, vol.78, 2011.

R. Prasannavenkatesan, J. Zhang, D. L. Mcdowell, G. B. Olson, and H. Jou, 3D modeling of subsurface fatigue crack nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels, Int. J. Fatig, vol.31, pp.1176-1189, 2009.

W. Z. Abuzaid, M. D. Sangid, J. D. Carroll, H. Sehitoglu, and J. Lambros, Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X, J. Mech. Phys. Solid, vol.60, pp.1201-1220, 2012.

X. Huang, H. Yu, M. Xu, and Y. Zhao, Experimental investigation on microcrack initiation process in nickel-based superalloy DAGH4169, Int. J. Fatig, vol.42, 2012.

J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang et al., Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys, Acta Mater, vol.117, 2016.

B. Chen, J. Jiang, and F. P. Dunne, Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?, Int. J. Plast, vol.101, pp.213-229, 2017.

J. Stinville, E. Martin, M. Karadge, S. Ismonov, M. Soare et al., Competing modes for crack initiation from non-metallic inclusions and intrinsic microstructural features during fatigue in a polycrystalline nickel-based superalloy, Metall. Mater. Trans. A, vol.49, pp.3865-3873, 2018.