
HAL Id: hal-01920372
https://imt-mines-albi.hal.science/hal-01920372

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuration - Papers from the Workshop at ECAI
2002. Configuration workshop of 2002 European

Conference of Artificial Intelligence, Lyon, France, from
July 22-23, 2002

Michel Aldanondo

To cite this version:
Michel Aldanondo. Configuration - Papers from the Workshop at ECAI 2002. Configuration workshop
of 2002 European Conference of Artificial Intelligence, Lyon, France, from July 22-23, 2002. EMAC,
2002, Configuration Papers from the Workshop at ECAI 2002. �hal-01920372�

https://imt-mines-albi.hal.science/hal-01920372
https://hal.archives-ouvertes.fr

i

Configuration

Papers from the Workshop at ECAI 2002
Workshop n°4

Michel Aldanondo, Chair

22-23 July 2002
15th European Conference on Artificial Intelligence

University Claude Bernard of Lyon 1 (UCBL)
National Institute of Applied Sciences (INSA)

Lyon - France

ii

ECAI 2002 Configuration Workshop

Organizing Committee

Michel Aldanondo. Ecole des Mines d'Albi Carmaux, France
Gerhard Friedrich. University Klagenfurt, Austria
Eugene Freuder. University College Cork, Ireland

Markus Stumptner. University of South Australia, Australia
Timo Soininen. Helsinki University of Technology, Finland

Program Committee

Michel Aldanondo, Ecole des Mines d'Albi Carmaux, France
Claire Bagley, Oracle, USA

Boi Faltings, Swiss Federal Institute of Technology, Switzerland
David Franke, Trilogy, USA

Felix Frayman, Felix Frayman Consulting, USA
Gerhard Friedrich, University Klagenfurt, Austria

Esther Gelle, ABB Corporate Research Ltd., Switzerland
Laurent Geneste, Ecole Nationale d'Ingénieurs de Tarbes, France

Albert Haag, SAP AG, Germany
Daniel Mailharro, ILOG SA, France
Klas Orsvarn, Tacton AB, Sweden

Barry O'Sullivan, University College Cork, Ireland
Carsten Sinz, University of Tuebingen, Germany

Timo Soininen, Helsinki University of Technology Finland
Markus Stumptner, University of South Australia, Australia

Bei Yu, Baan/Invensys, Denmark

Special thanks
Paul Gaborit, Ecole des Mines d'Albi Carmaux, France.

iii

ECAI 2002 Configuration Workshop

Contents

E-Configuration Enterprise, A New Generation of Product Configuration System /1-4
Bei Yu

Configuring Software Products with Traditional Methods-Case Linux Familiar /5-10
Katariina Ylinen, Tomi Mannisto and Timo Soininen

Configuration for mass-customisation and e-business /11-16
Ying-Lie O

Empirical Testing of a Weight Constraint Rule Based Configurator /17-22
Juha Tiihonen, Timo Soininen, Ilkka Niemela and Reijo Sulonen

Knowledge Compilation for Product Configuration /23-26
Carsten Sinz

Ideas for Removing Constraint Violations with Heuristic Repair /27-29
Gottfried Schenner and Andreas Falkner

Configuration Tools and Methods for Mass Customization of Mechatronical Products /30-32
Udo Pulm

Optimal Configuration of Logically Partitioned Computer Products /33-34
Kevin R. Plain

Vehicle Sales Configuration: the Cluster Tree Approach /35-40
Bernard Pargamin

Constraint-based Product Structuring for Configuration /41-46
Barry O’Sullivan

A Student Advisory System: a configuration problem for constraint programming /47-49
Kevin McDonald and Patrick Prosser

Problem Decomposition in Configuration /50-55
Diego Magro, Pietro Torasso and Luca Anselma

A multi-perspective approach for the design of configuration systems /56-62
Lars Hvam, Jesper.Riis and Martin Malis

Using Knowledge-Based Configuration for Configuring Software ? /63-65
Lothar Hotz and Andreas Gunter

iv

Experiences with a procedure for modeling product knowledge and building product
configurators - at an American manufacturer of air conditioning equipment /66-70
Benjamin Hansen and Lars Hvam

Fuzzy Case Based Configuration /71-76
Laurent Geneste and Magali Ruet.

Distributed generative CSP framework for multi-site product configuration /77-81
Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach and Markus Zanker

Semantic Configuration Web Services in the CAWICOMS Project /82-88
Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach and Markus Zanker

A joint Foundation for Configuration in the Semantic Web /89-94
Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumptner and Markus
Zanker

A Subsumption-Based Configuration Tool for Architectural Design /95-100
Dan Corbett

TCP-Nets for Preference-based Product Configuration /101-106
Ronen I. Brafman and Carmel Domshlak

Neural networks to approximate data collection or computer code in constraint based design
applications /107-112
Eric Bensana and Taufiq Mulyanto

Representing Software Product Family Architectures Using a Configuration Ontology /113-118
Timo asikainen,Timo Soininen and Tomi Mannisto

Customizing the Interaction with the User in On-Line Configuration Systems /119-124
Liliana Ardissono, Alexander Felfernig, Gerhard Friedrich, A. Goy, Dietmar Jannach, M.Meyer,
G.Petrone, R.Schafer, W.Schutz and Markus Zanker

Deployment of Configuration in Industry: Towards a load estimation 125-130
Michel Aldanondo and Guillaume Moynard

v

ECAI 2002 Configuration Workshop

Preface

Configuration tasks can be defined as designing a product individual using a set
of pre-defined component types while taking into account a set of well-defined
restrictions on how the component types can be combined. Product configuration
problems are present in many domains: manufactured product (machine,
computer, furniture…), networks (telecommunication, transportation systems…),
service (banking, travel…) and software (ERP, CRM…). Computer programs called
configurators, using AI techniques such as constraint satisfaction, its
extensions, description logic, logic programs, rule-based systems and different
specialized problem solving methods, can support it.

The ECAI 2002 workshop on configuration is the fifth in a series of workshops
started at the AAAI 1996 Fall Symposium and continued at the AAAI 1999
Orlando USA, ECAI 2000 Berlin Germany and IJCAI 2001 Seattle USA. The
goals of these workshops are to promote high-quality research in configuration
and strengthen the interaction between industry and academia. The industrial
interest in the field is indicated by the increasing number of configurator
vendors. The importance of configuration has expanded as more companies use
configurators to efficiently customize their products for individual customers.
Combined with e-business solutions they have a high market impact and generate
new business opportunities in many industries for new products and new ways to
interact with customers.

However, efficient development and maintenance of configurators require
sophisticated software development techniques. AI methods, more than ever,
are central to designing powerful configuration tools and to extending the
functionality of configurators. The working notes of this workshop gather
contributions dealing with various topics closely related with configuration
problem modeling and solving. The 25 papers demonstrate both the wide range
of applicable AI techniques and the diversity of the problems and issues that
need to be studied and solved to construct and adopt effective configurators.

Michel Aldanondo
Ecole des Mines d’Albi Carmaux

*Baan CRM, Hørkær 12A, DK-2730 Herlev, Denmark.
E-mail: byu@baan.com

E-Configuration Enterprise
A New Generation of Product Configuration System

Bei Yu *

1 CONFIGURATION TECHNOLOGY
Configuration technology (see Figure 1) is first and foremost the
underlying concept for representing a product or a service that has
features or parts to be configured. This structured representation is
called a product model. Configuration technology is the modeling
language and maintenance environments that simplify the creation
and maintenance of a product model.

Second, configuration technology is the runtime inference en-
gine/solver that enables the end user to make correct configura-
tions based on the model in an ingenious and intuitive fashion.

Figure 1. Visualization of the Modeling and Configuration processes.

The overall strategy is to produce 100% shrink-wrapped soft-
ware for a large variety of configuration problems, mainly in
CRM applications using the same modeling methodology.

This paper describes a new approach to product configuration
methodology.

2 THE BUSINESS CHALLENGE
One of the most critical challenges for companies that implement
configuration and web-enabled products is to address both the
usability and maintenance issues at the same time.

When talking configuration as part of the business processes
there are three main issues to consider:

1. Can I implement a configurator that can be maintained in a

way that fits my organizational structure, without having the
update process to be a bottleneck?

2. Can I deploy a solution that supports customers needs and
my general business needs (interactive and fast response
time) - and will it be able to scale to fit future needs?

3. Will the tool provide 100% correct configuration - always?

The need is to have a configurator that combines more ways of

stating relations, calculations and constraints into one modeling
environment with infinite solution space. It should be 100% de-
clarative allowing for the handling of very big and complex prob-
lems without programming. This is the only viable way for the
product to stay maintainable when handling more complex con-
figuration issues.

Supporting general business needs in today’s environment en-
compass supporting the globalization both from a modeling and a
deployment point of view. Specific points that support the global-
ization are object-oriented modeling, concurrent modeling, table-
based constraints, and separate UI data.

In the configuration process, the system guides the user to the
selections that can be made in order to get a solution at the end –
based on the principle of "complete deduction". This allows an
interactive real-time guided configuration processes – with no
rework and a deliverable solution. For the customer or the sales
rep this means instantaneous feedback on any selection made,
even in complex product and pricing environments. This accurate
overview and guidance is particularly important when a customer
is ordering in an unassisted mode e.g. via the web.

Available parts
and features

Parts and features
organized in model

Final product to
be sold

Modeling Configuration

1

2

3 MASS CUSTOMISATION
The philosophy around mass customization is to sell custom-
ized solutions to customers who are willing to pay extra to get
a custom-made order. At the same time, the batch size in the
production process shall be optimized, by producing standard
items and assembling these components to make the unique
product for the customer. By using this business philosophy
the companies can optimize the turnover and at the same time
minimize the production cost – maximizing the profit – to the
benefit of both the company and the customers.

This means that some Engineer-to-order companies can
move into made-to-order, and thereby minimize production
costs. Also, some standard-components manufactures can
offer their customers special solutions, moving into assemble-
to-order to maximize their turnover.

The configuration component is a very important part of
this Mass Customization philosophy, where the customer
needs can be linked to the available offerings - and thereby
generate the foundation for the fulfillment process (Customer
needs -> List of components + component dependencies ->
Production routes/schedule -> Delivering the products).

4 E-CONFIGURATION ENTERPRISE
E-Configuration Enterprise is the solution for configuration
problems in real life. It fulfills the user interaction require-
ments given by [1]. E-Configuration Enterprise, as the new
generation of our configuration system, has unique features
compared with the previous systems [2], such as:

1. A brand new configuration modeling language;
2. Object-oriented modeling approach;
3. More intuitive product description/modeling;
4. Wide-range covered constraint expressions;
5. More powerful inference engine.

E-Configuration Enterprise consists of product modeling
environment (Modeler) and configuration environment (Con-
figurator) both PC-based and Web-based. In the Modeler, the
user can make a product model and a User Interface (UI)
model, and tables, if necessary. These are wrapped into a
package, which can be loaded into the Configurator for con-
figuration processing(see Figure 2).

Product
Model

User
Interface

Model
package

Modeler
Configurator

Confi
gurationTables

Figure 2. E-Configuration Enterprise product configuration concept.
The Model Package holds all information generated by the Modeler

and used by the Configurator.

This section only highlights the system kernel features.
The user-friendly interface for modeling and configuration
could be shown through the demo session.

4.1 CAVA
To encompass all configuration problems - especially those
that are very large and dynamic - a new modeling technology
called CAVA has been designed and constructed. CAVA is a
configuration modeling language. The CAVA language is
aiming at a standard configuration modeling language that is
able to encompass all configuration problem domains [3].
This unique language is certainly the first step towards the
ambitious goal. It is able to describe almost all configuration
problems within very complex products in large companies.

The CAVA modeling language is declarative and con-
straints based. The expressiveness of constraints is able to
perform reasoning about identifiers, booleans, integers, reals,
strings, databases, and functions.

Typically, different configuration domains require differ-
ent tools and technologies. Today's commercial applications
are strongly focused on tools and technologies that address
the specific problems of these specific configuration domains
[3]. For a growing number of businesses, this is not where the
added value of configuration is found. CAVA outlines the
foundation for common modeling approach through all
applications.

The main issue with all configuration solutions is to get
enough expressiveness so that the real world products can be
expressed in a model. However, there is a tradeoff issue with
all existing methodologies, which either makes it easy to
maintain and limit the expressiveness or have a large expres-
siveness but nevertheless will make the maintenance a hard
task.

Figure 3. Compromised position E-Configuration Enterprise

CAVA is a compromise between maintainability and lan-
guage expressiveness (see Figure 3). CAVA sets out to cross
the boarderline that has prevented tools from overcoming this
tradeoff. The tradeoff is mainly due to limitations on the

M
aintainability

VB C++

Low

Database

High

No known efficient en-
gine exists

Spreadsheet

Language expressiveness

E-Configuration
Enterprise

High

3

computational aspect of configuration problems namely that
they by nature are very difficult (NP-Hard). However, recent
progress within new algorithms and hardware performance
has made it possible, combined with a set of unique patented
technology, to cross this line.

4.2 Object-oriented modeling
Object-oriented modeling means that the product model data
is made of components (classes), which can be reused by hav-
ing several copies (instances) of this component (class) in
another component (class). For example, in a bookcase (a
class) there can be a number of shelves (copies of a shelf
component class). In the product model, the shelf component
is only defined once, and then used in the bookcase compo-
nent n times.

Another concept in object-oriented modeling is “inheri-
tance”. This means that a component (class) can inherit fea-
tures from another class so that it appears as if the class in fact
has these features. This is a very powerful feature when creat-
ing a product family hierarchy. For example, a bookcase can
be either a classic bookcase or a modern bookcase, where
some special features are added to the specific kind of book-
case, while still having the basic bookcase components de-
fined only once. The inheritance principle is very useful in
order to reduce model data redundancy and thereby increase
the maintainability of the model.

4.3 Table based constraints
The product model can use data in relational tables/databases
to define product feature relationships. These tables can be
either internal (defined in the model) or external (defined in
an external database), from where data is read by the Configu-
rator. This will allow the owner of the product model to have
product relations/constraints defined in a database that can be
applied to the user environment without having to re-compile
the product model.
 From a maintenance perspective, this is a good example for
CAVA to show how easy it is to maintain constraints. Rather
than writing hundreds of constraints, a table structure with
one binding will make these constraints redundant.

4.4 Hard and soft constraints
Hard constraints are relations that have to be fulfilled in order
to have a consistent model and/or configuration, where soft
constraints are relations that can be violated or changed. Soft
constraints are prioritized so that it is possible to apply differ-
ent soft constraints for the same feature. A soft constraint can
be used as pre-defined defaults. For example, when a user
selects the color of a car, the color of the interior is set to
match the color of the car. However, this can be overruled if
the user wants another color.

4.5 Support for concurrent modeling
The product model, including the UI, can be maintained by a
number of people, where the ownership for the different parts
of the model is assigned to more than one person.

The advantage is to be able to maintain parts of a model
without risk of overwriting other changes made at the same
time in other parts of the model.

4.6 Separation of product data and UI
The product data describes the features and options and the
relations between them, where the UI data describes how the
product data is being shown to the user at run time. By sepa-
rating the product data and the UI data, it is possible to make
several UIs for the same product data. This can be beneficial
if the same product data is used in different environments, for
example, a UI for the direct sales force and another UI for the
partners/dealers in an indirect channel.

4.7 Web standard based and Web-enabling
When the UI is created, a UI Builder transforms the user in-
terface definitions into HTML. If needed the HTML page can
then be modified using any HTML editor.

The integration is based on industry standard XML both
when exchanging model information and when exchanging
data.

E-Configuration Enterprise is a web-based thin client
product, and the only application needed to make a configura-
tion is a web-browser. On the server side, using the extensive
XML-interface or the COM-interface can make integration to
business solutions.

4.8 Activations - user and situation dependent
models/UI

Activations can be used to enable or disable features and con-
straints. These activations can be based on time (Time activa-
tions), for example price offer period, or situation (Group
activations), such as country availability. This can be used to
hide or deselect features that some users are not allowed to
see, or features that are unavailable at the time of configura-
tion. Hiding means that the option does not show up in the UI,
where deselect means that this option is not available
(dimmed at the UI).

4.9 Trace and Alternatives
The Trace mechanism is supposed to help a modeler to under-
stand the “why” questions, such as, why a value was moved
from a variable; why a variable was bound to a value; why an
instance was created as well as why a contradiction exist. This
information is intended to assist the model engineer during
modeling.
 The Alternatives is a service which 1) helps the end-user to
make a selection that otherwise would lead to a contradiction,
and 2) helps the end-user solve a contradiction.
 The information given to the end-user is the same in both
cases, i.e., user selections that need to be released.

4

4.10 Scalability for large models
Due to the principle of “Field of Interest” the Configurator
has good runtime response time and performance for large
models.

The Field of Interest concept means that the Configurator
will first verify or deduct selections in the pages or instances
that are shown to the user, and second verify or deduct on the
rest of the model. In this way, the Solver can maximize the
support given to the user should it be interrupted before it has
searched all features in the model.

4.11 Complete deduction
Complete deduction in the Solver/Inference Engine is based
on a patented method [5], which is the foundation for the
uniqueness of our configuration technology. Complete deduc-
tion allows the people doing the modeling to focus on indi-
vidual constraints for each object in the model. The system
will then secure the complete solution overview, i.e. make
sure that the model is consistent. This brings down both im-
plementation and maintenance times by reducing the number
of constraints you have to implement by a factor of 10 to100,
compared to other technologies.

4.12 Deduction levels
In the Configurator, the user can set maximum response time
before the Solver is interrupted and the result is presented to
the user. Depending on the size and complexity of the model
the Solver will not have time to reach the highest level of
accuracy, but will stop at some lower level at timeout.

There are six deduction levels that the solver can reach:
Accepted, Propagate, Look-ahead, Solution, Unbound, and
Complete. The Solver works sequentially at one level at a
time starting with Propagate and ending with Complete. This
means that if a certain level has been achieved then the deduc-
tion levels below have also been achieved.

Because of the nature of reals however, using reals in the
model does not necessarily remove every invalid value from
the model.

4.13 Infinite solution space
The user can dynamically add components and/or parts at run
time, and the selections around these are validated as an inte-
grated part of the product model. For example, the users can
at run time select the number of shelves in a bookcase, and
subsequently configure each shelf individually. This dynamic
extension of the components in the solution often leads to a
multilevel configuration solution.

4.14 Integration to entire business solution
E-Configuration Enterprise, as one key component, has been
integrated into company business solution offerings. Con-
figuration issues nowadays cannot be considered independ-
ently, but will have to relate to other business issues in a
company. Such integration capabilities make the configura-
tion system more powerful in terms of solving all configura-

tion problems across whole business processes from engineer-
ing, manufacturing to sales and marketing.

5 SUMMARY
Issues like usability, maintainability, and optimal time to mar-
ket are often considered contradictions when the business
solution involves a configuration component. The demand for
providing fast, correct, and complete information to custom-
ers and channel partners while keeping costs under control is
just one of the contradictions. If companies want to effec-
tively solve this dilemma, they need to be using new tech-
nologies to solve these problems.

E-Configuration Enterprise contains a unique and patented
technology that effectively addresses all issues of configura-
tion. The separation of the product data and the UI makes it
possible to link the configuration model to other user interface
components, including third party web controls, that address
the UI needs for the company.

E-Configuration Enterprise is a compelling software com-
ponent that easily integrates into business solutions.

The open architecture will provide integration with web-
based solutions, as well as APIs for other integration pur-
poses.

E-Configuration Enterprise is the first step into a new
world of configuration, while not burning any bridges to pre-
vious solutions.

ACKNOWLEDGEMENTS
Although I am solely responsible for the paper, all developers
who are involved in the project contributed to the success of
the E-Configuration Enterprise. I would also like to thank
Mette Nyberg and Beverly Poulsen from the Documentation
department for their help with formatting and reviewing the
paper.

REFERENCES
[1] F. Frayman, User-interaction Requirements and its implications

for efficient implementations of interactive constraint satisfaction
systems, Workshop Proceedings on User-Interaction in Con-
straint Satisfaction, International Conference on Constraint Pro-
gramming and Logic Programming (ICLP’01), p31-41, 2001.

[2] B. Yu and H.J.Skovgaard, A configuration tool to increase prod-
uct competitiveness, IEEE Intelligent Systems and Their Appli-
cations. July/August 1998.

[3] S. Mittal and F. Frayman, Towards a generic model of configura-
tion tasks, in Proceeding of the 11th International Joint Confer-
ence on Artificial Intelligence (IJCAI), 1395-1401, 1989.

[4] D. Sabin and R. Weigel, Product configuration frameworks – a
survey. IEEE Intelligent Systems and Their Applications,
July/August 1998.

[5] G. Møller, Signal Processing Apparatus and Method. Patent WO
90/9001.

Configuring Software Products with Traditional Methods –
Case Linux Familiar

Katariina Ylinen1, Tomi Männistö1 and Timo Soininen1

1 Helsinki University of Technology, Software Business and Engineering

Institute SoberIT, P.O. Box 9600, FIN-02015 HUT, Finland. Email:
{Katariina.Ylinen, Tomi.Mannisto, Timo.Soininen}@hut.fi

Abstract. Recently, the software industry has begun to adopt a
product family approach. Support tools for tailoring configurable
product families have been developed for some time for mechanical
and electronics products. However, it is not clear that the modeling
languages designed for these configurators are suitable for software
product configuration. In this paper, we investigate this problem by
modeling a Linux Familiar operating system distribution with a
configuration modeling language aimed at representing the structure
of physical products. Findings from this case study suggest that the
language is largely suitable for software product configuration.
However, some phenomena in the product strongly suggest that
modeling them as functions, features or resources and optimality
criteria familiar from the configuration domain would be useful. In
addition, there is some evidence that deeper modeling of versions of
components and reconfiguration knowledge, not usually covered by
configuration models, should be supported.

1 INTRODUCTION
Configurable product families have been an important phenomenon
in the mechanical and electronics product domains for some time.
In these domains, called traditional products for short, it has been
noted that it is possible to satisfy a wide range of customer require-
ments with relatively low costs by designing the products to be
routinely configurable. Systems that support tailoring such prod-
ucts, configurators, have been extensively developed and studied
[4]. Recently, the software industry has to some extent adopted the
point of view that designing software product families and deliver-
ing variations of them rather than customizing individual products
can be far more cost-effective [1]. However, it is not clear that
configurators supporting traditional products are suitable for soft-
ware product configuration. The software community has ap-
proached product families from a different perspective and
developed its own modeling methods and methods for tailoring the
products [15,16] .

In this paper, we investigate whether there are any differences
between the two domains of traditional products and software by
means of a concrete case study. We try to model a Linux Familiar
operating system distribution [13] with a configuration modeling
language aimed at representing the structure of physical products
[11, 14]. The three research questions we ask are: Is the configura-
tion modeling language adequate for representing the Familiar
configuration knowledge? If not, what are the most important miss-
ing elements? And finally, which of the common concepts used for
modeling configurable traditional products [5] could be used to
make the models more useful?
The rest of the paper is organized as follows: We first briefly review
and compare the two domains of product configuration and soft-
ware families and analyze their similarities and differences in sec-
tion 2. We then present the case product and the related

configuration problem and present an analysis of the configuration
knowledge for the product in section 3. We present a way to model
the configuration knowledge of the case product using a language
for modeling traditional products in section 4. The findings of our
case study are presented and discussed in section 5. Finally, in sec-
tion 6 we present our conclusions and identify some topics for fur-
ther research.

2 BACKGROUND
This section briefly describes the domains of product configuration
in both traditional industry and in the software industry and then
compares the frameworks used in them to find their similarities and
differences.

2.1 Physical Product Configuration

For a configurable product family, each product individual is
adapted to the requirements of a particular customer order on the
basis of a predefined configuration model, which describes the set
of legal product variants [6,7]. A configuration, that is, a specifica-
tion of a product individual is produced from the configuration
model and particular customer requirements in a configuration task.

Knowledge based systems for configuration tasks, product con-
figurators, are an important application area of artificial intelligence
techniques for companies selling products adapted to customer
needs [9,10]. Product configuration tasks and configurators have
been investigated for at least two decades [11].

 Conceptualization of configuration knowledge synthesizing
these approaches is reported in detail in [7,17].

2.2 Software Product Configuration

The software professionals often claim that the methods and proc-
esses of traditional industry do not apply to software development
and products. It has been suggested that the product configuration
concepts and methods used for the physical products are not directly
applicable in the software industry [2]. According to Brooks [6],
software has four special features that make it special: complexity,
conformity, changeability and invisibility.

Even though modern physical products may also be complex and
invisible in nature, they are constructed of a limited number of parts
that are replicated. In a software product variant, there are usually
no two parts equal to another.

In the past, much of the configuration-related software manage-
ment research has focused on the software configuration manage-
ment (SCM). In SCM, the focus has primarily, although not
completely, been on managing the evolution of the source code files

5

[7]. Most SCM systems today only manage the software systems as
a set of files instead of as configurable product components [7].

The research of configuring final software products has only re-
cently become an increasingly important challenge while the indus-
try has slowly adopted a goal of producing product families instead
of single products. A related field, which aims at modeling product
families, is the research on architectural descriptions [17]. Even
though the primary goal of ADLs has not been the product configu-
ration task, it can be noted that they have adopted significantly
similar concepts as the traditional configuration research.

While formal methods for software product configuration have
been absent, there has been separate efforts for configuring single
products. Most of the software companies implement configurabil-
ity by producing one big product with all variants included. The
configuration task is then done using, for example, preprocessor
directives or makefiles to define the specific product variant [2].

Another result of software invisibility is that in software prod-
ucts, it is often impossible to know the correct order of installation,
if there are limitations to this. This may often be as complex in the
physical products as well. The difference lays in the usage – soft-
ware products are often installed at the same time as they are con-
figured. The installation and configuration process is, especially in
consumer products, assumed to happen at the same time and at least
semi-automatically. This has led to a situation where installation
programs do the configuration and vice versa.

The adequacy of the configuration knowledge present in the
packages of Debian distribution has been a subject for study before
[3, 12]. The approach has been developing a new rule-based lan-
guage for modeling the packages and dependencies, and then im-
plementing this using a logic-program-like rule based system. We,
on the other hand, aim at applying the high-level modeling concepts
of physical product configuration to modeling Linux Familiar.

3 FAMILIAR CONFIGURATION PROBLEM

Linux Familiar was chosen as the case since it is developed for a
handheld computer, Compaq iPAQ, and therefore faces resource
limitations, such as the amount of memory available. Whereas op-
erating systems on PCs can be installed with all bells and whistles
included, the handheld devices make prioritization of installed
components necessary. There are currently about 1700 Familiar
packages available in the distribution, only a subset of which fits
into a device at the same time. The packages vary in nature from
necessary Linux kernel packages to application packages. Linux
was chosen instead of other handheld operating systems due to its
openness, as it was easier to study.

Linux is a monolithic operating system. The part implementing
the core functionality of the operating system such as the thread
management, file system etc. is called the Linux kernel [9]. The
kernel itself is an interesting entity from the configuration perspec-
tive, since it has built-in support for dynamic reconfiguration. How-
ever, this feature has been implemented for mainly memory
management use and is left out of the scope of this paper. We focus
our attention on package management, that is, a higher-level con-
figuration management of the whole distribution.

The Familiar Distribution is derived from the Debian distribu-
tion, which means the configuration attributes share the same con-
cepts. Both distributions consist of a large amount of software
components, called packages. Packages consist of several files,
which can be either executables or other files as well. In Debian, as
well as in most widespread Linux distributions, there is a package
management system, which manages the installation and removal of

packages in the system. In Debian, this program is called dpkg and
it manages configuration constraints like dependencies and conflicts
between packages, virtual packages and installation order. It can
also be used to create and purge packages.

Due to the size constraints dpkg is not a part of Familiar but a
lighter version of it called ipkg has been developed. Ipkg shares the
basic functionality in package installation and removal but lacks
most of the configuration validity functions. Therefore, the com-
parison with the traditional configurator is made against dpkg fea-
tures. Familiar packages are equipped with configuration
information of the same syntax, and they can still be used as an
example of the input data.

The configuration language of Familiar / Debian is fairly simple.
It is a list of the package information in pure text format. There are
two fields attached to all packages: version and the package name.
In addition, it lists all constraints known for the package. The con-
straint clauses also refer to a package name and optionally to its
version. An example of the fields concerning configuration in a
Familiar package description:

Package: xlibs
Priority: optional
Version: 4.0.2-13
Replaces: xlib, xbase (<< 3.3.2.3a-2), xlib6 (<< 3.3.2.3-2)
Provides: libxpm4
Depends: xfree86-common (>> 4.0), libc6 (>= 2.2.1-2)
Conflicts: xlib, xlib6 (<< 3.3.2.3-2), xlib6g (<< 4.0)

Figure 1

The different types of these packages is explained in more detail

in section 3.1. The nature of the different relationships between the
packages is analyzed in section 3.2.

3.1 Package Types

Currently, three types of packages can be identified in the system.
The package types are virtual, concrete and task packages.

A virtual package is an abstract package that does not actually
exist and, the functionality of which can be provided with one or
more concrete packages. The virtual packages do not appear on the
package lists as package definitions and therefore cannot have rela-
tionships to other packages. Instead, some of the concrete packages
refer to a virtual package as they provide its functionality.

In Debian, the developer community strictly controls the virtual
package names and the full list of available virtual packages can be
found at the developer web site [10]. The same virtual package
names are used in Familiar, although it seems that the control is a
bit lighter and there are some additional, non-documented ones as
well. An example of a typical definition of virtual package (x-
terminal-emulator) in a Familiar package description looks like this:

The concrete packages are the actual packages that can be in-
stalled or uninstalled on the device and that have relationships to
other packages on the system. The concrete packages consist of one
or more files to be saved on the file system. These files can be ei-
ther executables or other files, for example text files.

The third package type, task package, is a package that consists
of several other packages. It has no own separate functionality but
just the collection of the packages it contains. The package does not
withhold any important functionality itself but has several depend-
encies to other packages, so that installing the package requires then
installing the whole set. The task packages seem to consist of a set
of different packages that together implement certain functionality.
The task packages in Familiar are separated from concrete packages

6

with a naming convention. The package names have prefix “task-“.
The task packages are made to make basic installations easier for
the end user by collecting a potentially important set of related
packages into one package.

3.2 Relationships

As mentioned earlier, the package descriptions include constraint
clauses. Every package has a listing of these as presented in exam-
ple in figure 1. The clause first describes the nature of the relation-
ship and then a list of package names and their versions.

There are seven different kinds of constraint types:
• Depends <package B> - this package requires package B to

be installed on the device to function correctly.

• Pre-depends <package B> - it is required that package B is
installed on the device before this package can be installed.

• Conflicts <package B> - this package should not be present
in the same configuration with package B.

• Provides <package B> - this package provides all the func-
tionality and files present in package B.

• Replaces <package B> - the installation of this package re-
moves or overwrites files of package B.

• Recommends <package B> - the package B is recommended
when it is presumable that the users would like to have it in
the configuration with this package.

• Suggests <package B> - the package B is suggested to get
better use of the package.

Of these, the constraints recommends and suggests are not
relevant for checking the configuration validity but only useful hints
for the user for configuration optimization. It can be also noted that
the pre-depends clause is used to gain correct installation order
but does not differ from depends when used to check the configu-
ration validity.

For all the different relationships, there can be many packages
listed and in that case the relationship holds for all the packages in
the list. That is, the commas between the package names can be
interpreted as Boolean AND. For depends, there can also be a
Boolean OR, which is indicated by “ | ” in the list. The precedence
rules are not very clear and we are not sure for which elements the
OR statement refers to in some occasions. It is not, however, a big
problem since there are not many OR statements currently in the
package descriptions.
Depends is a simple relationship. When a package depends on

another, the other must also be installed on the system. When
checking the configuration validity, pre-depends is also treated the
same way.

There are also some interesting exceptions in the use of “De-
pends” relation, which we consider more or less misuse and not
usage rules. For example, the package xlibs depends on its own
older version. This means there are also some incremental packages
– the newer version is not actually a new version of the package but
some additional features for it.
Conflicts is just as simple. When a package is in conflict with

another, they should not be installed on the same system. There is,
however, a minor problem in the language and the configurator,
dpkg, considering this. As a package is installed in the system, only
the relationships of the installed package are checked. In case there
is a package in the system conflicting this new package, it may not
get noticed. This is due to the fact that as the conflict has been no-

ticed, it is highly probable that it only has been declared in the de-
scription of one of the packages but not in both. This means that
either the conflict information must be duplicated to both of the
package descriptions or the functionality of dpkg should be changed
so that it would check all package descriptions of the packages
installed on the system to check the configuration validity.
Provides has been designed for managing packages, which in

some way implement functionality available in some other package.
Unlike the other configuration clauses, the provides has been used
quite systematically but it has two different tasks. One of them is
the usage for version control when package naming has changed
during versions. The newer version provides the older one, and it
seems that the potential dependencies from other packages to the
older version will not get broken. Provides allows the coexistence
of the provided and the providing package in a configuration. In the
case of renaming an existing package when making a new version,
it must be separately specified with a conflict clause that the ver-
sions should not be present in a configuration at the same time.
Provides is also used for virtual packages – several concrete

packages can provide some virtual package functionality, and many
of them can coexist on the configuration [3]. For example, a con-
crete package rxvt, which is an emulator program emulating the x-
terminal, has a row: “Provides: x-terminal-emulator” in its package
definition. The x-terminal-emulator is a virtual package, and pack-
ages like rxvt (a basic x-terminal emulator) or rxvt-aa (an x-terminal
emulator with anti-aliased fonts support) could coexist on the sys-
tem both implementing the virtual x-terminal emulator package.

An example of the virtual package use of Provides in Familiar
package description is presented in picture 2.

Package: rxvt
Version: 1:2.6.3-8-fam6
Provides: x-terminal-emulator
Depends: libc6 (>= 2.1.97), xlibs (>= 4.0.1-11)
Conflicts: suidmanager (<< 0.50)

Package: rxvt-aa
Version: 1:2.6.3-8-fam6
Provides: x-terminal-emulator
Depends: libc6 (>= 2.1.97), xlibs (>= 4.0.1-11), libxft, libxrender
Conflicts: suidmanager (<< 0.50)

Figure 2

Replaces is quite ambiguous and is therefore used in various

ways, some of which can be clearly interpreted as designer errors. It
is also the most dangerous one in use, since there is no such system
functionality that would remove the replaced package beforehand.
As there is no proper information on which way the replacement
exactly takes place, there is no guarantee on what will happen to the
files installed originally with the package being replaced. In prac-
tice, the replacement is therefore only used in some cases when user
tries to install two conflicting packages. In these cases, when one of
these packages is marked as replacing the other, the installer in
Debian prefers the replacing one [3].
Replaces is used, as already stated, very differently in different

packages. In some packages, it is used similarly as provision clause.
As the replacing package should replace, by definition, some of the
files of the replaced package, it is also dangerous that there is no
solution so far for the case when a user would try installing the
replaced package back to the system. The replacement clause is
again only written in the other package and thus overwriting the
same files back again would most probably break the system. This
may be one reason for the fact that the replacement has not been

7

often used in actual replacing of packages. One example of an un-
explainable use of this relationship is the package set util-linux
(2.11b-2-fam2), fileutils (4.0.43-1) and shellutils (2.0.11-5). Both
fileutils and shellutils replace an older version of util-linux. Still,
they seem not to provide the functionality specified in the util-linux
description. There are no other relationships between these pack-
ages.

We conclude that the most common use for replacement is that
the replacing package provides at least some of the functionality of
the replaced one, but it is not promised that it works the same way.
This means the dependencies from other packages to the replaced
package will get broken when it gets replaced, unlike in the case of
provision. This cannot, however, be generalized for all packages
due to the very varying use of the concept.

4 FAMILIAR AFTER MAPPING
In this section, the new configuration model for Linux Familiar is
introduced. The syntax of the used language is presented in section
4.1 and the mapping of components and relationships are presented
in sections 4.2 and 4.3, respectively.

4.1 Modeling Language

We use a language based on a subset of a general configuration
ontology [5] to try to model the Familiar configuration information
to gain understanding of how suitable the concepts of the language
are for modeling software.

The used language, called PCML, is introduced in [11]. The
main concepts of PCML are component types, their compositional
structure, properties of components, and constraints. Component
types define intensionally the characteristics (such as parts) of their
individuals that can appear in a configuration. A component type is
either abstract or concrete. Only an individual directly of a concrete
type is specific enough to be used in an unambiguous configuration.
A component type defines its direct parts through a set of part defi-
nitions. A part definition specifies a part name, a set of possible
part types and a cardinality. A component type may define proper-
ties that parameterize or otherwise characterize the type. A property
definition consists of a property name, a property value type and a
necessity definition. Component types are organized in a taxonomy
or class hierarchy where a subtype inherits the property and part
definitions of its supertypes in the usual manner.

Constraints associated with component types define conditions
that a correct configuration must satisfy. The first level building
blocks of the constraint language are references to access parts and
properties of components, and constants such as integers. Refer-
ences can be used in succession, e.g. to access a property of a part.
Boolean returning tests are constructed out of references, constants,
and arithmetic expressions. Tests also include predicates that allow
checking if a particular referenced individual exists or is of a given
type. Property references can be used with constants in arithmetic
expressions that can be compared with the usual relational operators
to create a test. Test can be further combined into arbitrarily com-
plex Boolean expressions using the standard Boolean connectives.

4.2 Components

The component types we define for Linux Familiar configuration
are the package types we identified in section 3.1. In addition, we
define a component type defining the whole system, of which the
packages are parts. We define a type hierarchy, in which there is

one supertype package, of which all packages are subtypes. Pack-
age is an abstract component type with one property, version,
which is of value type string. Both concrete and virtual packages are
subtypes of this component type. It is a subtype of the root compo-
nent type of the language, Component.

The virtual component types are defined as abstract, as there
should be no occurrences of component individuals of them in a
valid configuration. The conceptual meaning of the abstract compo-
nent is seen as the same as that of the virtual package. All the vir-
tual packages are modeled as subtypes of the Package component
type. The concrete packages implementing a virtual package, are
subtypes of the virtual package in question. Other concrete pack-
ages will all be subtypes of the component type Package.

Some of the data on the packages that is needed on configuration
time are modeled as properties for concrete packages. These are
priority, size, installed-size, and version. Priority will be modeled
with the concept of cardinality. When a package is obligatory (pri-
ority: required), its cardinality is 1 and when optional, it is 0 to 1.
Virtual packages will not have these properties since this informa-
tion is not available for them.

4.3 Relationships

Relationships between the packages are modeled as constraints in
the configuration model. The relationships are translated as follows:

A Depends B constraint <constraint_name> A implies B
A Pre-Depends B constraint <constraint_name> A implies B
A Conflicts B constraint < constraint_name> not (A and

B)
A Provides B
(virtual packages)

subtyping, A is a subtype of an abstract
component type B

A Provides B
(change of name
between versions)

subtyping and conflict, A is a subtype of B
and constraint <constraint_name> not (A
and B)

As many of the relationships also involve version numbers, they

must be taken into account in the constraints. Constraints involving
version numbers are modeled as the following example demon-
strates (conflict):
 A Conflicts B (>= 2.2.1)

constraint <constraint name>

not(A and B and

<part name for B>.B:version >= “2.2.1”)

4.4 A Sample

Figure 3 presents a sample of the model created with PCML:

configuration model TestModel

 # The concrete package type

 component type Package

 abstract

subtype of component

 property version value type string

 # The virtual package x_terminal_emulator

 component type x_terminal_emulator

 abstract

 subtype of Package

8

Package rxvt implementing x-terminal-emulator

 component type rxvt

 subtype of x_terminal_emulator

 property version

 value type string constrained by $

in list ("1:2.6.1", "1:2.6.3-8-fam6")

. . .

component type OSystem

 part x_terminal_emulator

 allowed types x_terminal_emulator

 cardinality 0 to 1

 constraint only_one_version_rxvt

 present(x_terminal_emulator) and

 x_terminal_emulator individual of rxvt

 and x_terminal_emulator.rxvt:version

= "1:2.6.1"
Figure 3

In this example, we use the same virtual package as in figure 2,

‘x_terminal_emulator. Two concrete packages, rxvt and rxvt-aa,
implement its functionality. There are two versions of each avail-
able, but for a valid configuration, only the older version of rxvt is
accepted.

5 DISCUSSION AND FUTURE WORK

Linux Familiar does not represent the configuration aspects of all
software products. However, it is an easily studied real-world ex-
ample of configurable software. On the basis of the modeling ap-
proach defined earlier, it seems that the methods of physical product
configuration are at least partially applicable to software products as
well. The differences between these domains are not so remarkable
that entirely new methods and modeling languages need to be de-
veloped for software configuration.

Using a modeling language like PCML seemed adequate for
modeling the most important aspects of Linux configuration. The
ability to model virtual packages as entities on their own with rela-
tionships to one another can be considered a good additional fea-
ture, as long as we have correctly understood the concept. If,
however, the virtual package concept has been developed for de-
scribing the functionality offered by different packages, modeling
them as features or functions [5] could be more useful. Those con-
cepts correspond semantically better to what seems to be modeled
with virtual packages and provide more flexibility in defining rela-
tionships between virtual and concrete packages. For now, as each
virtual package is implemented by one package only (although there
are several alternatives), it can be stated that the use of abstract
component types and subtyping is a reasonable choice. This should,
however, be studied further.

On the basis of this case study, there is no indication that the dif-
ferences between the traditional industry and software domains,
referred to by Brooks [6], are of big relevance with respect to prod-
uct configuration. Invisibility, conformity and complexity did not
have an impact in the case product. On the basis of this single case
study, it seems that changeability may be more important and a
difference between the domains. A single software component can
easily have quite a large number of versions. However, Linux is
somewhat a special case in this respect as more functional versions
are released for users than in a typical commercial software product.
Therefore, it should be studied further if the number of versions

really is big for software products in general and what sort of chal-
lenges this may present for the modeling task. In our case, there
were no complex and large version spaces, which means that no
conclusions could be done of the issue.

Modeling conflicts was easier using PCML. For example, the
modeling of conflicts was simplified. The model then became more
manageable as the problems presented in section 3.2 ceased to exist.

The usefulness of cardinality of packages in software configura-
tion was questioned when the mapping of the concepts was made.
In this case, there were only optional and required packages and
therefore a concept of optionality could be used instead of cardinal-
ities. On the other hand, modeling distributed systems may require a
more elaborate cardinality, as a component type may be instantiated
(i.e., installed) on several different devices. Thus, we cannot con-
clude that cardinality would be useless for software configuration
modeling.

In the case of a handheld device, a concept for modeling the con-
figuration size would have been useful. In PCML, Such a concept is
not present and some problems can be expected when the disk of
the device becomes full. The size information was available for all
the packages but there were no means used to calculate the configu-
ration size in this case study. However, the resource balancing
based approach to modeling incorporated into the ontology of Soin-
inen et al [5] could be useful to capture this phenomenon.

5.1 Problems and Challenges Raised in Our
Mapping

We faced a few challenges when modeling Linux Familiar package
descriptions with PCML. We next discuss the challenges with the
modeling and the challenges with the input data in more detail.

Dangling references and reconfiguration. In the package de-
scriptions of Linux Familiar, there were a remarkable number of
references to packages, which were not present in the package list.
PCML does no allow references to non-existent parts, and thus,
such constraints were simply removed. This did not produce a prob-
lem for the configuration task, as the relationships were mainly
conflicts and the conflicting, lacking package was not available to
be installed to the device. However, this becomes a problem for the
reconfiguration task. The package list of Familiar distribution is on
the Internet and it only lists the packages currently available. Pack-
ages that are no longer available are removed from the list. When
reconfiguring the system, the new package to be installed may have
a conflict with a package already installed on the device but no
longer listed in the model. In this case, the conflict would be ig-
nored according to our model and it would be possible to install an
invalid configuration. This is an issue that needs further studies.

Feature modeling. There were some packages included in Fa-
miliar, whose names started with “task-“. These packages consisted
of a set of different packages to make some basic installations easier
for the end user. For example, package task-x includes all the pack-
ages that together implement the Linux graphical user interface
called X. They should be studied further, as it seems that they pro-
vide a form of feature or function modeling.

Installation order. There were no means to model this informa-
tion using PCML. When modeling the Familiar package listing with
PCML, the installation order part of the information of disappeared.
It can be argued that the installation process is separate from the
configuration process and that the information should not be in the
model in the first place. However, in the case of software, it can be
claimed that these processes are commonly intertwined and the
separation should not be done. In addition, modeling the informa-

9

tion on installation order seems to be closely connected to recon-
figuration, as it is essential to capture the configurations and the
transitions from one configuration to another. This topic requires
further work.

Configuration optimization. In section 3.2, the package rela-
tionships recommends and suggests were briefly mentioned. These
can be seen as related to configuration optimization. One solution
[12] would be to install the packages recommended and suggested
every time a package recommending them is installed. This strategy
of maximizing the configuration is not the best solution when con-
figuring software for handheld devices. The limited size of the
device does not encourage installing all recommended and sug-
gested packages automatically without consulting the user. On the
other hand, simply ignoring these relationships and thus minimizing
the configuration, as was done in our approach, leaves this informa-
tion totally unused. It should be studied further in which way the
information should be used appropriately.

Replacement, reconfiguration. We also left out the concept of
replacement from our model. The input data varied so wildly with
regard to this respect and we could not reliably conclude what
meaning the replaces relationship should be given. The main inter-
pretations is, as explained in section 3.2, that the replacing package
provides the functionality of the mentioned package but also over-
writes it at least partially. This operation then may break existing
dependencies from other packages. In addition, if the user wants to
install the replaced package back on the system, again rewriting
some files, she may break the whole system as the replaces relation-
ship is only defined in one direction. In this case study, we did not
research this problem further and we see this as a reconfiguration
problem to be studied.

Implication and reconfiguration. Using classical implication to
model the depends relationship does not seem to correspond to the
way dpkg operates. When user removes a package from the system,
dpkg checks that the removal does not break any existing depend-
encies. However, the packages installed initially just to satisfy the
constraints of this package, normally due to depends- relationships,
remain on the system. After a while, it is possible that the system
consists of a large amount of packages, which have no justification
for their existence. In a system with limited size, they easily waste
resources. In order to capture this justification aspect, a new
connective is needed in the constraint language that has similar
properties as the rules in the weight constraint language used for
formalizing configuration knowledge in [14].

Input version numbers. The version numbering of Familiar is
quite versatile and due to the many different conventions in use, it is
possible that in some cases a simple string comparison of version
numbers may produce false results. This is, however, a problem that
can only be solved by changing the version numbering conventions
and cannot be simply solved by a modeling language.

6 CONCLUSIONS
We have presented a case study of modeling a configurable soft-
ware product family, Linux Familiar, with a configuration modeling
language designed for representing the structure of a physical prod-
uct. Findings from this case study suggest that configuration model-
ing of a software product can be carried out to large extent using
such a language. Thus it can be used as a basis for modeling and
configuring software product families without a need to develop a
radically new language for this purpose. However, there remain
some important areas where further research is needed. In the case
product, some phenomena strongly suggested that modeling them as
functions or features, resources and optimality criteria, familiar

from the configuration domain, would increase the understandabil-
ity and usefulness of the models. In addition, there is some evidence
that deeper models of versions of components and reconfiguration
knowledge, not usually covered by configuration models, should be
supported. In addition to researching these modeling questions, the
case study should be continued by completing the model and by
empirically testing its validity and the efficiency of the configurator
support. In order to investigate whether the findings of this case
study can be generalized, more software products from different
application domains should also be investigated.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support of Technology
Development Centre of Finland and Academy of Finland (grant
number 51394). In addition, we thank Juha Tiihonen and Andreas
Anderson for providing the configurator used in this research and
for their help in using it.

REFERENCES
[1] J.Bosch, Design and use of software architectures - adopting and evolv-

ing a product-line approsch, Addison-Wesley, 2000.
[2] T.Männistö, T.Soininen, and R.Sulonen, ‘Modelling configurable prod-

ucts and software product families’, in: IJCAI’01 Workshop on con-
figuration, 2001.

[3] T.Syrjänen, A rule-based formal model for software configuration.
Master’s thesis.(2000). Helsinki University of Technology:

[4] D.Sabin and R.Weigel, ‘Product configuration Frameworks—A survey’,
IEEE intelligent systems & their applications, 13, 42-49, (1998).

[5] T.Soininen, J.Tiihonen, T.Männistö, and R.Sulonen, ‘Towards a General
Ontology of Configuration’, AI EDAM, 12, 357-372, (1998).

[6] F.P.Brooks, No silver bullet -- Essence and accident in software devel-
opment, IFIP, 1986.

[7] J.Estublier, ‘Software configuration management: A roadmap’, in: Pro-
ceedings of 22nd International Conference on Software Engineering
(ICSE00), The future of software engineering, ACM Press, 2000.

[8] T.Syrjänen, ‘Version spaces and rule-based configuration management’,
in: IJCAI’01 Workshop on configuration, 2001.

[9] I.T.Bowman, R.C.Holt, and N.V.Brewster, ‘Linux as a case study: Its
extracted software architecture’, in: Proceedings of ICSE’99, 1999.

[10] http://www.debian.org/doc/packaging-manuals/virtual-package-names-
list.txt

[11] J.Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, ‘Empirical testing
of a weight constraint rule based configurator’ In Proceedings of the
ECAI Workshop W02 on Configuration, 2002

[12] T. Syrjänen: ‘Optimizing Configurations’ In Proceedings of the ECAI
Workshop W02 on Configuration, 2000

[13] http://handhelds.org/familiar/
[14] T. Soininen, I. Niemelä, J. Tiihonen and R. Sulonen. ‘Representing

Configuration Knowledge With Weight Constraint Rules’. In Proceed-
ings of the AAAI Spring 2001 Symposium on Answer Set Program-
ming: Towards Efficient and Scalable Knowledge Representation and
Reasoning, 2001.

[15] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, ’The
Koala Component Model for Consumer Electronics Software’, IEEE
Computer, 33, 78-85, 2000

[16] K. Czarnecki and U. W. Eisenecker, Generative Programming, Addi-
son-Wesley, 2000

[17] N.Medvidovic and R.N.Taylor. ‘A classification and comparison frame-
work for software architecture description languages’, IEEE Transac-
tions on software engineering, 26, 70-93, 2000

10

Configuration for mass-customisation and e-business
Ying-Lie O

�

Abstract. Mass-customisation and e-business impose new require-
ments on trading. In mass-customisation, products are variations of
configurations in a product family. Model-based configuration can be
seen as a combination of product modelling and solving the configu-
ration problem.

The product model can be presented using modelling constructs.
Different constructs allow different kinds of selection. Instead of re-
quiring the customer to choose from technical specifications, under-
standable characteristics are used.

The problem solving part is finding the configuration by a com-
bination of selection and approximate matching. An incremental ap-
proach allows customer interaction. At each step, the customer may
select components and characteristics. In the resulting matching, the
list of components and non-matching characteristics are indicated.
The proposed approach is attempted to be simple, such that cus-
tomers can understand the proposed solutions of the specified char-
acteristics.

1 INTRODUCTION

Nowadays, there is an increasing demand on products to customers
order. These products are not fully tailored in the conventional way,
but are ”variants”. This is called mass customisation, involving vari-
ations in a product family. There are three types of compositions:

� Pick-to-order is providing the components selected by the cus-
tomer. The customer is responsible for making the product ready
to use. Example: Home AV (audio-video) systems are sound sys-
tems, television sets, and combinations of these intended for non-
professional use in an average size living room.

� Assemble-to-order is assembling of products according to cus-
tomers configuration from components. Example: Office comput-
ers are computer systems for one or more persons for office work
in an office or at home.

� Make-to-order is the production to customers specification ac-
cording to existing product type definitions. Example: digital
printworks are the preparation, printing, and postprocessing of a
document or artwork to a printed product using professional digi-
tal printing equipment.

Mass-customisation and e-business impose new requirements on
trading. Customers must be able to specify their requirements on-
line without knowing details of product design and technical speci-
fications. Mostly, the customer has to select a specific product type
first, and then select the desired parts from lists. In reply, a quote
with the matching product is offered. This situation is far from being
customer-friendly. It is even difficult to compare a number of simi-
lar products. In a shop, products are on display along with the most
important specifications.

�

University of Twente, Enschede, email: ying@cs.utwente.nl

E-business should provide additional value by employing AI. In-
stead of directly selecting the parts, the customer should be able to
specify characteristics of the intended product. In reply, a quote with
several top-most approximately matching products are offered. The
products are ordered according to their “goodness of match”, indicat-
ing the non-matching characteristics. This approach requires a suit-
able product modelling, and a suitable problem solving method.

2 PRODUCT AND CONFIGURATION MODELS

Product modelling and configuration have been around for some time
to support manufacturing. It is used for design, production, and ser-
vice of the product during its life-time. Product data management
and product models describe the product at certain stages “as is”. The
configuration problem is finding the combination of product compo-
nents such that it matches the product requirements.

2.1 Product models

There are many product modelling methods, some are specifically
tailored for a certain industry or family of products. Most product
models represent the hierarchical composition of the product. The
bill of materials (BOM) gives the composition of an individual prod-
uct. Each component is represented by a code or serial number. Asso-
ciating the components of the BOM with its functional descriptions
[9] gives a more detailed description. The BOM can be extended to
support choices in assemble-to-order products [3] by including the
list of possible components.

STEP (Standard for the Exchange of Product Model Data) is a
conceptual standard for representing the configuration of individual
products based on standard data. The STEP method and the specifica-
tion language EXPRESS is useful for the definition of general mod-
els of products [2], including product variants [8]. The EXPRESS
language can be mapped to the object-oriented UML (Unified Mod-
eling Language) [1].

2.2 Configuration models

Configuration systems are mainly intended for supporting the man-
ufacturing process, in particular product design. These systems are
mainly focussed on problem solving [5]. There are many product
configurations methods [10]. Early systems were rule-based systems,
but the number of rules tend to explode, and the relation between
rules and components of the product are not as clear.

In model-based systems, there is a separation between knowledge
about components and the way it is used. Commonly used logic-
based methods are description logics and the constraint-based sat-
isfaction problem. A combination of these methods is a rule-based
language equipped with description logics [11].

11

Model-based configuration can be seen as a combination of prod-
uct modelling and reasoning to solve the configuration problem. A
structured modelling procedure [4] by decomposition and analysis
of assembly relations allow detailed specification.

A conceptual model for the configuration of mass-customisable
products employing the UML notation has been proposed by [6].
It includes consistency and validity checks and can be automatically
translated to an executable logic representation for a knowledge base.

3 CONFIGURATION MODEL FOR
MASS-CUSTOMISATION

Product configuration is a combination of product modelling and
solving the configuration problem. In most configuration systems,
customers must enter product specifications and select components
from detailed lists. This requires sufficient knowledge about the
product. Instead, customers should be able to specify their require-
ments. To get more precise, a terminology is employed. The termi-
nology, or more general ontology can be extracted from existing e-
business data [7] such as online catalogs. Unfortunately, most of the
results regard terminology for component names, component brands,
and technical specification.

The product characteristics is an intermediate between the cus-
tomer requirements and product specification

� � � � � 	 � �
 � � � � � � � �
 �
 � � � � � � � � � � � � � � � � � � � � � � � "

Each component has a number of characteristics. The characteristics
specified by the customer are matched to that of the components. The
resulting configuration is an instance of a product type.

This model is specifically intended for mass-customisation, thus
limited to variations of a product family. In most product configu-
rators, the complete set of characteristics must be specified before-
hand. Here, an incremental approach at selection level is proposed.
This approach allows customer interaction and update of the require-
ments. At each step, the customer may select components and char-
acteristics. The proposed approach is attempted to be simple, such
that customers can understand the proposed solutions of the speci-
fied characteristics.

3.1 General model of product families

Product families are modelled in a hierarchical way. Each product
family consists of several clearly identifiable product types. This
should limit the number of possible variations, and thus reducing the
complexity. The properties of the general model are:

A product family consists of mutually independent product types
that may consist of other product types.

The structure of a product type is a composition of subassemblies
and parts. These components may be ready parts or produced ac-
cording to specification.

Matching of the user requirements to the product specification is
performed through an intermediate terminology, the product char-
acteristics.

Each component has characteristics associated to its functionality
and technical specification.

The customisation is in the selection of components and charac-
teristics. A component may be mandatory or optional.

The general model of product families as depicted in Figure 1 em-
ploys the UML notation for static structure diagrams. The modelling
constructs are described below.

product type

subassembly part

ready part produced part

machine

toolmaterial

production

 product family

design

Figure 1. General model of the configuration of a product family
consisting of metaclasses

A rectangle represents an object class by its name. A class consists
of objects, while a metaclass indicated by the $ $ & & signs
consists of classes. Metaclasses are used to represent the product
and component families. Product and component models are given
by classes, the products are the object instances.

The second compartment in a divided rectangle gives the at-
tributes of the class. The product characteristics are represented
by attributes.

The hollow triangle ' and circle (on the connecting line rep-
resent shared generalisation. Child components inherit properties
from the parent component. The letter “d” (disjoint) in the circle
indicates that there may be only one child in an instance. In the top
layers of a product model, a product family is divided into product
types using disjoint generalisation. A product type may consists of
other product types.
Selection components of a part is represented by generalisation. A
part may be ready parts or produced parts.

The hollow diamond) and bullet # on the connecting line de-
fine aggregation. An expandable composition of components is
given by aggregation. A product type consists of subassemblies
and parts. A subassembly may consist of subassemblies and parts.

The solid diamond * and bullet # on the connecting line represent
composition, a strong form of aggregation into a composite class.
In product models a composite component is built of subcompo-
nents that solely belong to that component and the composition
yields its functionality as a whole. This specific property may be
valid for some subassemblies, and is therefore not indicated as
metaclass in the general model.

A large diamond connected with lines to rectangles represent an
association. The association class is given by a rectangle con-
nected with a dashed line. The production of a produced part is
represented by an association of components required in the pro-
duction.

The permitted number of components is specified by the multi-
plicity as a range of natural numbers. Thus, + " " � means 1 to n,

+ " " + means exactly 1, , " " + means at most 1.

The general product model in Figure 1 consists of metaclasses only,
therefore the $ $ & & signs are left out. Specific composition
properties that apply on classes are therefore not visible.

12

3.2 Product characteristics

As an attribute, a characteristic has an identifying generally mean-
ingful name and a domain of possible values as a user-friendly trans-
lation of the technical specification.

Characteristics are preferably objective, and the domain
consists of comparative terms. This makes the character-
istics invariant to rapid changes, for instance in technology.

� � � � � 	 � � � � � � � � � � � � � � � � � � in printing gives the resolution of the
printer and grain size of the paper; � � � �

related to a PC disk gives the storage size with respect to current
technology; � � � � � � � � � � � � � " � � 	 � � � � � � specifies the PC com-
puting power, and is related to the technical specification of the CPU
frequency and internal memory.

Inheritance and association of the characteristics are determined
by the modelling constructs. Child components in a generalisation
inherit properties from the parent component and may have addi-
tional specialisation characteristics

� # � � � � # � � � � % � � � � � 	 # � � � � (� � � � # � � � � � � � # � � � � +

A composite component has all the characteristics of its subcompo-
nents � # � � � � � � 	 � # � � � � % � # � � � � � � � 	 / # � � � � (2 2 2 (

� # � � � � � � � 	 3 # � � � � +

Similar to the composite component, a composition of components
has all the characteristics of its selected components. Also similar to
the composite component, the produced part has all the characteris-
tics of its associated components.

Except for inheritance properties, the scope of the characteristics
may be global, or local. In the global mode, all characteristics of the
same name get the same value
# � � 4 % � 8 : components # � � � � � � � 	 # � � 4 % � +

In the local mode, it is limited to the selected component. In a gener-
alisation, characteristics regarding the specialisation are always lo-
cal. The mode may be changed during the selection process. For
instance, the desired colour of a product may be set global at the
beginning, and set to local regarding a specific part.

3.3 Selection and matching

The problem solving part is finding the configuration of the desired
product by a combination of selection and approximate matching.

The approximate matching problem is formulated as finding the
components with the most matching characteristics to the user re-
quirements. This will result in a list of products, that may have sev-
eral non-matching characteristics. Customisation by selection occurs
at three levels:

1. Class-level in aggregation constructs by selection of a combina-
tion of desired components.

2. Class-level in generalisation constructs by selection from a list of
possible components.

3. Object-level in all classes by selection of an object instance in
each class.

Matching the user requirements to the product characteristics are set-
based operations. Set union (gives all the characteristics, and set
intersection < gives the matching characteristics.

The incremental approach allows (de)selection of both compo-
nents and characteristics at each step. Non-matching characteristics
are indicated, allowing the customer to modify the selections.

The selection of components yields the associated characteristics
and their value range.
: selected components � 	 � 	 � � # � � � � % (� 	 � 	 � � # � � � �

(� # � � � � � � � 	 / # � � � � (2 2 2 (� # � � � � � � � 	 3 # � � � � +

On the other hand, the selection of characteristics gives the matching
components and non-matching characteristics.
: selected characteristics � 	 � 	 � � # � � � � % (� 	 � 	 � � # � � � �

(� # � � / � (2 2 2 (� # � � 3 � +

Given the � 	 � 	 � � # � � � � C matching components with
� # � � � � � � � 	 # � � � � < � 	 � 	 � � # � � � � E% F + Non-matching
characteristics are not present in the set of selected characteristics

� � � � � � 	 # � # � � � � : � # � � � � � � � 	 # � � � � GH � 	 � 	 � � # � � � � +

This process is alternately repeated on components that have a path
to the selected product type.

The selection starts with choosing from an index of product fami-
lies and product types. As in a large department store, customers are
usually able to find the department of a particular product family.

1. Class-level top-down matching to determine the product types.
The requirements of the product types generally regard the in-
tended use of the product.

2. Class-level characteristics from the selected product types are re-
trieved and presented for selection. Product types may be dese-
lected.

3. Then for each selected product type, advance downwards on class-
level. This involves tracing the connected paths to the product
types. The selection procedure is carried out for aggregation con-
structs and generalisation constructs.

4. Class-level bottom-up analysis of association classes and compo-
sition classes that are connected to the selected classes.

5. Class-level characteristics from the selected components are re-
trieved and presented for selection. At this stage, characteristics
may be altered locally only for a particular component.

6. Object-level selection from the list of matching objects of all re-
maining classes.

7. Determine a list of matching product compositions.

In the above, in the first three steps, the characteristics are global, and
may become local in the last four steps.

3.4 Reconfiguration

Reconfiguration is altering an existing product configuration for re-
placement, upgrading, or changing the functionality. There are two
modes of reconfiguration:

Addition or replacement of components that does not change the
remaining of the existing configuration such as addition of a com-
ponent in an aggregated class, replacement of a child component in
a generalisation class, or replacement of an object instance. Most of
the functionality and global characteristics remain the same.

Changes that affect the configuration such as upgrades of an ear-
lier version of a product type typically regard composition classes
and aggregation classes. This can be considered as a change of the
product type. Therefore, an “upgrade model” containing the possible
replacements is required.

4 EXAMPLES

Each of the composition type is illustrated by a familiar example. To
avoid cluttered diagrams, the models are only partly presented and
detailed. For the same reason, the characteristics that mostly yield
the “customisation” are indicated by empty compartments. Also, the
multiplicities are left out.

To illustrate the matching process, the most relevant characteris-
tics are presented in tables. In the first table, the characteristics are

13

described. In the next table, the selection process is illustrated by
showing the requirements characteristics entered by the customer,
the matching product type and associated characteristics.

4.1 Home AV systems

“Home AV systems” is an example of pick-to-order products. It is

<< product type >>
com bined AV system s

<< product type >>
hom e AV system s

<< product type >>
video system s

<< product type >>
audio system s

d

am plifier and
loudspeakers

stereo

CD/DVD player TV m onitor VCR

stereo am plifier

quadro

d

quadro am plifier

loudspeakers

audiocable

am plifier

d

Figure 2. Part of the configuration model of home AV systems

a product type of the product family “AV systems”. Usually, com-
ponents have matching connectors. In Figure 2 part of this model is
presented, along with the most relevant part of the characteristics in
Table 1.

Table 1. Part of the characteristics of home AV systems

class construct characteristics
multiplicity constraints

home AV systems product type use = non-professional
audio systems product type AV = audio
AV systems product type AV = (audio, video)
audio systems aggregate AV = audio
CD/DVD player part type � CD, DVD �
television part AV = video
amplifier and generalisation type � stereo, quadro �

loudspeakers 1..1 power � low, med, high �
stereo aggregate 0..1 type = stereo
quadro aggregate 0..1 type = quadro
amplifier generalisation quality � plain, good, high �

power � low, med, high �
loudspeaker part 2..2 quality � plain, good �

power � low, med �
connector = RL pin

stereo amplifier part 1..1 quality � plain, good, high �
power � low, med, high �
connector = RL pin

audiocable part 2..2 connector � RL pin, coax �
connector1, connector2

In pick-to-order, there usually is an abundance of choices on
object-level. Therefore, additional characteristics such as brand, and
colour may help to restrict the choices.

1. The selection starts at the level of home AV systems.

2. The choice of AV = audio yields 2 choices, one with a non-
matching characteristic.

3. Advancing downwards is rather straight-forward, allowing the se-
lection in “amplifier and loudspeakers” and “CD/DVD players”.

4. There are no association classes and composition classes.
5. Selection of characteristics, for instance a local value is selected:

loudspeaker.quality = good.
6. Selection of stereo amplifiers, loudspeakers, and CD players with

the selected characteristics.
7. The matching products are stereo amplifiers, “loudspeakers (2)”,

“audio cables (2)”, and “CD players” with matching connectors.

Table 2. Example of the selection and matching of home AV systems

requirements class characteristics
characteristics of components
AV = audio audio systems AV = audio

AV systems AV = audio
deselect AV systems
type = CD CD/DVD player type = CD
type = stereo amplifier and type = stereo

loudspeakers power � low, med, high �
type = stereo stereo type = stereo
quality = good loudspeaker quality = good
power = med power = med
– connector = RL pin
quality = high stereo amplifier quality = high
– power = med
– connector = RL pin
– audiocable connector1 = RL pin
– connector2 = RL pin

4.2 Office computers

A familiar example of assemble-to-order products are “office com-
puters” a product type of the product family “Computers”. This prod-

<< product type >>
office com puters

<< prodcut type >>
server

<< product type >>
laptop

<< product type >>
workstation

built−in devices

m onitors keyboard m ouse

<< product type >>
peripherals

<< product type >>
com puter unit

<< product type >>
devices

d

desktoptower

m otherboard housingharddisk

d

CPU m em ory

m ain HD second HDfloppy CD/DVD ZIP

printer scanner

board

Figure 3. Part of the configuration model of office computers

uct type is further divided into specific product types. In addition to

14

the assemble-to-order part, there are pick-to-order parts to combine
the configured system with other devices. It is partly represented in
Figure 3, with the most relevant characteristics in Table 3.

Table 3. Part of the characteristics of office computers

class construct characteristics
multiplicity constraints

office computers product type use = office work
computer unit product type main unit
peripherals product type addition
devices product type addition
laptop product type type = client
workstation product type place = fixed, type = client
server product type place = fixed, type = server
workstation composition type
built-in devices generalisation type � flop, CD/DVD, ZIP �

0..* slot � housing.slot
motherboard composition type

1..1
board part 1..1
CPU part 1..1 speed � med, fast, super �
memory part 1..4 speed � med, fast, super �
harddisk generalisation main HD = 1..1

1..2 second HD = 0..1
main HD child 1..1 size � small, med, large �

speed � med, fast �
second HD child 0..1 size � small, med �

speed � med, fast �
housing generalisation type � tower, desktop �

1..1 slot 1..*
tower child second HD = 0..1, slot = 5
desktop child second HD = 0, slot = 2

Table 4. Example of the selection and matching of office computers

requirements class characteristics
characteristics of components
main unit computer unit main unit
place = fixed workstation place = fixed
type = client type = client
– built-in devices slot = 2
type = CD/DVD type = CD/DVD
type = ZIP type = ZIP
– workstation type
– motherboard type
– board
speed = fast CPU speed = fast
speed = fast memory speed = fast
second HD harddisk second HD = 1
size = large main HD size = large
speed = fast speed = fast
size = med second HD size = med
speed = med speed = med
– housing type = tower
– tower second HD = 1, slot = 5

In this example, only the assemble-to-order part is tracked.

1. The selection starts with “computer unit”.
2. The choice of place = fixed, type = client yields the only product

type “workstation”.
3. Advancing downwards only regards the “built-in devices”. The

choices of “floppy”, “CD/DVD”, and “ZIP” require 2 slots.
4. Composition classes that are connected to “workstation” are

“motherboard”, “harddisk”, and “housing”.

5. In the selection of characteristics, the “second HD” has less char-
acteristics than the “main HD”.

6. Object-level selection from all remaining classes. There may be
additional constraints, such as the number of slots for “built-in
devices” and “hard disks” that fit in the “housing”.

7. Find matching “workstations” with fast performance, 2 “hard-
disks”, “tower housing”, and the desired “built-in devices”.

4.3 Digital printworks

<< product type >>
book

<< product type >>
digital printworks

<< product type >>
brochure

d

<< product type >>
cards

insert cover

d

colour pages bw pages

bw printing

<< m aterial >>
black ink

<< m aterial >>
paper

paperbackhardcover

colour printing

<< m achine >>
colour

digital printer

<< m aterail >>
cover paper

<< m aterail >>
colour ink

bound

<< m achine >>
bw

digital printer

<< design >>
artwork file

<< design >>
print file

Figure 4. Part of the configuration model of digital printworks

Table 5. Part of the characteristics of digital printworks

class construct characteristics
multiplicity constraints

digital product type printing = digital
printworks ink = cartridge

book product type
card product type
brochure product type
book composition quality � plain, good, high �
insert generalisation colour � colour, bw �

1..2 quality � plain, good, high �
cover generalisation type � hard, paperback �

1..1 quality � plain, good, high �
bound part 1..1 if cover.type = paperback

then bound = adhesive
if cover.type = hard
then bound = � stitch, sew �

bw pages association 1..* colour = bw
printfile design quality = good

paper size � A3, A4, A5 �
paper material quality � plain, good, high �

paper size � A3, A4, A5 �
black ink material
digital printer machine colour = bw
cover association 1..1 colour = colour
artworks design quality = good

paper size � A3, A4, A5 �
cover paper material quality � plain, good, high �
colour ink material colour � 3-colour, 6-colour �
digital printer machine colour = colour

15

“Digital printworks” is an example of make-to-order products. It is
a product type of the product family “Press works”. Printed pages are
generated by printing machines from the file delivered by the user. As
partly presented in Figure 4, the product type is further divided into
different types. The most relevant characteristics associated to the
figure are given in Table 5.

Table 6. Example of the selection and matching of digital printworks

requirements class characteristics
characteristics of components
book book
quality = good book quality = good
colour = bw insert colour = bw
– quality = good
type = hard cover type = hard
– quality = good
– bound bound = � stitch, sew �
– bw pages colour = bw
– printfile quality = good
paper size = A5 paper size = A5
quality = good paper quality = good
– paper size = A5
black black ink
– digital printer colour = bw
– hard colour = colour
– artworks quality = good
– paper size = A5
quality = high cover paper quality = high
colour= 3-colour colour ink colour= 3-colour
– digital printer colour = colour
bound = sew bound bound = sew

The product type “book” is taken as an example to illustrate the se-
lection and matching in a composite component and produced parts.

1. The selection of the product type “digital printworks” has been
made.

2. The product type “book” is selected.
3. Going downwards only regards this product type.
4. The components in the composite component “book” are related

by the way it is produced. The associated components in the “bw
pages” and “cover” represent material and settings of the printing
process.

5. Selection of the characteristics of the “bound” is limited by the
choice of the “cover”.

6. Object-level selection basically is the selection of the “paper”.
7. Matching products mainly regard the choices in the printing pro-

cess and the use of paper and ink. There may be some matching
between the printing machines and paper type and size.

5 CONCLUSION

A simple incremental product configuration method for mass-
customisation has been proposed. The product model consists of
modelling constructs for each configuration feature. For customer
requirements, characteristics are used instead of technical specifica-
tion. The characteristics selected by the customer are then used to
find matching components that have a connection path to the selected
product type. The approximate matching is performed using simple
set-based methods. The method allows non-matching characteristics.

From the examples it is found that in some cases business rules are
still needed. It should be further investigated how such rules can be
replaced by a set construct.

A possible improvement of the matching process, is by ranking
the characteristics in a sequence of importance as a partial order of
sets � � � �
 � � � � � � � � � � � � � �
 � � � � � �
The selection and matching then becomes a combination of track-
ing the paths of selected and associated components, ordering of the
characteristics, and matching these ordered characteristics.

Further research should also include consistency analysis of the
proposed solutions. The method should then be improved to handle
conflicting situations. It should also be investigated, whether addi-
tional constraints or rules are needed to maintain consistency in con-
flicting situations.

Another important aspect in the application of this method is
model management. It is expected that if the modelling constructs
are applied consistently, then the model definition part will not pose
any problems. However, problems are expected in the definition of
the characteristics. Even using a proper ontology, maintenance is still
elaborate. Updates of ontologies, and merging different ontologies is
still a research topic at this very moment.

It is also of interest to include different ways of representing the
modelling constructs for specification and implementation. Also, the
possibilities to extend this simple model to a full product design
model should be considered.

ACKNOWLEDGEMENTS

The author is indebted to Rob van de Weg for his valuable detailed
comments, and colleagues of the group of Information Systems for
their inspiring discussions.

The UML figures were drawn using TCM (Toolkit for Con-
ceptual Modelling) partly developed by this group, available at

� � � � � � � � � � � � � � � � " # � � % under the GNU General Public License.

REFERENCES
[1] F. Arnold and G. Podehl, ‘Best of both worlds - A mapping from

EXPRESS-G to UML’, in The Unified Modeling Language, UML’98
- Beyond the Notation. First International Workshop, Selected Papers,
eds., J. Bézivin and P.-A. Muller, volume 1618 of LNCS, pp. 49–63.
Springer Verlag, (1999).

[2] M. Ashworth, M.S. Bloor, A. McKay, and J. Owen, ‘Adopting STEP for
in-service configuration control’, Computers in Industry, 31, 235–253,
(1996).

[3] J.W.M. Bertrand, M. Zuijderwijk, and H.M.H. Hegge, ‘Using hierar-
chical pseudo bills of material for customer order acceptance and opti-
mal material replenishment in assemble to order manufacturing of non-
modular products’, Int. J. Production Economics, 66, 171–184, (2000).

[4] P.Y. Chao and T.T. Chen, ‘Analysis of assembly through product con-
figuration’, Computers in Industry, 44, 189–203, (2001).

[5] B. Faltings and E.C. Freuder, ‘Special issue on configuration’, IEEE
Intelligent Systems, 13(4), 29–85, (1998).

[6] A. Felfernig, G.E. Friedrich, and D. Jannach, ‘Conceptual modeling for
configuration of mass-customizable products’, Artificial Intelligence in
Engineering, 15, 165–176, (2001).

[7] A. Kayed and R.M. Colomb, ‘Extracting ontological concepts for ten-
dering conceptual structures’, Data & Knowledge Engineering, 40, 71–
89, (2002).

[8] T. Männistö, H. Peltonen, A. Martio, and R. Sulonen, ‘Modelling
generic product structures in STEP’, Computer-Aided Design, 30(14),
1111–1118, (1998).

[9] T. Männistö, H. Peltonen, T. Soininen, and R. Sulonen, ‘Multiple ab-
straction levels in modelling product structures’, Data & Knowledge
Engineering, 36, 55–78, (2001).

[10] D. Sabin and R. Weigel, ‘Product configuration frameworks – a survey’,
IEEE Intelligent Systems, 13(4), 42–49, (1998).

[11] T. Soininen and I. Niemelä, ‘Developing a declarative rule language
for applications in product configuration’, in PADL’99 Practical As-
pects of Declarative Languages Proc. First International Workshop,
ed., G. Gupta, volume 1551 of LNCS, pp. 305–319. Springer, (1998).

16

Empirical Testing of a Weight Constraint Rule Based
Configurator

Juha Tiihonen1, Timo Soininen1, Ilkka Niemelä2, and Reijo Sulonen1

1&2 Helsinki University of Technology, Dept of Computer Science and Eng.,
1 Software Business and Engineering Institute, P.O.B. 9600, FI-02015 HUT
2 Lab. for Theoretical Computer Science, P.O.Box 5400, FI-02015 HUT
1&2 {Juha.Tiihonen, Timo.Soininen, Ilkka.Niemela, Reijo.Sulonen}@hut.fi

Abstract. In this paper we first describe a configurator imple-
mentation based on a practically important subset of a synthesized
ontology of configuration knowledge. The underlying configuration
modeling language has been provided with a declarative semantics
by mapping it to weight constraint rules, a form of logic programs.
Three issues important for efficiency of the implementation are
addressed: off-line compilation of configuration models, limiting a
configuration to a finite size in a semantically justified way, and
breaking symmetries in the set of configurations. The second part of
the paper takes a step in the direction of thorough empirical testing
of configurators. We define a relatively modeling-language-
independent method for testing configurators based on the idea of
simulating a naïve user inputting random requirements to a configu-
rator. We test the configurator empirically on batch-mode sales
configuration of four real products with progressively larger and
thus more restricting sets of random user requirements. The results
indicate that our configurator is efficient enough for practical use.

1 INTRODUCTION
Several formal models of configuration knowledge and tasks based
on, e.g., constraint satisfaction problems (CSP) and different logical
formalisms have been proposed, e.g., [1,2,3,4] and implemented,
e.g., [4,5,6,7,8]. For several of these, the configuration problem has
been shown to be at least NP-hard [2,4,9,10]. In other words, the
configuration task requires in the worst case at least an exponential
amount of time in the size of the problem. However, conventional
wisdom in the configuration community is that solving configura-
tion problems is relatively easy and does not exhibit this kind of
behavior. There are some documented results on the efficiency of
configurators [4,6,7,8], but systematic and wide range empirical
testing of configurators on real products that would show whether
the wisdom is, indeed, wisdom, is still lacking.

In this paper we take a step in the direction of thorough empirical
testing of configurators. We briefly describe a configurator imple-
mentation, define a general test methodology for configurators, and
provide results on the efficiency of our implementation.

Our configurator uses a modeling language based on a practi-
cally important subset of a synthesized ontology of configuration
knowledge [11]. The language has a declarative semantics provided
by mapping it to weight constraint rules, a form of logic programs
[2,12]. The configurator uses this mapping to translate the modeling
language to weight constraint rules. It then uses a state-of-the-art
implementation of weight constraint rules, Smodels [12], for com-
puting configurations satisfying user requirements. Three issues
important for efficiency of the configurator are addressed: off-line
compilation of configuration models, limiting a configuration to a
finite size in a semantically justified way, and symmetry breaking.

We have modeled four real products from a sales configuration
point of view. The case products are characterized and the configu-

rator is empirically tested on batch-mode configuration of these
products. We define a relatively modeling-language-independent
method for testing configurators based on the idea of simulating a
naïve user inputting random requirements to a configurator. This is
accomplished by randomly generating progressively larger and thus
more restricting sets of user requirements that are not locally con-
flicting. Results are given on the number of correct configurations
found and the time it takes to find the first and all configurations
satisfying a set of random requirements, or to show that no such
configuration exists.

The rest of the paper is structured as follows: In section 2 the
modeling language and its semantics are outlined and in section 3
the configurator implementation based on the language is described.
In section 4 the testing method and the case products are described
and the test results are provided. Finally, in section 5 we discuss and
compare our implementation and results with related work and in
section 6 we present conclusions and topics for further work.

2 MODELING LANGUAGE
In this section we briefly describe PCML, the product configuration
modeling language of our configurator, and outline its semantics.
For more information on the modeling language and its implemen-
tation, see http://www.soberit.hut.fi/pdmg/empirical_cfg/ and [2].

The main concepts of PCML are component types, their compo-
sitional structure, properties of components, and constraints. Com-
ponent types define intensionally the characteristics (such as parts)
of their individuals that can appear in a configuration. A component
type is either abstract or concrete. Only an individual directly of a
concrete type is specific enough to be used in an unambiguous
configuration. A component type defines its direct parts through a
set of part definitions. A part definition specifies a part name, a
non-empty set of possible part types (allowed types for brevity) and
a cardinality. A component type may define properties that param-
eterize or otherwise characterize the type. A property definition
consists of a property name, a property value type and a necessity
definition. Component types are organized in a taxonomy or class
hierarchy where a subtype inherits the property and part definitions
of its supertypes in the usual manner.

Figure 1 illustrates the concepts through an example. A server
PC has 1 to 2 storage subsystems. There are two kinds of storage
subsystems, SSA and SSB. A storage subsystem has 1 to 4 hard
disks. The hard disk types in use are HDA and HDB. This is mod-
eled as follows (the upper part of Figure 1): Concrete component
type PC has a part definition with part name sto, cardinality 1..2
and allowed type SS. Component type SS is abstract and has two
concrete subtypes SSA and SSB. SS has a part definition msu (mass
storage units) with cardinality 1 to 4 and allowed type HD. Type HD

17

is abstract and has two concrete subtypes HDA and HDB. The lower
part of Figure 1 shows a configuration where individual pc-1 of
type PC has as a part with part name sto two storage subsystems of
type SSA (ssa-1 and ssa-2). The individual ssa-1 has as a part
with part name msu one hard disk of type HDA (hda-1), while ssa-
2 has as a part with part name msu one hard disk of type HDA (hda-
5) and one hard disk of type HDB (hdb-5).

Constraints associated with component types define conditions
that a correct configuration must satisfy. The first level building
blocks of the constraint language are references to access parts and
properties of components, and constants such as integers. Refer-
ences can be used in succession, e.g. to access a property of a part.
Tests returning Boolean values are constructed using references,
constants, and arithmetic expressions. Tests include predicates for
checking if a particular referenced individual exists or is of a given
type. Property references can be used with constants in arithmetic
expressions that can be compared with the usual relational operators
to create a test. Test can be further combined into arbitrarily com-
plex Boolean expressions using the standard Boolean connectives.

The semantics of the modeling language is provided by mapping
it to weight constraint rules [2]. The basic idea is to treat the sen-
tences of the modeling language as short hand notations for a set of
sentences in the weight constraint rule language (WCRL) [11]. A
configuration model thus corresponds to a set of weight constraint
rules consisting of ontological definitions defining the semantics of
the modeling concepts and a set rules representing the configuration
model. A configuration with respect to a configuration model is
defined as a subset of the Herbrand base of the configuration model.
A requirement is for simplicity defined as an atomic fact. A correct
configuration is a stable model of the set of rules representing the
configuration model and a suitable configuration is a correct con-
figuration that also satisfies the set of requirements.

3 IMPLEMENTATION
This section first describes relevant parts of our prototype configu-
rator and off-line compilation of configuration models. Then we
discuss individual generation that limits a configuration to a finite
size in a semantically justified way. Finally we discuss symmetry
breaking that is important for the performance of the configurator.

3.1 Overview and implementation scope

The configurator architecture is outlined in Figure 2. The configu-
rator is implemented in Java programming language except compo-
nents smodels and lparse of the Smodels system, described below.

The configurator compiles a PCML program to a general WCRL
program with variables and further to simple basic rules (BCRL)
that contain no variables. This potentially costly two-phase compi-
lation process is performed off-line. In the compilation, PCML core

in the Model manager loads a PCML configuration model and
checks it for consistency. This includes parsing the PCML file, type
checking expressions and checking the configuration model for
validity with respect to the language specification. The Smodels
interface in Model manager translates the configuration model to a
WCRL program. Data structures representing the PCML configura-
tion model are saved for later use. The generated WCRL program
includes sentences for ontological definitions, component type
hierarchy, compositional structure, properties, and constraints as
described in [2]. In addition, rules for component individuals and
symmetry breaking are included, described in Sections 3.2 and 3.3.
Finally, the WCRL program is translated to BCRL.

The configurator uses as the configuration engine an implemen-
tation of the weight constraint rule language called Smodels[12].
The main functionality of the Smodels system is to compute a de-
sired number of stable models for a WCRL program. The system
allows a user to give further requirements (through so-called com-
pute statements) to constrain the stable models to be computed.

The Smodels system is based on a two-level architecture where
in the first phase a front-end, lparse, compiles a WCRL program
into a BCRL program. Lparse exploits efficient database techniques
but does not resort to search. The search for models of BCRL pro-
grams is handled using a special purpose search procedure, smodels,
taking advantage of special features of BCRL. The search procedure
works in linear space and employs efficient search space pruning
techniques and a powerful dynamic application-independent search
heuristic. Smodels is implemented in C++ and offers APIs through
which it can be directly integrated into other software. Smodels is
publicly available at http://www.tcs.hut.fi/Software/smodels/.

The BCRL form of the configuration model is used to repeti-
tively configure a product. The configurator server loads the data
structures representing the PCML configuration model into PCML
core and the BCRL program into smodels. A compute statement
representing requirements is set through smodels API.

3.2 Individual generation

In this work, we take the approach that the set of individuals out of
which the configuration can be constructed is pre-defined. This
limits the configuration to a finite size. We decide in advance in a
semantically justified way the number of individuals of each con-
crete type available for use in a configuration. The available indi-
viduals are represented as a set of facts stating for each individual
which type it is an individual of. These facts are added to the
WCRL rules representing the configuration model.

There is exactly one component type that can serve as the root of
the compositional structure, referred to as the configuration type.
An individual of this type, the configuration individual, serves as
the root of the compositional structure. Because a maximum cardi-
nality is defined for every part definition, we can calculate an upper
bound of the number of needed individuals. First the configuration

pc-1

ssa-2ssa-1

hda-1

sto

A

c-1 component
individual

abstract (A) and
concrete (C)
component type

B

Pn
[n..m]

C

part defintion Pn
cardinality n to m,
allowed types
 B and C

b-2b-1

Pn parts b-1 and
b-2 with
part name Pn

HDA HDB

HD

SSA SSB

SSPC sto [1..2] msu[1..4]

msu

hda-5

msu

hdb-5

C

A B

specialization:
B is subtype
of A

Legend

Figure 1. Example product

Model manager

PCML
core

Smodels
interface

lparse
PCML Configuration

model (*.cfg)

Internal PCML data
structures (*.cfc)

WCRL program
(*.lpi)

Configurator server

PCML
core

Smodels
interface smodels

JNI
BCRL program

(*.lpo)

Figure 2. Configurator architecture

18

individual is generated. For each part definition of the configuration
type, the number of individuals defined by maximum cardinality of
the part definition is generated for each allowed concrete part type.
This is performed recursively to generate part individuals for all
part definitions of the types of the newly generated individuals.

The number of needed individuals can grow exponentially. For
example, increasing the number of levels in the part hierarchy leads
to exponential growth in the number of generated individuals when
maximum cardinality at each level is at least 2. The implementation
does not try to optimize the number of individuals on the basis of
constraints or mutually exclusive branches of the part structure.

3.3 Symmetry breaking

Individuals of a concrete type are equivalent except for their names.
Equivalent configurations, i.e. configurations identical except for
naming, can be created by selecting different individual(s) of a
concrete type as a part. This freedom of selection creates unwanted
symmetries. Next, we describe two forms of symmetries and pres-
ent a method used in our configurator that allocates individuals to
specific part names of specific individuals in a way that breaks
these symmetries.

The first form of symmetry arises when several individuals di-
rectly of a type are possible parts with a part name for an individual.
For example, in Figure 3(a) type A has part definition P with cardi-
nality 1 to 2 with type B as the only allowed type. There are two
individuals b-1 and b-2 of type B that can be as a part with part
name P in a-1. The configurations in Figures 3(b) and 3(c) are
equivalent. In general, individuals can be picked in a combinatorial
number of ways creating a potentially huge number of symmetries.
The idea of symmetry breaking is that the possible part individuals
directly of the same type are always used in a fixed order. The indi-
viduals are ordered by giving them priority rankings. A lower pri-
ority individual is not allowed in the configuration if all the higher
priority individuals are not in the configuration. Symmetry breaking
would thus allow only the configuration in Figure 3(b).

The second form of symmetry is shown in Figures 3(d) to 3(f).
Without symmetry breaking any individual of type B could be as a
part with any part name in any individual whose type has a part
definition that has B as an allowed type. For example, individuals
b-1 and b-2 of type B could both be as a part with part name P1 or
P2 in individual a-1. Our solution for breaking this form of sym-
metry is to allocate each individual to a specific individual and part
name. After allocation either (e) or (f) is allowed, but not both.

4 EMPIRICAL TESTING
In this section we discuss empirical testing of configurators in gen-
eral and our configurator implementation in particular. We first

describe a general test methodology for configurators and continue
by describing and characterizing the products used as test cases. We
then specify our test setup. Finally, we provide results on the effi-
ciency of our configurator.

4.1 Testing method

In principle, one could test a configurator by using real configura-
tion models or by using randomly generated configuration models.
Random configuration model generation could be synthetic or use
real products as a seed. Another dimension is the selection between
fixed and randomly generated requirements. We chose for this work
real configuration models with random requirements.

There is a risk that random models without a large set of real
products as a seed do not reflect the structured and modular nature
of products designed by engineers. In addition, it is hard to attain a
level of difficulty representative of real problems. Knowledge ac-
quisition and modeling for a sufficient seed of real models for ran-
dom model generation in a justified way would be a major task.

Random requirement generation with progressively larger and
thus more restrictive sets of requirements allows one to investigate
how well the configurator performs with varying sizes of require-
ment sets. A dramatic increase in time to find a configuration with
some requirement size indicates that the problem becomes critically
constrained at that point. The existence of hard configuration prob-
lems would then be revealed.

For generating random sets of requirements, we consider how
the configuration model appears to the user configuring a product.
There are menus (possibly multi-choice), radio buttons or check
boxes to select between different alternatives. Guided with these, it
is probable that the user will not break the "local" rules of the con-
figuration model, e.g. by requiring alternatives that do not exist or
by selecting a wrong number of alternatives. However, a naïve user
can easily break the rules of the configuration model that refer to
the dependencies of several selections.

We follow this idea by considering the configuration model as
consisting of a set of “local” requirement groups. A requirement
group (group for brevity) represents a set of potential requirements
that a user could state. For example, a group could represent the
selection of a value for the power property of an engine, or the
selection of the cooling system in a compressor out of the allowed
component types. Each group has a number of requirement items
each representing a potential requirement. The number of require-
ments that can be generated from a group is defined by minimum
and maximum cardinality. Note that cardinality applies only if the
group is selected to generate requirements.

In our tests, a requirement group is created for each property and
part definition of the type of each individual. For each property
definition a group with maximum and minimum cardinality of one
is created. A value in the domain of the property corresponds to one
requirement item. If the property is optional, a requirement item that
denies a value for the property is included. A part definition corre-
sponds to one group with maximum cardinality of the part defini-
tion. Minimum cardinality is the maximum of one and the minimum
cardinality of the part definition. Each potential part individual
corresponds to one requirement item. If the cardinality of the part
definition includes 0, a requirement item that denies all part indi-
viduals is included.

A test case contains a number of requirement items related to a
configuration model. When generating a test case, a group is ran-
domly selected to generate the number of requirements specified by
the minimum cardinality. A group can be selected again to generate
one new requirement. Group selection is repeated until the desired

a-1

P
[1..2]

b-1

a-1

b-2

(a) (b) (c)

P1
[1]

P2
[1]

b-2

a-1

b-1

P1 P2

b-1

a-1

b-2

P1 P2

(d) (e) (f)

P P
A

B

A

B

Figure 3. Symmetry breaking

19

number of requirements has been generated. A group cannot be
selected to generate requirements, if the desired number of require-
ments or maximum cardinality would be exceeded, or if all re-
quirement items are already in the generated requirements.

A requirement is generated from a group representing a property
by choosing randomly one requirement item. Generating a require-
ment for a part is slightly more complex. In our implementation, the
order in which the individuals of a given type may be chosen as
requirements is important due to the symmetry breaking. Therefore,
a requirement is generated by randomly selecting the direct type of
the part or the requirement item that denies all part individuals. If a
type is chosen, the highest priority individual of that type that has
not been required yet is set as the requirement. For example, hda-1
of Figure 1 would be required before hda-2, as they are allocated to
the same part name (msu) of a component individual (ssa-1).

4.2 Case products

We have modeled four real product families using PCML. Three
products are screw compressors manufactured by Gardner Denver
Oy. Each configuration model represents a complete sales configu-
ration view of a compressor family. The models are detailed to
production quality, except for some constant values. The fourth
product is a 4-wheel vehicle anonymized by renaming. It was mod-
eled for demonstration purposes and represents about half of the
sales view of the product. Numerous optional parts and some con-
straints were excluded. Despite inaccuracies the model reflects quite
well the nature of sales configuration of this configurable product.

The configuration models are characterized in Table 1. Row
“Comp. types” gives the number of concrete, abstract and all com-
ponent types. “Properties” specifies the total number of properties
and the number of component types that specify at least one prop-
erty. “Domain size” indicates minimum, maximum and average
domain size of the defined properties. It also gives the number of
properties with “small” domain size of 2 or 3, as the average do-
main sizes are strongly affected by the few large domain properties.
“Part defs” specifies the total number of part definitions, the num-
ber of component types with part definitions, and the average num-
ber of allowed concrete component types. “Cardinality” specifies
the number of part definitions with different cardinalities: 0 to 1,
exactly 1, and others. “Constraints” specifies the number of con-
straints and the average number of parts or properties referenced by
a constraint. In every compressor model all constraints except one
had 2 or 3 references. The exceptional constraints had 262 to 347
references to enumerate allowed combinations of four to five prop-
erties. These huge constraints dominate the averages. In all configu-
ration models, the configuration type defined all the constraints and
most properties.

Compressor configuration models use almost solely properties.
The most complex of these, ESVS, has 3 part definitions. Optional
components without properties were modeled as properties.

Configuration model ESVS FS FX Vehicle
Comp. types c / a / tot 7 / 2 / 9 3 / 0 / 3 1 / 0 / 1 25 / 4 / 29
Properties tot / ct 24 / 5 22 / 3 18 / 1 8 /3
Domain size min – max
avg / 2-3

2 – 61
5.9 / 17

2 – 51
5.5 / 14

2 – 44
5.7 / 10

2 - 22
5.8 / 5

Part defs tot / ct / allow 3 / 2 / 2 1 / 1 / 2 0 / 0 / - 16 / 3 / 1½
Card. 0-1 / 1 / max >1 0 / 3 / 0 0 / 1 / 0 0 / 0 12 / 4 / 0
Constraints tot / refs 17 / 20 14 / 25 21 / 12 7 / 2.0

Table 1. Properties of the configuration models

4.3 Test setup

Test setup is illustrated in Figure 4. A WCRL program was gener-
ated off-line for each PCML configuration model. For each test
case, a new process was created to execute a batch file that executed
lparse (version 1.0.4) to generate a BCRL program with a compute
statement with the requirements of the test case. The output of
lparse was piped to smodels version 2.26 with modifications that
suppressed the output of found configurations. Suppressing the
output was needed to avoid the configuration task to become I/O
bound due to a large number of atoms printed for each configura-
tion. Instead, just the number of found configurations was reported.

For each configuration model, we generated 100 test cases with 2
requirements, 100 test cases with 4 requirements, etc, for each even
number of requirements up to the total number of groups. The ran-
dom requirements in a test case were expressed as a smodels com-
pute statement. If a configuration was found with the requirements
of the test case, the test case was considered satisfiable, otherwise it
was considered unsatisfiable.

The tests were run on a laptop PC with 1 GHz Mobile Pentium
III processor, 512 MB RAM, and Windows 2000 Professional. All
timings were performed using the test system’s built-in clock. All
times are reported in seconds. A Java based test generator and
driver was used to generate and execute the test cases.

The configuration models, test cases, test case run logs, full re-
sults as well as the modified Smodels source files and the Windows
executable are available at http://soberit.hut.fi/pdmg/empirical_cfg/.

4.4 Results

We briefly explain the measurements before proceeding to the re-
sults. Time to translate PCML to WCRL includes the time needed
by a running Model Manager process to load and translate a PCML
configuration model to WCLR and to save the output.

Total duration of a test case includes creating the smodels proc-
ess for the test case, extracting the number of found answers and the
duration reported by smodels, and writing the output log. Smodels
duration includes the time the smodels executable uses for reading
the BCRL program and the time used for computation. Non smodels
time includes the time to start a test case, run lparse and start smod-
els, and to gather the results from smodels output (= total duration –
smodels duration).

Run time characteristics of the configuration models without the
effect of test cases are given in Table 2. The results start with the
time to translate PCML to WCRL (“PCML WCRL”), the result is
the average of 100 executions. In addition, all configuration models
were run once on smodels to find all configurations of each model
without any requirements. Table 2 lists the number of configura-
tions (“#Configs”) after symmetry breaking, the smodels duration
(“Smodels”), as well as the rate of configurations found per second
(#Configs/s). “Non smodels” is averaged non smodels time from
running the test cases.

Model manager

PCML
core

Smodels
interface

lparse

PCML Configuration
model (*.cfg)

Test case compute
statement (*.tst)

WCRL program
(*.lpi)

smodels

Figure 4. Test setup

20

Cfg. Model ESVS FS FX Vehicle
PCML WCRL 8,2 s 8.0 s 5.0 s 1.3 s
 #Configs 1,841,356,800 36,106,560 1,136,160 268,800,000
Smodels (s) 18401.4 s 377.1 s 17.0 s 2537.2 s
Configs / s 100066 95748 66833 105944
Non smodels 0,12 s 0,13 s 0,14 s 0,12 s

Table 2. Run time characteristics of configuration models

Tables 3 to 6 show our main results from running the generated
random test cases. The first run of the test cases evaluated the per-
formance of finding one configuration that satisfies the require-
ments. The second run evaluated the performance of finding all the
configurations that satisfy the requirements. Each row lists the
number of requirements (“#req”) and the number of satisfiable
cases (“#sat”). Note that the sum of satisfiable and unsatisfiable
cases is 100. “Find first” gives the average smodels duration of
finding one configuration that satisfies the requirements, and “Un-

sat” gives the average smodels duration to determine unsatisfiabil-
ity, taken from the second run. “Find all” gives the average number
of configurations per satisfiable case (“#cfgs /case”) and the aver-
age rate of configurations found per second (“#cfgs / s”). Non
smodels time from Table 2 can be added to the results to get the
average total duration of finding the first configuration or deter-
mining unstatisfiability.

The test arrangement caused occasional random delays of ap-
proximately ½ second, possibly due to garbage collection in the
Java environment, the functions of the operating system or the virus
scanner. Therefore maximum durations are not repeatable and only
average results are shown. The maximum non-repeatable smodels
time for finding one configuration or determining unsatisfiability
was still below 0.7 s. Repeatable times were close to the average,
typically approximately within 20% of the average, except for the
vehicle model, where average duration was always less than 0.1s
causing small absolute errors to show major relative differences.

5 DISCUSSION AND PREVIOUS WORK
In this section we first discuss our implementation and empirical
results and compare our empirical results to previous work.

Our results indicate performance adequate both for batch mode
configuration and interactive configuration with the simple case
products. There were no test cases with repeatable significantly
inferior performance. Also, there was no significant change of per-
formance as a function of the number of requirements. The average
configurations per second results show weakening with increasing
number of requirements. However, this seems to be mostly illusory:
because the number of configurations with many requirements is
small, Smodels duration comes mostly from reading the BCRL
program and from setting up the computation.

Our case products were small but we feel that they are represen-
tative of what is needed in sales configuration. We expect that the
good performance of our configurator can be generalized to many
products suitable for web based sales configuration.

No critically constrained problems were found and no phase
transition behavior was apparent. As expected, the number of con-
figurations seems to decrease exponentially as the number of re-
quirements increases. Minor exceptions due to random requirements
were encountered in the Vehicle and ESVS configuration models.

The case models had no maximum cardinalities larger than one
and a component type was usually used as an allowed type only in
one part definition. Therefore the significance of symmetry break-
ing for performance was low. However, it is evident that several
forms of symmetries remain unbroken and new important forms
arise when implementing the full ontology, e.g. port and connection
oriented concepts.

Our approach in individual generation may create more indi-
viduals than needed resulting in unnecessarily large compiled mod-
els. On the other hand knowing all individuals can make
propagation more efficient in smodels and thus enhance perform-
ance. This kind of individual generation was also straightforward to
implement in conjunction with our compilation strategy.

Running lparse for each test case conflicts with the knowledge
compilation principle and our normal way of using the configurator.
As the results indicate, running time of lparse for the case products
was small. According to our experiences, the time required by
lparse to translate a WCRL program increases significantly with
large cardinalities.

We measure performance using execution time due to its practi-
cal importance for users and its suitability to searching for phase
transition behavior. It would be useful to use metrics that are inde-

#req #sat #cfgs / case #cfgs /s
2 89 0,37 189441067 88238 0,30
4 61 0,35 18987439 76849 0,28
6 25 0,34 2234799 72687 0,29
8 9 0,33 211432 19957 0,28

10 4 0,31 1920 263 0,29
12 1 0,32 15552 526 0,29

14-28 0 - - - 0,30

Find first
(s)

Find all
 Unsat (s)

ESVS

Table 3. ESVS compressor results with test cases

#req #sat #cfgs / case #cfgs /s
2 97 0,33 3583976 84436 0,27
4 76 0,31 706695 74793 0,29
6 55 0,30 90602 55829 0,28
8 26 0,29 10985 20411 0,28

10 15 0,30 1512 4269 0,28
12 10 0,33 719 2173 0,28
14 4 0,30 29 109 0,28

16-22 0 - - - 0,28

Find first
(s)

FS Find all
 Unsat (s)

Table 4. FS compressor results with test cases

#req #sat #cfgs / case #cfgs /s
2 93 0,23 116646 42200 0,20
4 69 0,22 12558 20116 0,25
6 43 0,21 2537 8552 0,19
8 18 0,21 307 1439 0,19

10 9 0,23 47 181 0,22
12 2 0,27 14 50 0,26
14 1 0,19 5 28 0,20
16 0 - - - 0,20

Find first
(s)

FX Find all
 Unsat (s)

Table 5. FX compressor results with test cases

#req #sat #cfgs / case #cfgs /s
2 95 0,05 37317928 98238 0,04
4 85 0,05 5855831 88913 0,04
6 59 0,05 747205 84642 0,05
8 33 0,05 108638 71394 0,05

10 22 0,09 29136 54358 0,07
12 8 0,07 9526 42361 0,08
14 4 0,06 289 3853 0,08
16 0 - - - 0,08
18 2 0,06 9 140 0,07

20-24 0 - - - 0,06

Find all Find first
(s) Unsat (s)

Vehicle

Table 6. Vehicle results with test cases

21

pendent of processor power, efficiency of implementation tools and
the technology used. Unfortunately such metrics are difficult to
define. For example, the number of consistency checks is not com-
mensurate between different technologies such as CSP and logic
based approaches. Compromises between propagation and search
also significantly affect the number of needed consistency checks.

According to our experiences, the timing result averages are re-
peatable only to 1/10th of a second. For example, the average time to
show unsatisfiability with the Vehicle model differed up to 16 ms
between 2 runs making the 1/100th second reading inaccurate. Aver-
age times with the FX model varied in one case even by 60 ms
between two runs. The repeatability of the results would be im-
proved and maximum durations would become more reliable by
executing the test cases several times, excluding the worst results to
eliminate the effect of random delays. Fully automatic generation of
the test cases from configuration models would make testing easier.

We note that our test methodology can be applied relatively eas-
ily to other formalisms like CSP. In CSP, a requirement group could
correspond to a CSP variable and a requirement item to one possi-
ble assignment for that variable.

We now compare our work briefly with other similar work.
Syrjänen configured the main distribution of Debian GNU/Linux
using configuration models expressed using an extension of normal
logic programs. The configuration task was to select a maximum set
of mutually compatible software packages satisfying random user
requirements that exclude or include some packages. Average
Smodels time for configuration was 1.06 s for Debian 2.0 with 1526
packages and 1.46 s for Debian 2.1 with 2260 packages. The tests
were run on a 233 Mhz Intel Pentium II on Linux [4]. The configu-
ration duration was approximately the same as in our largest ESVS
model (adjusted for our roughly four times faster processor).
Syrjänen’s approach seems to perform better than ours as the De-
bian configuration models are substantially larger.

Sharma and Colomb developed a constraint logic programming
(CLP) based language for configuration and diagnosis tasks. Ex-
perimental results stem from thin ethernet cabling configuration.
The largest 12 node configuration included 126 port connections
and required 12 seconds of CPU time on a dual 60 Mhz SuperSparc
processor based system to find a configuration [5]. Direct perform-
ance comparison to our work is difficult due to port and connection
oriented domain, different processor power, and missing details.

Mailharro used the Ilog system to configure the instrumentation
and control hardware and software of nuclear power plants. Several
thousand component individuals were created and interconnected in
about an hour of execution time on a Sun Sparc 20 [8]. The case
product is larger and more complex than ours. Direct performance
comparison is not possible due to limited details available.

6 CONCLUSIONS AND FUTURE WORK
In this paper we have briefly described a configurator implementa-
tion based on mapping its modeling language to weight constraint
rules, a form of logic programs. The configurator uses a state-of-
the-art general implementation of weight constraint rules for com-
puting configurations satisfying user requirements. Our configurator
implementation addressed three issues important for efficiency: off-
line compilation of configuration models, limiting the size of a
configuration to be finite in a semantically justified way, and
breaking symmetries in the set of configurations. However, im-
proved symmetry breaking and generative or more optimal individ-
ual generation are subjects for further work.

We then aimed to assess the difficulty of configuration problems
as well as the efficiency of our configurator through empirical test-

ing. We defined a relatively modeling-language-independent
method for testing configurators based on the idea of simulating a
naïve user inputting random requirements to a configurator. The
methodology enables systematic testing using a small set of prod-
ucts.

We modeled four products taken from two domains from a sales
configuration point of view. The modeling language of the configu-
rator was found adequate for modeling these products.

 The empirical results indicate that our configurator is efficient
enough for sales configuration use. The results also support the
common wisdom that configuration problems are relatively easy to
solve. However, our small sample of relatively small sales configu-
ration models originates from two domains only. Thus, more tests
are needed with larger and potentially more difficult to configure
products taken from different domains (e.g. telecommunications
and electronics), and modeled from engineering point of view.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support from Technology
Development Centre of Finland (Tekes). The work of the third
author has been supported by the Academy of Finland (project
53695). We thank Hannu Peltonen for authoring most of the first
version of the PCML specification. We thank him, Andreas Ander-
son and Jan Elfström for implementing significant parts of the con-
figurator. We also thank Tommi Syrjänen and Patrik Simons for
developing Smodels with configuration in mind. Finally, we wish to
thank Gardner Denver Oy for sharing the configuration knowledge.

REFERENCES
 [1] A. Felfernig, G. Friedrich and D. Jannach, ‘UML as Domain Specific

Language for the Construction of Knowledge-Based Configuration
Systems’, International Journal of Software Engineering and Knowl-
edge Engineering, 10, 449-469, 2000.

[2] T. Soininen, I. Niemelä, J. Tiihonen and R. Sulonen, Representing
Configuration Knowledge With Weight Constraint Rules. In Proc. of
the AAAI Spring 2001 Symposium on Answer Set Programming, 2001.

 [3] S. Mittal and B. Falkenhainer, Dynamic Constraint Satisfaction Prob-
lems, in Proc. of the 8th National Conf. on AI (AAAI-90), 25-32, 1990.

 [4] T. Syrjänen, Including Diagnostic Information in Configuration Mod-
els, in Proc. of the First International Conference on Computational
Logic, (Volume 1861 of Lecture Notes in Artificial Intelligence), 2000.

[5] N. Sharma and R. Colomb, Mechanising Shared Configuration and
Diagnosis Theories Through Constraint Logic Programming, Journal
of Logic Programming 37, 255-283, 1998.

[6] M. Stumptner, G. Friedrich, A. Haselböck, Generative constraint-based
configuration of large technical systems. AI EDAM, 12, 307-320, 1998.

[7] D. McGuinness and J. Wright, An Industrial-strength Description
Logic-Based Configurator Platform, IEEE Intelligent Systems & Their
Applications, 13, 69-77, 1998.

[8] D. Mailharro, A classification and constraint-based framework for
Configuration, AI EDAM, 12, 1998.

[9] Mackworth A.K. Consistency in Networks of Relations. Artificial
Intelligence, 8, 99-118, 1977.

[10] T. Soininen, E. Gelle, and I. Niemelä, A Fixpoint Definition of Dy-
namic Constraint Satisfaction. In Principles and Practice of Constraint
Programming - CP'99 (LNCS 1713), 419-433, 1999.

[11] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, Towards a
General Ontology of Configuration, AI EDAM, 12, 357–372, 1998.

[12] P. Simons, I. Niemelä, and T. Soininen, Extending and implementing
the stable model semantics. To appear in Artificial Intelligence, Special
Issue of Knowledge Representation and Logic Programming.

22

Knowledge Compilation for
Product Configuration

Carsten Sinz
�

Abstract. In this paperwe addressthe applicationof knowledge
compilationtechniquesto productconfigurationproblems.We ar-
gumentthat both the processof generatingvalid configurations,as
well asvalidationof productconfigurationknowledgebases,canpo-
tentially be acceleratedby compiling the instanceindependentpart
of theknowledgebase.Besidesgiving transformationsof bothtasks
into logicalentailmentproblems,wegiveashortsummaryonknowl-
edgecompilationtechniques,andpresenta new algorithmfor com-
putingunit-resolutioncompleteknowledgebases.

1 Introduction

Configurationof complex productsis a computationintensive task.
In mostformalismsproposedin theliterature[5, 10,11], generating
a consistentconfigurationcanbe intractablein the worst case,and
is at bestan NP-hardproblem.Moreover, in a typical setting,huge
seriesof configurationrunshave to beperformedfor thesamekind
of product,but differentcustomerdemands.Thecloselyrelatedtask
of checkinga productconfigurationknowledge-basefor consistency
[7] exhibitssimilarcharacteristics.Herea largenumberof validation
propertieshave to becheckedfor a givenknowledge-base.

Theseconditionsmake it attractive to investigatethe application
of knowledgecompilationtechniques(seeCadoliandDonini’s arti-
cle for asurvey onknowledgecompilation[2]). For asetof common
probleminstances,knowledgecompilationseparatesthe computa-
tional task into an instancedependentandan instanceindependent
part.Thelattercanbesolvedin advanceduringapreprocessingstep,
whichcanpotentiallyleadto a speedupin theoverall run time.

A significantadvantageof pre-compiledknowledge-basesis that
in thelucky caseof successfulcompilationinto aknowledgebaseof
reasonablesize,shortruntimescanbe guaranteedfor all individual
configurationprocesses.

2 Formalisms for Product Configuration

In this paper, we considertwo formalismsfor productconfiguration.
We usethem as representatives for demonstratingapplicability of
knowledgecompilationfor bothgeneratingvalid configurationsand
checkingconsistency of knowledgebases.

Thefirst formalismis a slight variantof thelogical theoryof con-
figurationpresentedby Felferniget al. [5], whichcomplieswith Mit-
tal andFrayman’s component-portrepresentationfor configuration
knowledge[11]. Thesecondis a simplifiedversionof theformalism
usedfor thevalidationof DaimlerChrysler’sengineeringandproduc-
tion configurationsystem[7].�

SymbolicComputationGroup,WSI for ComputerScience,University of
Tübingen,Sand13,72076Tübingen,Germany

In Felfernig’s system,a configurationproblemconsistsof a do-
maindescription� andasystemrequirementsspecification� , from
whichaconsistent(valid) configuration� hasto beconstructed2. The
domaindescriptionis a setof predicatelogic sentencesexpressing
compatibility constraintson the product’s parts,andadditionalax-
iomsdescribingandrestrictingtheconstraintslanguage;thesystem
requirementsspecificationstatescustomerdemandson the desired
product,again in theform of asetof predicatelogic sentences.Then,
a conjunction � of groundliterals is a solutionto the configuration
problem �����	��
 , or avalid configuration,whenit is logically consis-
tentwith thedomaindescriptionandtherequirementsspecification,
i.e., �
�������������� ���

. For our purposewe considerthe propo-
sitional variantof this formalism.We assumea finite universe,or a
universewith a finite numberof equivalenceclasseswith respectto
thedomaindescriptionandtherequirementsspecification.Now the
propositionalcasecanbe obtainedfrom the first-ordercaseby re-
placingall sentencesof � and � by a conjunctionof their ground
instances,similar to a Herbrandexpansion.

The secondformalism we considerconsistsof a set of propo-
sitional constraintrules that make up a knowledge-basedescribing
valid products[7]. Thesemanticsof thewholeknowledge-basecan
be interpretedas a propositionalformula � whosemodelsare the
valid configurations.To checkits consistency, wegenerateaset � of
validationproperties��� andtestwhetheror not theknowledge-base
satisfiesthem.Therefore,we have to determinewhether� � � ��� for
all ���! "� .

3 Logical Entailment and Knowledge Compilation

Probleminstancesof both formalismscanbe formulatedaspropo-
sitional entailment problems,wherethe questionis to find the de-
ducible consequences# of a theory $ (a setof propositionalsen-
tences).For thepurposeof knowledgecompilation,we partitionthe
theory $ into a constantpart $&% and a varying part $(' . The con-
stantpart $&% is thenreplacedby an equivalent,but computationally
preferable,compiledtheory $*)% , andthevaryingpartof thetheoryis
movedto theconsequenceby meansof thedeductiontheorem.Thus,
thegeneralentailmentproblem

$(%+�,$-' � � #
is restatedin thecompiledtheoryas

$)% � � #/.102436587:9!;�< (1)

=
Ferferniget al. [5] distinguishbetweenconsistentandvalid configurations,
wherevalid configurationshave to fulfill additionalcompletenessaxioms.
In this articlewe alwaysreferto theaugmentedversionwith completeness
axiomsaddedwhentalkingaboutvalid or consistentconfigurations.

23

This transformationespeciallyoffers advantageswhen(a) the con-
stantpartof the theoryis largecomparedto thevariablepartof the
theory and the consequenceto be checked, (b) the compilationof
theory $(% into $*)% is efficient, and(c) thereis a largenumberof en-
tailmentchecksto beperformed.

In transformingthefirst formalism,thefixedpart $?> is thedomain
description� , andthevaryingpart is thesystemsrequirementspec-
ification � . The tasknow is to find a valid configurationconsistent
with � and � by a seriesof entailmentchecks.Whenwe consider
the invertedrequirementsspecification@ �BA 243DC 9!; beingrepre-
sentedin conjunctive normal form (CNF), i.e. @ �FE �HGJI8I8I(G E	K ,
we can perform L entailmentchecks �M) � �NEPO

for QSR1T
RUL
within the compiled theory �) to find configurationsconforming
with the domaindescription:For each

EPO
with �M)��� �VEPO

the con-
junction of literals 9

E O �XW �YGZI8I[I\G W^] is a minimal valid con-
figuration.This canbe verified by observingthat the configuration� � 9

EPO,�_W � G`I8I8I-G W] is consistentwith �a�b� . As �M)*�� �cEPO ,
and �M) is logically equivalent to � , we have �c��� 9

EPO �d�� �e�
,

hencea fortiori �a�f� 9
E � . I�I8I . 9

EgK �h�� �_� . Now as i is equiv-
alentto 9 @

�
9
E � . I8I8I . 9

E	K
and � � 9

EPO
for someT , we obtain�j�k���l�����k�� �j� .

Furthernon-minimalvalid configurationscanbegeneratedusing
the following scheme:for eachliteral

W
not occurringin

EPO
we test

whether�M)��� ��EPO . 9
W
. If this is thecase,we cansafelyadd

W
to the

configurationwithout violatingvalidity.
In summary, to treatthetransformationof thefirst formalism,we

set # �j� in Formula1,andconsideraspecialrepresentation(DNF)
of thevariablepartof thetheory mon .

For transformationof the secondformalism(checkingvalidation
properties)we assumethevalidationproperties� � to be in conjunc-
tive normalform, i.e. ��� � ���Pp � GfI8I8IDG � �qp K . Then,aftersettingthe
constantpart $ % of thetheoryto $ % � �r�s� , andnotingthat thereis
novariablepart,i.e. $-' �jt , thetestfor property��� decomposesintoL entailmentchecks$*)% � � ���qp O in thecompiledtheory $u)% .

In both formalismswe only have a restrictedform of entailment
checks,namelyonly tests $*) � � # , where # is a clause.Therefore
we restrict our attentionto propositionalclausalentailmentin the
following. Knowledgecompilationaims at generatingtheoriesfor
which theentailmentproblemis tractable—decidablein polynomial
time—whereasthegeneralpropositionalclausalentailmentproblem
is coNP-complete[2].

4 Knowledge Compilation Techniques

Knowledgecompilationandconcequencefinding areactive areasof
research[2, 9, 13]. The methodsproposedin the literatureareusu-
ally separatedinto two maincategories:approximate andexact com-
pilations.Approximatecompilationmostly appearsin the form of
theoryapproximation,wherea theory $ is approximatedby a com-
putationallymore tractabletheory $u) . Selmanand Kautz [13] use
two approximatingHorn theories,one approximatingfrom above
($ � � $(v[w) and the other from below ($(x w � � $).3 To decideen-
tailment for a clause� , algorithmTHEORY-APPROX, asshown in
Figure1, is employed.Entailmentfor Horn theories,i.e. for $ v[w and$ x w , canbedecidedin lineartime,soalgorithmTHEORY-APPROX is
supposedto decidemany casesefficiently: thebettertheapproxima-
tion, themorecasesarecomputationallytractable.However, compu-
tationof goodHorn approximationscanbequitehard(computation

y
Theboundsaredefinedin termsof models:thelower boundhasfewer, the
upperboundmoremodelsthanthegiventheory.

of bestapproximationsis NP-hard).SelmanandKautz [13] present
differentalgorithmsfor their computation.

ALGORITHM THEORY-APPROX
INPUT: $ x w �z$k�z$ v[w �{� with $ x w � � $ � � $ v[w
OUTPUT: |~}���� if $ � � � , ��# W ; � otherwise
BEGIN

IF $ v[w � � � THEN return |~}r���
ELSE IF $ x w �� � � THEN return �\# W ; �ELSE return $ � � �

END

Figure 1. TheoryApproximationAlgorithm.

Exactcompilationmethods,asopposedto approximations,try to
find a theory $) that is equivalent to $, for which the entailment
problemis tractable,i.e.,decidablein polynomialtime.Thepredomi-
nantmethodfor computingsuchcompilationsis by generatingprime
implicantsor primeimplicatesof theoriginal theory.

In the following, we considera compilationby the computation
of prime implicates.The sourcetheorythenusuallyalso is in con-
junctive normalform (CNF)—acommonincidencein practice.An
implicate � of atheory $ is anon-trivial clause(withoutcomplemen-
tary literals)suchthat $ � � � ; moreover, � is a prime implicate if no
propersub-clause4 of � is alsoanimplicateof $.

Computingthe set �����q$M� of all prime implicatesof a theory $
yieldsa theory $*) that is equivalentto $ andhasthefollowing im-
portantproperty:a clause� is a consequenceof $, i.e. $ � � � , if f
thereis a clause�� ������q$u� that is a sub-clauseof � . Thus,using$u) � �����q$u� asa compiledversionof the theory $, clausalentail-
ment for a clause# canbe decidedin linear time in the sizeof $*)
andthequery # .

Different algorithmshave beenproposedto computethe set of
prime implicatesof a theory [3, 12, 15]. However, the numberof
primeimplicatesmaybeexponentialin thesizeof thetheory $, and
thereforedifferentstrategieshave beendevelopedto computemore
compactexactcompilations.Amongtheextensionsarecomputations
of primeimplicatesfrom no-mergeresolvents[4], theoryprime im-
plicates[8], andtractablecover compilations[1]. In the following,
we will describedelVal’swork [4] in moredetail.

The prime implicate computationfrom no-merge resolvents is
sometimesalso referredto as unit-resolution(UR) completecom-
pilation,andtheideais to deletethoseprimeimplicatesfrom �����q$u�
thatcanbederivedby aUR refutationproof from theremainingthe-
ory. As UR refutationscanbecomputedin lineartime, this meansa
shift from precompiledknowledgeto deductionby a calculusthatis
still tractable.In thefollowing we denoteUR derivationsby ��v , and
usethe conventionthat for a clause� �_W � . I8I[I . WPK the notation�� standsfor thesetof units � 9

W � � <8<[< � 9
WqK � obtainedby negating � .

Our goalnow is to computea set $�� of clausesthat is equivalentto$, andfor which $ � � ��J� v �
holds for all clauses� with $ � � � . Then all consequencesof $
canbederivedby UR refutationsfrom $ � . Of course,setting $ � ������q$M� wouldbeasolution,but thisis oftennotpracticalanddoesnot�

Clause� is a (proper)sub-clauseof � if thesetof literalsof � is a (proper)
subsetof theliteralsof � .

24

deliver the best,i.e. minimal, theory. Del Val [4] suggestsdifferent
candidatesfor theory $ � .

We now want to derive a precisecharacterizationof an optimal$ � , expressedby meansof a fixed-pointequation.Therefore,we
define $ ��{��� , an optimal solutionfor UR completecompilation,asa
smallest(regardingsetinclusion)solution �$ of theformula

� �Y l�����q$u�D����
�$���� ��!���$ �¡���8�k���v �/¢ < (2)

Thenaclause� from thesetof primeimplicatesof theory $ is in the
solutiontheory $�� if f it cannotbederivedby a UR refutationfrom$ � without � .
5 An Alternative Algorithm to Compute UR

Complete Knowledge-Bases

Basedon Formula 2 we now give an algorithm for UR complete
knowledgecompilation.Our algorithm,as well as all of del Val’s
algorithmsfor computationof UR completecompilations,is based
on primeimplicategeneration.This hastheadvantagethatadvances
in primeimplicatecomputationcanalsoimproveknowledgecompi-
lation,but suffersfrom thedrawbackthat in theworstcaseanexpo-
nentialnumberof clauseshasto begenerated,evenif thefinal result
doesnot show this exponentialblow-up. Our alternative algorithm,
asshown in Figure2, computesa different,in somecasessmaller,
compiledknowledge-basethandelValsalgorithms.

(1) ALGORITHM UR-COMPILATION
(2) INPUT: $
(3) OUTPUT: $ � , which is a solutionto Formula2
(4) BEGIN
(5) $ � := PI($);
(6) FOR EACH �Y "$ � DO
(7) IF

��!��$��£�H���8�/� v � THEN
(8) $ � := $ � �H�D�8� ;
(9) computeminimal �¤�P�[��¥J$�� with

(10)
��!���¤�P�8�!��v � ;

(11) FOR EACH ��)¦ l�����q$M�o�§$ � with �� "�b�P�[)�� DO
(12) IF

���)-��$ � ��v � THEN
(13) update�¤�P�[)��
(14) ELSE
(15) $ � := $ � �l���[)^� ;
(16) END

Figure 2. Algorithm for UR CompleteKnowledgeCompilation.

Startingwith the whole setof prime implicates,clausesaresuc-
cessively temporarilyremoved(line 8) from theresultset $ � , if the
entailmentof aclause� canalsobeobtainedfrom $�� without � by a
UR refutation(line 7). Thena justification �¤�P�[� of why thedeletion
of � waspossibleis computed(lines9/10).This justificationcontains
the clausesinvolved in a shortestUR refutationof � . By removing
clause � , UR refutationproofs of other, alreadyremoved clauses,
may break.So for eachpreviously removed clause�[) it is checked
whethera UR refutationproof of �[) is still possible(lines11/12).If
this is thecase,theproof, i.e. thejustification �b�P�) � , is updated(line
13) analogousto the computationin lines 9/10. Otherwisethe for-
merly removedclause�) is re-addedto theworking theory $ � (line

15),andthewholeprocessis repeateduntil nofurtherchangesresult,
andthusa fixedpoint is reached.

The main loop of the algorithm may be interruptedafter each
round,andstill returnsa UR completetheoryequivalent to the in-
put theory, yetnotnecessarilyminimal.

To furtherillustratetheeffectsof our algorithmlet usconsideran
example5. Let

$ � �§�?¨ ; �P� �¨�}�� ��?¨�|4� �� �¨��©�
�|gª�«¬� �ª�­,� <

Computationof thesetof primeimplicatesin line 5 of thealgorithm
thenyields

$ � � �£�\¨ ; �P� �¨�}�� ��\¨r|4� �� �¨r�©�
�|~ª�«*� �ª�­¦�{¨ ; |4� �¨�}��¦���&} ; ���?|~�¦�{} ; |~�©� ��\¨rª�«*�z¨ ; ª�«¬� ��&�\ª�«*�z} ; �\ª�«¬�

�|g«¡­¦���\¨r«¡­©�{¨ ; «¡­¦� ��?�\«¡­©�	} ; �\«Y­,� <
Supposewe first choose� � } ; �\«Y­ in line 6. Thenwe have

� �}-� �; � ��©� �«¬� �­��s��$ � �¡�r} ; �\«¡­��/� v
� �

and we thus remove � from $ � . A minimal justification �¤�P�8� for
deleting� is �b�P�8� � �§�\¨ ; �P� �¨�}�� ��?�?«Y­,� <
Selecting� � ��&�\«¡­ next, weobtain �4�o� ��©� �«¬� �­����¡$ � �o� ��&�\«¡­o�/��v�

, andthereforewe alsoremove this clauseandcompute�b�P�8� for
it. But now we have for �[) � �r} ; �\«¡­�� that �[)� ®�����q$u�+�¡$ � and�� "�¤�P�) � . As � �}�� �; � ��:� �«*� �­�����$��H� v

�
still holds,we justhave to

updatethe justification,e.g. �¤�P��)�� � �r} ; �\ª�«¬� �ª�­�� . Repeatingthe
algorithm’sstepsoverandoverwereachthefix-point

$ � � �§�?¨ ; �q� �¨�}�� ��?¨r|4� �� �¨r�©�
�|gª�«¬� �ª�­¦� �¨r}��©���&} ; �

�|~«Y­�� <
Thecomplexity of ouralgorithmis dominatedby theprimeimpli-

catecomputationstepin line 5, which—asis well known—mayin
the worst caserequireexponentialspace(andthustime) (see,e.g.,
[9]). It remainsaninterestingtaskto find analgorithmfor UR com-
pleteknowledge-basecompilationthat is not basedon prime impli-
catecomputation.

6 Preliminary Experimental Results

We are currently startingexperimentswith our algorithm on data-
basesfrom automotive productconfiguration.First resultsobtained
from a prototypicalimplementationof our algorithmareshown in
Table1.

problem ¯PS̄ ¯ °*¯ ¯ ±¦²z³�°Y´4¯ ¯ ° � ¯
Adder 21 50 9,700 1,183
C250FV 1,465 2,356 2,492 1,837
C210FVF 1,934 3,985 496,050,800 –

Table 1. ExperimentalResults

The first exampleis taken from Forbus andde Kleer’s book [6],
which containsdatabasesthat areoften usedasbenchmarksin the
knowledgecompilationcommunity. Thefollowing two examplesare
knowledgebasesdescribingvalid modellinesof DaimlerChrysler’sµ

This is Example1 from del Val [4]. We alsousehis abbreviatednotation
for clauses,e.g.writing ¶�·6¸¹ insteadof ¶¡º*·!ºu» ¹ .

25

Mercedescars.Thesedatabasesareusedby KüchlinandSinz[7] for
validationchecks.

Thecolumnsof Table1 show in turn thenumberof propositional
variables,thesizeof thedatabasein numberof clauses,thenumber
of primeimplicatesof thetheory, andthenumberof primeimplicates
thatremainafterapplicationof our algorithm.

problem ¼�½-¾ ¼�¿�À~Á v[% À ¼~Â\Ã
Adder 0.38 2683.10 2683.48
C250FV 93.46 220.42 313.88
C210FVF 426.55 – –

Table 2. CompilationTimes

In Table2 we presentruntimesfor our UR completeknowledge
compilationalgorithm.Thelastcolumnshowsthetotal runtime | Â\Ã ,
whichis split into thetimefor primeimplicatecomputation(| ½-¾) and
reductionof theprimeimplicatesetin algorithmlines6-14(| ¿^À�Á v8% À).
We usedSimonanddel Val’s BDD-basedimplementationzres asa
prime implicategenerator[14], andran it on a PentiumIII running
at 733MHz. For thereductionpartwe usedanexperimentalimple-
mentationwritten in Haskell, compiledwith the Glasgow Haskell
Compiler, version4.04.Our implementationfailed on reducingthe
prime implicatesfor theC210FVFdataset,which is indicatedby a
dashin thetables.Wearecurrentlyworkingonanimplementationin
C++ usingmoreefficientdatastructures.

7 Conclusion and Future Work

We presenteda methodto compilethefixedpartof productconfigu-
rationdatabases,andproposeda new algorithmfor thecomputation
of UR completecompilations.Firstexperimentsindicatethat,at least
for validationof configurationdatabaseproperties,ourmethodis ap-
plicable.

Besidesconductingfurther experiments,we considerimprove-
mentof knowledgecompilationalgorithms,e.g.by developingexact
algorithmsthat do not requirea prior computationof all prime im-
plicates,asa promisingareaof future research.Moreover, it could
beof interestto evaluatetheperformanceof knowledgecompilation
on otherproductdocumentationformalismsandfor otherpractical
applicationareasof configuration.

ACKNOWLEDGEMENTS

I amindebtedto LaurentSimonfor providing mehiszres implemen-
tationfor primeimplicategeneration.

REFERENCES
[1] Y. Boufkhad, G. Éric, P. Marquis, B. Mazure, and S. Lakhdar,

‘Tractablecover compilations’,in Proc. of the 15th Intl. Joint Conf. on
Artificial Intelligence (IJCAI’97), pp.122–127,Nagoya,Japan,(August
1997).

[2] M. CadoliandF.M. Donini, ‘A survey on knowledgecompilation’,AI
Communications, 10(3–4),137–150,(1997).

[3] O. CoudertandJ.C.Madre,‘Implicit andincrementalcomputationof
primesandessentialprimesof booleanfunctions’,in Proc. of the 29th
Design Automation Conf. (DAC 1992), pp.36–39,Anaheim,CA, (June
1992).

[4] A. delVal, ‘Tractabledatabases:How to makepropositionalunit propa-
gationcompletethroughcompilation’,in Proc. of the 4th Intl. Conf. on
Principles of Knowledge Representation and Reasoning (KR’94), pp.
551–561,Bonn,Germany, (May 1994).

[5] A. Felfernig,G.E.Friedrich,D. Jannach,andM. Stumptner, ‘Consist-
ency-baseddiagnosisof configurationknowledgebases’,in Proc. of the
14th European Conf. on Artificial Intelligence (ECAI 2000), pp. 146–
150,Berlin, Germany, (August2000).

[6] K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press,
1993.

[7] W. Küchlin andC. Sinz, ‘Proving consistency assertionsfor automo-
tiveproductdatamanagement’,J. Automated Reasoning, 24(1–2),145–
163,(February2000).

[8] P. Marquis,‘Knowledgecompilationusingtheoryprimeimplicates’,in
Proc. of the 14th Intl. Joint Conf. on Artificial Intelligence (IJCAI’95),
pp.837–845,Montréal,Canada,(August1995).

[9] P. Marquis, ‘Consequencefinding algorithms’, in Handbook of De-
feasable Reasoning and Uncertainty Management Systems, eds.,D.M.
GabbayandPh.Smets,volume5, 41–145,Kluwer, (2000).

[10] D.L. McGuinnessandJ.R.Wright, ‘Conceptualmodellingfor configu-
ration:A descriptionlogic-basedapproach’,AIEDAM, 12(4), 333–344,
(1998).

[11] S. Mittal andF. Frayman,‘Towardsa genericmodelof configuration
tasks’, in Proc. of the 11th Intl. Joint Conf. on Artificial Intelligence,
pp.1395–1401,Detroit,MI, (August1989).

[12] I. Rish andR. Dechter, ‘Resolutionversussearch:Two strategies for
SAT’, J. Automated Reasoning, 24(1–2),225–275,(February2000).

[13] B. SelmanandH. Kautz,‘Knowledgecompilationandtheoryapproxi-
mation’,JACM, 43(2), 193–224,(1994).

[14] L. SimonandA. delVal, ‘Efficientconsequencefinding’, in Proc. of the
17th Intl. Joint Conf. on Artificial Intelligence (IJCAI’01), pp.359–365,
Seattle,WA, (August2001).

[15] P. Tison, ‘Generalizedconsensustheory andapplicationto the mini-
mizationof booleanfunctions’,IEEE Transactions on Electronic Com-
puters, EC-16(4), (August1967).

26

Ideas for Removing Constraint Violations
with Heuristic Repair

Gottfried Schenner1 and Andreas Falkner2

1 Siemens AG Oesterreich, Program and System Engineering,
 Erdberger Laende 26, A-1030 Vienna, Austria,
 email: gottfried.schenner@siemens.com
2 Siemens AG Oesterreich, Program and System Engineering,
 Erdberger Laende 26, A-1030 Vienna, Austria,
 email: andreas.a.falkner@siemens.com

Abstract. This short paper describes our current results with using
heuristic repair methods in combination with an object-oriented
constraint based configurator. There are many sources of constraint
violations in constraint based configuration applications. They can
be caused by an unfinished configuration process, a new (stricter)
version of the knowledge base which makes existing
configurations inconsistent, or a manual modification which is not
supported by the knowledge base, but still works in practice. While
some configurators force the user to remove inconsistencies
manually or prohibit contradictions in the first place, we use
heuristic repair methods to support the user by suggesting possible
repair steps to resolve the inconsistencies. Whether this approach is
also suitable for standalone solving, i.e. resolving constraint
violations without user interactions, is a topic for ongoing research.

1 INTRODUCTION
In real world configurator applications, product definitions and
user requirements change frequently. For example, new
components become available, parts run out of production, new
features are required, or constraints for building the product
change. The knowledge base of the configurator has to change
accordingly [1]. If the configurator loads an old configuration with
the new version of the knowledge base, it may detect constraint
violations because new constraints were added to the knowledge
base. Typically, there are different ways to resolve a contradiction
and in most cases only the user knows which one is the best.
A similar situation occurs if we see the configuration process as a
sequence of user actions and configurator solving steps: The
constraint solver is switched off, i.e. it only reports constraint
violations but does not try to repair them. The user manually
changes the configuration. If the task he wants to accomplish
involves several steps, he will not be able to finish it with one
interaction. The configuration is somehow incomplete, thus
violating some constraint.
In both situations a configuration violates some constraints and the
user may need assistance for treating the violations, i.e. repairing
the configuration. This can be done by a solver component that
suggests possible solution steps to the user and sorts the solutions
by their probability for solving the contradictions.

A different situation arises when the user manually creates a
configuration which still works in practice, but does violate some
constraints of the knowledge base, either because the knowledge
base is faulty or this configuration is a very special case not
supported by the knowledge base. Here the user should be able to
“allow” the violated constraints, thus telling the solver not to
attempt to repair these constraint violations.
The next sections describe the architecture of the configurator, our
heuristic strategies for repair, experimental results, and
conclusions.

2 SYSTEM OVERVIEW
The configurator for which we are developing our heuristic repair
method has been in operation for over a year, and we also have
experience with a project engineering tool for the same customer,
which has been in everyday use for over 10 years.
The application domain is configuration of the hardware (racks,
frames, modules, cables, wrapping etc.) and the software (logical
view of the topology, configuration of the runtime software) of
railway interlocking stations. Typically the configuration tasks are
complex, configuration products are in operation for many years
and configurator knowledge bases change during that time due to
new or changed features and component types. [2] gives a short
description of the domain.
Our configurator system is based on a Java implementation of the
COCOS [3] configuration framework. We use an object-oriented
database for storing configurations, however this is not a
precondition for the ideas in this paper. The knowledge base (class
model, constraints) is implemented in Java as well. This approach
allows a seamless integration of the configuration engine (COCOS)
into the configurator (a standard Java application). For the
configurator application the constraint solver is just another
process that manipulates the configuration that is an instantiation of
the knowledge base.
The set of possible configurations is determined by the possible
instantiations of the class model. Each possible configuration can
be manually configured by the user with a generic GUI. A
consistent configuration is a possible configuration (based on the
class model) that does not violate any constraint.

27

One key feature of the system, which is also essential for the repair
process, is the ability to track the variables (attributes, associations)
that are referenced in constraints. With these dependencies it is
possible to identify the parts of the configuration that need
reconfiguration.

3 HEURISTIC REPAIR
Given an inconsistent configuration our basic heuristic repair
method repeats the following operations:
1) Based on the currently violated constraints choose a set of

possible repair steps. (They can be simple repair steps
affecting only one attribute/association or domain specific
steps which change larger portions of the configuration.)

2) From these steps, select the most promising one based on the
current heuristic. (This can involve a one step lookahead or
letting the user decide which step to take.)

3) If an end criterion is met, then stop.
This method can be controlled by various strategies which are
often influenced by the domain the solver is operating in. Hardware
configuration needs other strategies than software configuration.
Typically, hardware components and their replacement are much
more expensive in the real world than software changes.
Possible heuristics are among others choosing the repair-steps
which minimize the overall number of violated constraint
expressions or maximize the number of repaired constraint
expressions.

Simple repair steps
Intuitively a repair step is a change to the configuration which
removes at least one inconsistency. For boolean expressions this
may consist in “flipping” the truth value of a boolean variable in
order to satisfy the affected boolean expression. I.e. in the case of
clauses this corresponds to local hill-climbing procedures [4].
Repairing other types of attributes is a similar procedure. To satisfy
the expression preferredBranch.isFrom(“LEFT”,”RIGHT”),
preferredBranch being a String variable with the Value “L”,
preferredBranch has to be set to one of {“LEFT”,”RIGHT”}.
Attributes also have a state which indicates “who” set the attribute.
Attributes with state “USERDEF” were set manually by the user
and must not be changed by the solver.
Repairing expressions that involve associations is more complex.
The following example shows how a solver can repair an
inconsistent configuration by changing associations.

Figure 1

Suppose that a new constraint was introduced for Points (railroad
switches) - see UML diagram Figure 1- which states that the
number of Drives associated with a Point equals the value of the
attribute numberOfDrives.
Constraint:
jcosEq(p.getVar(numberOfDrives),jcosCard(getVar(drives))
Assume that there has been an existing configuration with one
Point, with numberOfDrives set to 2, and one associated Drive.

Figure 2

In this situation the newly introduced constraint is violated. There
are two possible repair steps to resolve the inconsistency.
1) Associate an additional drive with the given Point. Afterwards

the cardinality of the point-drive association equals the
numberOfDrives (Figure 2)

2) Set the numberOfDrive attribute to 1, i.e. to the number of
currently associated Drives.

In the case of 1) there are further choices. Shall a new Drive be
created or an existing one reused ? The second repair step is
obviously the cheapest one, but is only available if the value of the
numberOfDrives attribute was not set by the user.
This example shows some of the repair-steps possible for
associations. If a cardinality constraint for associations is violated
then add or remove an element from the association until the
cardinality constraint is satisfied. When adding an element, we
must decide if there are elements in the configuration which can be
used (less costly) or if a new object should be created (more costly)
and associated. Note that an Object o1 can only be assigned to an
Object o2, if associating it with o2 does not violate the cardinality
constraints of its associations.
Since single repair steps only change small parts of the
configuration, this approach is especially useful for
reconfiguration, i.e. when an already existing system has to be
changed to fulfill new requirements.
So far these repair steps where independent of the domain where
they are used. To use them in practice the solver has to use a
domain dependent solving/repair strategy that defines the costs for
removing/creating certain parts and the parts that must not be
changed. This reflects the knowledge of a human expert doing the
reconfiguration.

Domain specific repair steps
There are some domains where very specific constraints exist. For
these domains it may be useful to specify special repairs steps. The
following example comes from the domain of configuring a
topological view of the interlocking system.

drives

1

1..3

Point
- numberOfDrives

Drive

Drive1

Point1
numberOfDrives: 2

Drive1

Point1
numberOfDrives: 2

Drive2

repair

28

Figure 3

The situation in Figure 3 shows a simple configuration. Assume the
user has created this configuration without considering the
constraint that after a signal there must be an element of type EOR
(end of route). This is expressed with the domain specific
constraint expression afterElement(Signal1,EOR).
To repair that inconsistency a number of domain specific actions
must be taken. First a new element of type EOR must be created
and it must be connected to the appropriate connectors. The result
of the repair process is shown in Figure 4.

Figure 4

The repair action for the constraint is realized by a method of the
constraint class. By this it is encapsulated inside the constraint and
can be tested together with the constraint. Knowledge engineers
can use these domain specific constraints like any other constraint.
It is usually hard to achieve this kind of behavior without using
domain specific extensions.

User guided repair
To integrate the repair process into the user interface, the user can
select a violated constraint on the GUI and choose an action from a
list of possible repair actions. This way the user not only gets an
explanation for the constraint violation (the list of dependent
variables) but also different possibilities to remove the violation.
The user actions are then driven by the set of violated constraints.
This also reduces the demand for the implementation of domain
specific user interfaces.
The same mechanisms used to repair configurations can also be
used to build configurations from scratch. The solving process is
then guided by the constraints yet to be satisfied.

4 EXPERIMENTAL RESULTS
We are currently experimenting with various repair strategies. Our
goal is to use the repair approach also for stand-alone solving. As
our approach is a greedy local search strategy, we experienced all
the problems involved with nonsystematic approaches [5]
(termination, local maximum, etc.) Often this can be handled by
using the appropriate solving strategy or querying the user.
Unfortunately the development of a suitable solving strategy is not
straight-forward. This is a topic for further research.

We found that if we let the user choose which repair step to take
next, he is often capable to finish a configuration without taking
back an earlier decision. This is because his decisions are guided
by his common sense knowledge about the involved physical
objects. For example in HW configuration there are often soft
constraints like the demand to fill a frame with modules from left
to right. Although any other order would also lead to a working
system, this user demand should be fulfilled by the solver. One of
the challenges we are facing is to capture that kind of knowledge
by providing the right heuristics to the solving process.

5 CONCLUSION
Heuristic repair methods can be successfully used for the task of
configuration. They provide a means to treat constraint violations
in a uniform manner, independent of the different source of the
constraint violations (e.g. changes in the knowledge base, changes
of the configuration).
Our main motivation for this work was to support the user during
the configuration process. We also introduced domain specific
repair steps in order to reduce the number of manual user
interactions.
We are now trying to develop a full stand alone solving framework
based upon this approach, which is less important than repairing
contradictions. Especially when the user changes configurations
which have already been deployed to the real world, there is
always the need to query the user whether he really wants to
change certain parts of the configuration.
This heuristic repair framework can be useful for non-
configuration software projects as well. Since we are not using
configuration specific extensions in our class model, any systems
which use a standard class model [6] can benefit from using
constraints for checking valid instances of this class model and
using repair methods for fixing invalid ones.

6 REFERENCES
[1] Andreas Falkner, Versioning of Knowledge Bases and Configurations,

AAAI 1999 Workshop on Configuration, Orlando, FL, July 1999.
[2] Andreas Falkner, Gerhard Fleischanderl, Configuration requirements

from railway interlocking stations, IJCAI 2001 Workshop on
Configuration, Seattle, WA, Aug. 2001.

[3] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner. Configuring large systems using
generative constraint satisfaction. IEEE Intelligent Systems & their
applications, 13(4):59-68, July/Aug. 1998.

[4] Steven Minton, Mark D. Johnston, Andrew B. Philips, Philip Laird
Minimizing Conflicts: A Heuristic Repair Method for Constraint-
Satisfaction and Scheduling Problems, Artificial Intelligence vol.58,
pp.161-205, 1992

[5] Bart Selman, Henry A. Kautz. An Empirical Study of Greedy Local
Search for Satisfiability Testing. National Conference on AI
(AAAI'93), pp.46-51, Washington, D.C., July 1993.

[6] James Rumbaugh, Ivar Jacobsen and Grady Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley, 1999.

Signal1 Point1EOR1

Track2

Track1

Signal1 Point1

Track2

Track1

29

Configuration Tools and Methods for
Mass Customization of Mechatronical Products

Udo Pulm1

Abstract.1 This short paper presents the problems concerning
modularization and configuration of functionally complex products
with high requirements and a large amount of variants in mecha-
nical engineering. By that we are searching for a software tool that
focuses on the product development rather than sales and market-
ing or the customer. We would like to present requirements to a
configuration tool or method from this point of view and where
configuration may has to go. These approaches are embedded in a
comprehensive research project on mass customization.

1 INTRODUCTION
Increasing market demands, both concerning higher customer
requirements and pressure from competitors, force enterprises to
diversify their product range. Almost each company has to deal
with the problems of offering more variants and the implicit
complexity of products and processes. There are many strategies
and methods in mechanical engineering such as building blocks,
platform strategies, modularization, standardization, complexity
management, etc. The logical consequence of this growing variety
seems to be mass customization, that every customer gets his own
individual or at least individualized product (e. g. [1]). This strate-
gy implicates disadvantages such as the uncertainty of customer
wishes as well as advantages by shifting paradigms, i. e. to get
away from classical organizations, structures, and companies.

2 MASS CUSTOMIZATION
Mass customization is the answer to the demand for more indivi-
dual and diverse products. It is also the offer that each customer
gets his individual product in conditions that are comparable to
those of mass produced products. The product does not need to be
completely individual, it just has to be individualized so far that
each customer wish is fulfilled and the product fits perfectly. The
degree of this individualization depends on the product and still has
to be defined. Mass customization in mechanical engineering im-
plies completely new production and logistic technologies and pro-
cesses, company structures such as miniature plants near to the
market, and integration of services. The very central aspect is the
integration of the customer in interactive processes. Our focus is on
the very different product development processes. The derivation
of the individualized product has to take place in short time, e. g.
one day. To achieve this, a so called product spectrum has to be
developed in advance, so that the final product definition is adapted
on basis of the concrete customer wishes. The product spectrum

1 Institute of Product Development, Technische Universitaet Muenchen,
Boltzmannstr. 15, 85748 Garching, Germany, email: pulm@pe.mw.tum.de

defines all the possibilities and degrees of freedom of the product
and defines it as far as possible. The new aspect is that not only a
specific amount of variants is offered, from which the customer can
configure his products, but that also completely new components
are developed, produced and integrated. The advance development
mainly consists of the structure planning and the evaluation of
product properties, next to the modular, parametric, or principle
development of components. The difference becomes clear in a
comparison with traditional design processes. Usually, there is a
quite short (months) structure planning process, i. e. the conceptual
design, which is mostly based on a long-term grown product
architecture with only little changes. After that the actual
development takes place. This design takes most of the time (years)
and results in one product with a defined amount of derived
variants. As last step, there is the configuration of the final product,
which ideally just takes a few minutes when not regarding the
decision process. The development process in mass customization
consists of two phases, the development of the product spectrum,
which can take months to years, and which not inevitably contains
the derivation of one concrete variant (except e. g. for evaluation).
This process may take longer than usual conceptual design or even
than the complete development. The use of the product spectrum's
potential, the adaptation to the final product definition then takes
about one day, so that there is still the possibility of individualizing
and developing many not predefined aspects. Another difference is
that in mass customization the potential is always growing, i. e. the
experiences of the single product adaptations feed back to the
product spectrum and following adaptation processes.

3 EXISTING TOOLS AND METHODS
Though mass customization is a new approach, there are similari-
ties to other methods which are recommended to be used and
adapted (see [2]). The basis of existing tools and methods is the
general product structure that consists of a hierarchical, "vertical"
composition structure (AND-relations), and a hierarchical,
"horizontal" generalization structure (OR-relations), which are both
interconnected on different levels of detail. Next to this already
very complex system, there are cross connections, i. e. relations
such as constraints, configuration rules, or the like. At least these
three relations appear and have to appear in each product model
concerning configuration or variants. Most design tools based on a
product structure offer these relations somehow, e. g. product data
management (PDM) systems (e. g. [3]), document management
systems, content management systems, ontology editors (e. g. [4]),
CAE systems, configuration systems (e. g. [5]), or also bills of
material. But the possibilities of these tools are not adequate to
build up a respective product structure. This is the same for CAD

30

tools, which have to be also integrated due to their significant
position in product development as well as to achieve a
comprehensive tool for the whole development process. A major
problem may be that those systems have to be very flexibly but
precise in representing the product's architecture and logical
structure. Some of the consequences and problems of this are
addressed and discussed in the following.

4 STRUCTURE PLANNING TOOLS
The following chapter specifies requirements as well as problems
and first solutions for structure planning tools.

4.1 Requirements
Next to the above mentioned basic elements, other elements are to
be represented in mass customization. These are altogether

- components, i. e. products, modules, assemblies or parts, here in
the meaning of "masters", i. e. an abstract formulation (= class),
e. g. body or engine of a car

- variants, i. e. a specification of a master component, e. g. 100 hp
engine or 150 hp engine

- requirements, i. e. any postulated property of the product and the
starting basis for the development process, e. g. cost or safety

- functions, i. e. the abstract formulation of a component's purpose
in order to not being bound to a specific solution or to have a
placeholder for customer wishes (possibly with input and
output), e. g. transport person, transport material

- degrees of freedom, i. e. the prognosticated customer wishes and
the possibilities of the product spectrum, e. g. color, size, engine

- realization possibilities, i. e. the link between the customer
wishes or degrees of freedom and the concerned components,
e. g. modular, parametric, completely individualized

- properties, i. e. the actual properties of the components described
by criterion and specification, e. g. color red, size 5 m

- groups as a combination of different elements to support the
configuration, e. g. sports gear and sports seats

- geometry, i. e. a logical decomposed description of a part on a
more detailed level, e. g. surface, line, point

- all relations between the elements, as there are

� logical relations (is_part_of, is_a), e. g. engine is part of car

� configuration relations (not_with, must_with, can_with), e. g.
red body not with green seats

� semantic relations between different elements (has), e. g. car
has function transport person

� technical relations, i. e. different kinds interfaces between
components, which can again consists of other components,
e. g. interface between body and engine.

All these elements can be represented in separate hierarchical
structures, but have to be connected in order to get a comprehen-
sive product model. There may be overlaps between these elements
as well as further elements such as versions, technologies,
structures, customer wishes, or documents. But those elements are
the substantial components of engineering design methodology.

Connections are possible between any of these elements. In other
words, each elements "consists" of all the other elements on a
higher level of detail. Other general requirements on a software
tool are the consistency of the data, stability and economy of the
tool, connections to other applications, documentation of
experiences, support of information flow, distributed use, etc.

4.2 General questions
We would like to address some general questions or problems
concerning the modularization of a product in order to enable a
configuration as well as existing tools and methods. They also
reflect further requirements to such a system.

4.2.1 Emphasis of early phases instead of focus is on
sales and marketing
Most configuration tools or similar products are based on an exist-
ing product structure and serve to handle or manage this structure
in later phases. The "filling" of the data base is not in the centre of
the regard. From our point of view, there has to be an emphasis of
the early phases, where the basic product structure, which shall be
oriented to variants and configuration, is defined. By that, the
configuration system also becomes a tool for the engineer.

4.2.2 Representation of a product spectrum in contrast to
predefined variants and flexibility of the product structure
next to a predefined frame
In mass customization we do not want to just offer a specific
amount of variants. Each customer wish shall be fulfilled. This
means that in the structure degrees of freedom are to be
represented, which may be fuzzy and cannot be totally foreseen, so
that the product model has to be extensible. This is also important
since the potential of the product spectrum grows with each
adaptation process. It implies a certain flexibility of the product
structure and the configuration tool, i. e. it should be able to repre-
sent arbitrary elements, and above all the overall structure should
be easily changeable, i. e. the whole structure and not only single
elements. This point represents the main demand in our approach.

4.2.3 Continuous use throughout the design process
The integration of specific elements is necessary in order to sup-
port standard procedures and techniques of design methodology
(see [6]). A combination of these elements (requirements, func-
tions, principles, drawings, etc.) has not been realized in commer-
cial tools yet. In addition to point 4.2.1 the single phases of the
product creation process have to be connected, so that there is a
path from customer wishes to technical characteristics. It belongs
to this point that there is not another isolated application but that
the tool can be integrated into the existing applications.

4.2.4 Complexity and level of detail
One of the major problems is how to deal with complexity itself.
Most methods and tools somehow help managing complexity, but
how to handle systems with thousands or millions of parts and a
respective amount of relations is not answered yet. Together with
this there is the question for the right level of detail, i. e. how
detailed the product is described. A hierarchical structure can help
this problem; it also allows to combine customer views (on a low
level of detail) and technical aspects (on a high level of detail). The
most effective way of handling complexity seems to be systems
engineering, i. e. among other things a strict systematical and

31

modularized regard of the product. Regarding a software tool, this
implies the possibility of user-specific views.

4.2.5 Modularization and standardization vs. integration
Another major problem is the contradiction between modulariza-
tion und standardization. Increasing requirements, e. g. concerning
safety, space, comfort, and functionalities, force engineers to
design highly integrated products. This only technical solution
prevents an easy modularization and by that standardization of the
product. An evaluation of these contrasts is still missing.

4.2.6 Usability and implementation
The usability of the system is important for both the efficiency of
the work and the acceptance of the tool. An essential aspect is the
self-explanatory use. This counts for the engineer as well as for the
customer. A guideline for good usability may be given by the ISO
9241. Related to this is the implementation within a company (see
[7]). A tool will just be accepted if either the pressure of superiors
or the benefit in the use of it is big enough. The problem with
implementation is that many tools show their benefits mainly in a
company wide, large scale (e. g. PDM systems), so that enormous
efforts are necessary before they can be used.

4.2.7 Design process support
It is desirable that the design process itself is supported. Since
design processes cannot be automated in general, the intention is
on the presentation of experiences, the estimation of effects and
logical networks, as well as the condensation of relevant data in
order to support controlling and decisions.

4.2.8 Technical implementation
Next to the implementation of a system within a company, the
technical implementation poses some questions. These are the
same in an object oriented, relational, or similar approach (e. g.
ontologies), and are exemplarily:

- Are properties within objects or are they objects themselves (with
criterion and specification)?

- Are different object types really different objects or is there a
general object with the object type as an property?

- Are there relations (v. above) between objects, are relations
objects themselves, or are relations properties of objects?

These questions belong to the topic of how sophisticated, how
fixed, or how flexible the system shall be, and they are very central
from a pragmatic point of view.

4.3 Approaches
We have developed some tools, which now have to be adapted to
the requirements of mass customization in mechanical engineering.
They show approaches that help to manage the previous described
problems in a first step.

4.3.1 Semantic network and systems engineering
Many tools base on a representation of the product, the respective
process, and the underlying organization according to systems
engineering, i. e. a both hierarchical and networked structure of
elements and their relations. A previous developed tool (see [8])
offered an semantic network, where the elements could be arranged
according to design methodology and where the process logic

became visible. The object oriented data model could be extended
in runtime. The semantic network should be represented either in a
graphical network or in matrices between any two – also the same
– of the above listed elements, combined with a hierarchical
structure of the single elements.

4.3.2 Combination of standard applications
Another tool combined standard applications (MS Office) in order
to get graphical representations as well as an underlying complex
data base. This approach is also recommended in our topic since

- we need to represent the product structure graphically, store the
model in an database, and have to use matrices for the relations
between the objects

- the use of standard applications is easy for each user, so that the
acceptance is high and there is not another isolated application,
which can become obsolete. Furthermore, the existing data can
be easily used in another context.

Next to a combination of these two approaches, we try to adapt
existing tools to our requirements.

5 SUMMARY AND CONCLUSION
We have presented the main requirements on configuration or
structure planning tools coming from mass customization in mech-
anical engineering. The main aspect is to manage complexity with
computer support. The antagonisms of integration vs. modulariz-
ation, or between flexibility and methodical support are problems
and contradictions that are not solved by existing methods or
applications yet. Main questions are, which application helps this
situation best, how can it be used, where are its borders and how
has an engineer to proceed behind these borders. The described
topic is part of an project within the interdisciplinary collaborative
research centre (SFB 582) "Near to the market production of indi-
vidualized products", which is founded by the DFG. The problems
show that the collaboration between (mechanical) engineers and
software designers has to be heightened since on one side there are
the problems and on the other side there are the solutions. Often
enough software does not fit the problems adequately, or much
efforts are spend for the search for and development of reasonably
usable applications on side of mechanical engineers.

REFERENCES
[1] B. Pine, Mass Customization, The New Frontier in Business

Competition, Harvard Business School Press, Boston, 1993.
[2] U. Lindemann and U. Pulm, Enhanced Product Structuring and

Evaluation of Product Properties for Mass Customization. HKUST;
TUM (Eds.): MCP’01, World Congress on Mass Customization and
Personalization, Hong Kong, 2001. (CD-ROM)

[3] J. Schoettner, Produktdatenmanagement in der Fertigungsindustrie,
Prinzip – Konzepte – Strategien, Hanser, Munich, 1999.

[4] N. F. Noy and M. A. Musen, Algorithm and Tool for Automated
Ontology Merging and Alignment, Seventeenth National Conference
on Artificial Intelligence (AAAI-2000), Austin, TX, 2000.

[5] A. Guenter and C. Kuehn, Knowledge-Based Configuration - Survey
and Future Trends, F. Puppe, Expertensysteme '99, Lecture Notes,
Springer, Berlin, 1999.

[6] K. Ehrlenspiel, Integrierte Produktentwicklung, Hanser, Muncih, 1995.
[7] R. Stetter, Method Implementation in Integrated Product Development,

Dr. Hut, Munich, 2000.
[8] S. Ambrosy, Methoden und Werkzeuge für die integrierte Produkt-

entwicklung, Shaker, Aachen, 1997.

32

Optimal Configuration of Logically Partitioned
Computer Products

Kevin R. Plain�

1 CONFIGURATION GOALS

An established corporate sales tool uses Trilogy’s SalesBUILDER�R

technology to configure a wide range of hardware and software prod-
ucts. The tool has evolved over time from an application capable of
configuring single server systems to an application capable of con-
figuring storage clusters involving multiple servers. In this demon-
stration, we examine a configuration solution for a commercially
available server. This server employs a new partitioning scheme that
provides hardware and software isolation. Product experts provided
specifications for the configuration model. The specifications de-
mand optimal configurations that address the characteristics of an
entire system and at the same time consider the requirements of in-
dividual logical partitions. The server must be configured as a single
machine from a system- wide, physical level, and each logical parti-
tion must to be handled as if it were a separate server. Each partition
has its own system boards, processors, memory, operating system,
software, PCI cards, and external storage. The partitions compete for
shared resources such as the system board slots, I/O card cage spaces,
and I/O expansion cabinets. A single server may span multiple cab-
inets and multiple cases within cabinets. The logical partitioning is
independent from the physical configuration, but the optimization of
the hardware’s physical placement is greatly influenced by the logical
partitioning. Features of the sales tool increase the complexity of the
configurator because the tool provides users with several powerful
views of the same configuration and offers incremental/interactive
functionality within each view. Product experts also specified that
the model should support the configuration of multiple servers that
potentially share common resources such as storage cabinets.

2 CONFIGURATION VIEWS SUPPORTED

1. Diagram: The diagram view provides an abstracted representation
of the physical system including information about the contain-
ment and connectivity of various components. The server’s dia-
gram needed to simplify the complex representation of partitions
across multiple server systems. This was achieved by color cod-
ing the configuration. Users are able to move/add/delete/replace
components via the diagram.

2. Overview: The system overview provides a hierarchical represen-
tation of the configuration with a mixture of physical and logical
concepts. This view allows users to add/remove/copy partitions
and to move physical components from one partition to another.

3. Worksheet: The worksheet view allows users to make specific se-
lections about how they want the system configured. The work-
sheet view is directly supported by the system overview. Nodes

� Trilogy, Austin, Texas, email: kevin.plain@trilogy.com

of the system overview’s tree structure can present worksheets for
the selection of items within the narrow scope of the node.

3 OPTIMIZING ON SIX DIMENSIONS

1. System Boards (cells): The position of system boards involving
multiple partitions across multiple system cabinets with consider-
ation for bus structure and bandwidth. System boards are ranked
according to the nature of their partition. Partitions with more sys-
tem boards are given priority.

2. Memory: Balancing across multiple system boards within a single
partition. This optimization will not conflict with other optimiza-
tions.

3. Processors: Balancing across multiple system boards within a sin-
gle partition. This optimization will not conflict with other opti-
mizations.

4. I/O Boards (card cages): The position of I/O boards involving
multiple partitions with consideration for the proximity of con-
nected system boards. Optimized across multiple system cabinets
and multiple expansion cabinets. A card cages may move to a less
optimal position in deference to other card cages when the prox-
imity of a connected cell presents a conflict.

5. Chassis (cases): Location within cabinets showing consideration
for ergonomics, weight, and factory processes. Expansion cabi-
nets are added as the need for them appears. If the number of
card cages exceeds the number allowed in the system cabinets,
the configurator will add expansion cabinets. The maximum num-
ber of system cabinets and expansion cabinets may be limited by
marketing, factory, or engineering restrictions.

6. PCI Cards: The position of PCI cards within and across I/O boards
of single partitions with consideration for card speed, card volt-
age, and I/O board designations. Some cards may be given spe-
cial treatment due to the minimal requirements of the partitions.
These special cards may move to a card cage connected to a spe-
cially designated cell. Explicit placement of these special cards by
a user of the configuration tool may cause card cages to rearrange
and reconnect to different cells.

4 COMPLEXITIES OF OPTIMIZATION WITH
INCREMENTAL CONFIGURATION AND
LOGICAL PARTITIONING

Optimal configuration is complicated by the incremental/interactive
features of the sales tool interface, and by the interaction of opti-
mization criteria. Users can add items in any order and at any time
during the configuration process. For example, the addition of a new
I/O board to a partition may cause optimization to position the new

33

board within a system cabinet to keep it in close proximity to its con-
nected system board. Optimal configuration may require relocation
of an existing I/O board in order to provide space for the new I/O
board. The seemingly trivial movement of a single PCI card demon-
strates how simple user requirements can have a large impact on a
configuration due to dependencies between optimized components.
In this example, each partition requires a specialized PCI card and
the configurator tries to keep the I/O board containing the specialized
card in close proximity to the first system board of the partition. Op-
timization tries to balance the needs of all partitions and at the same
time maintain this close proximity rule with limited I/O board spaces.
The organization of the I/O boards is affected if the user drags/drops
the specialized card from one location to another or adds redundant
specialized cards to a partition. Interaction between optimization cri-
teria can be seen when the user decides to add/remove system boards
to/from a partition. Optimal configuration can require complete re-
arrangement of system boards to maximize bus characteristics. I/O
boards have their own optimization characteristics with regards to
system boards, and may need complete rearrangement as well. This
may require some I/O boards with ideal positioning to be moved into
spaces that are less ideal.

5 ADDITIONAL MODEL FEATURES

1. Upgrade scenarios
2. Save and restore of configured products in an evolving knowledge

base
3. Bundling and quote of the configured product

Figure 1. Logical partitioning

Figure 2. Reference for some of the various types of hardware that are
combined to configure the server

Figure 3. Example of logical partitioning and optimization across physical
enclosures

34

Vehicle Sales Configuration : the Cluster Tree Approach
Bernard Pargamin1
Abstract. Most current commercial configurators, mainly based
on constraint propagation, are known, among other limitations, to
be unable to guarantee complete deduction in free order interactive
configuration. Yet, on specific ranges of products, completeness of
inference can be achieved. New approaches, based on the
compilation of the system of constraints defining the diversity of
the product to configure, are making their way. We present such a
complete configuration engine, C2G, developed internally by
Renault, with a list of basic functional requirements that we
couldn’t find together in any commercial configurator. The
compiled approach we describe made their implementation
possible, especially the much needed ‘filtering on the price’ and
‘user driven conflict resolution’.
 Basically, compilation splits the configuration variables into
clusters organised in a tree. Variables in a cluster are in high
interaction, while variables of different clusters are in low
interaction. Inference is done locally in each cluster and the
updated state of the node is propagated between nodes to provide a
global solution. Inference proves to be linear in the tree structure,
allowing short and predictable run-times. This representation is
especially efficient for low treewidth domains, which is the case
for the automotive industry.

1 INTRODUCTION

Web enabled sales configurators are widely used in the automotive
industry, but the level of functionality offered by these
implementations is deceptively low. A basic customer’s question
such as: ‘I have $15,000. What is the cheapest vehicle I can buy
with a diesel engine and an automatic gearbox ?’ won’t generate
any direct answer from the online configurators of the major
vehicle builders world-wide. You will have to study the
documentation first, choose a model outside the configuration
process, configure your vehicle with possibly inadequate cost
information, eventually iterate on this process and backtrack if you
are unlucky until you get what you are looking for.
 Customers don’t like to iterate: they want responsiveness,
accuracy, full information on the consequences of their choices,
free order and full freedom of choice. They want effective filtering
on their budget. They don’t like backtracking. If your on-line
configurator can’t give that, they will zap.

 Renault, a major vehicle manufacturer, was bothered by this
situation and articulated its configuration vision in an internal
white paper (2001, unpublished). It then arrived at the conclusion
that the current mainstream commercial configurators, because of
their general purpose, were unable to offer this kind of rich
functionalities on Renault range of vehicles, and it decided to
switch to an internal configuration project: C2G (2nd Generation
Configurator) in order to provide them on the web by Q3 2002.

1 Renault S.A., Direction des Technologies et Systèmes d’Information
92109 Boulogne, France.
e-mail: bernard.pargamin@renault.com

C2G was an outcome of a ‘Product Diversity Modelling’ Project
initiated six years ago. In this framework, Product Diversity is
represented by a compiled data structure on which operates a
deductively complete configuration (inference) engine whose
response time is linear on the size of the compiled structure.
Basically, the set of boolean variables used in the constraints
restricting diversity is split into clusters by converting a graphical
representation of the problem into a tree structured representation
where each node in the tree represents a tightly-connected sub-
problem, and the arcs represent the loose coupling between sub-
problems. Inference is done locally at each node and the updated
state of the node is propagated between nodes to provide a global
solution. Inference proves to be linear in the tree structure.

 This paper is structured as follows: We will first outline
Renault’s basic requirements for configuration in section 2, then
we will discuss Vehicle Diversity Specification and modelling in
section 3. In section 4, we will present the principles of Diversity
Compilation we used in C2G, and we will show how very fast
complete deductive inference can be obtained by state propagation
on a cluster tree. Section 5 will focus on the problem of price
representation, the only non boolean part of our data, and we will
present a propagation algorithm that finds the cheapest vehicle
consistent with the current state of the configuration in linear time,
thus enabling fast exact filtering by a customer’s constraint on the
maximum price. Section 6 will outline consistency restoration in
C2G, a very basic feature for a commercial configurator, and we
will present some concluding remarks in section 7.

2 RENAULT’S BASIC CONFIGURATION
REQUIREMENTS

The functional configuration requirements we discuss here come
from our experience with the shortcomings of the mainstream
commercial configurator we used previously. They reflect the
views of both Renault Marketing managers and configuration
specialists.

2.1 Completeness of inference should be guaranteed. This
means that all that can be logically inferred at a given state of the
process is actually inferred. No dead end, no backtracking for the
user. This is absolutely the number one item on top of the
requirements list. Configurator vendors say it is impossible to
obtain, because of the NP-Completeness of the problem. Actually,
we arrived at another conclusion, as far as automotive sales
configuration is concerned.
 The importance of this point is better seen if we realize that the
diversity specification could be inconsistent, and the configurator
wouldn’t even detect it. The failure rate of the configuration
would then be 100%.

35

mailto:bernard.pargamin@renault.com

2.2 Full information on the consequences of a
choice should be provided (may be optionally in some cases) :
excluded or implied features must be exhibited because they may
cause the customer to change his choice when he sees the
undesirable consequences of his projected choice. This feature is a
dynamic way to inform the user of the logical constraints, at the
moment they will trigger inference. Without it, the user would
discover the effect of the constraints too late, and would have to
force a conflicting choice, which would cause computational
overhead to the configurator to restore consistency, and a real
nuisance for the user. Full information includes also:

2.2.1 Pricing information: in the real life, no one makes
choices without any cost consideration. You wouldn’t fill your cart
in a supermarket where you only discover the final price at the
pay-desk. Moreover this pricing information must be accurate and
guaranteed. At every step, we need the minimum price to be shown
for each choice, i.e. the price of the cheapest vehicle fulfilling the
partial configuration. This is very different to simply showing the
price of an option, often irrelevant in order to show the real
financial impact of a choice: if option A implies option B or option
C (a very common type of constraint), in front of A you should
put: Previous Min Price + price option A + min(price option B,
price option C). Adding only the price of option A would be
misleading.

2.2.2 Delivery timing information is also needed. This is not
trivial, because you need a way to evaluate the best possible
delivery date on a partially configured vehicle. This is the only
way to show which specific choice makes the delay grow. An
evaluation at the end of the configuration would be too late and
would not say what to change in the vehicle features to improve its
delivery date. In the most sophisticated implementation, this
requirement is a real challenge: a centralized application must
manage capacity constraints and manufacturing schedules to give
accurate estimates. As a first step, an approximation based on
manufacturing eligibility dates and marketing dates would
probably be sufficient.
 Existing stocks of readily available vehicles should be taken into
account in the configuration process.

2.3 Filtering on a maximum budget and/or a maximum
delivery lead time must be possible. In certain cases (fleet
configuration) they are strict constraints that can’t be bypassed.

2.4 Financing possibilities (loan) should be integrated in
the process in the same way as the price. The user is not expected
to learn at the end of a 10 minutes configuration that this vehicle
exceeds its financing capability: we need a filtering capability
similar to price filtering. This is much more difficult to achieve
because there are several types of loan and the rate of the loan
may depend on the final price of the vehicle, which is not known
until the end of the configuration.

2.5 Adequate treatment of option packs must be
provided. Packs generate implicit constraints that must be
explicited (for instance, two packs with a common feature are
exclusive, so as not to make the customer pay twice that feature).
In the configuration process, they should be treated just like any
other features.

2.6 Freedom of choice
• Free configuration order: Configuration is a completely
user driven process: the user chooses the specification order that
best fits his priorities. There is no compulsory ”natural order”, but
of course, when the user has expressed his priorities, the
configurator can choose the order that best optimizes its
computational task. There is a suggested order that optimizes
configuration, and if the user is pleased with it, we use it.
• Negative choice: A feature can be either chosen or excluded
by the customer. Excluding a feature is a valid choice. Allowing
only the selection of a feature can’t prevent an undesired feature to
appear inadvertently by having been implied by a constraint.
• Permissiveness: The user can change his mind without any
restriction during the process: an inconsistent choice can be forced
at any step by the customer, and it is the configuration engine’s
task to restore consistency, by proposing changes to some previous
choices. This situation may arise routinely simply because the user
doesn’t know the logical constraints concerning features, so he
may be surprised by their effect. It will happen less often if he
enters his choices by decreasing priority order.
 Consistency restoration must be completely user driven: there
are usually several ways to do it, and it is the user’s choice to
determine which one is best for him, not the system’s choice.
• No obligation to choose: Any choice at a given state can be
delayed by the user: “I don’t know yet” or “I don’t bother” are
perfectly acceptable answers to a proposed choice. So, the user is
never stuck because he has no answer to give. The configurator
will come back later on these choices, and sometimes it will not
even be necessary because the answers will be automatically
deduced from other user’s choices. This applies of course to the
model’s choice, and it means that we need unrestricted
transversality in the configuration process.

2.7 No prerequisite knowledge of the product should be
expected from the customer. Any choice should have an associated
help giving extensively the pro’s and the con’s of each alternative.
This requirement introduces some form of recursive configuration
inside the primary configuration. For instance the choice of a radio
set is itself a second level configuration based on features such as:
number of channels, power per channel, CD with charger, traffic
information , …Just showing the list of the various possible radio
types with their price is clearly not enough to let the user make an
informed choice.

2.8 Tranversality of the configuration process is required:
first generation configurators require that the process can only
begin when the customer has already chosen a vehicle Model. This
seems a reasonable assumption, but it is not. The customer is thus
expected to have previously collected paper information about
models and versions, studied it carefully by himself and to have
made his choice alone. This means that a whole important part of
the configuration process is left aside, without any assistance.
 We think that Model and Version choices are obviously part of
the configuration process, and that in this case, these choices might
be the consequence of other features choices. Note that this
reverses the traditional view that the natural order is to begin with
Model/Version, and then to choose options whose availability is
the consequence of the version’s choice.

2.9 Automatic completion of a partial configuration must
be available, with several alternate optimization criteria: cheapest,
most quickly available or mixed, such as ‘the cheapest vehicle
under $15,000 available in less than 3 weeks’.

36

2.10 Assisted conflict resolution
The main configurator’s task is to prevent the appearance of
conflicts by automatically excluding all choices that wouldn’t be
consistent with the user’s former choices. If the configuration
engine guarantees completeness of inference, a conflict should
never appear. But even in this case, the user may change his mind.
He can force an inconsistent choice, and the configurator must
analyze the inconsistency so as to find the minimal sets of former
choices that have to be revised to restore consistency. Without this
feature, the user would have to start a new configuration session
and to repeat most of his previous choices.

2.11 Response time must be compatible with an interactive
web usage: at most a few (< 2) seconds in the worst case.

3 RENAULT VEHICLE DIVERSITY
SPECIFICATION AND MODELLING

Vehicle diversity (i.e. the number of distinct possible customer’s
choice, can be huge, reaching at Renault 1020 at the engineering
stage and up to 1010 at the showroom. Moreover, this diversity is a
source of major industrial complexity because of technical,
commercial and legal constraints resulting in numerous
implications and/or exclusions of features and options.
 In the automotive industry, Product Diversity Specification
(PDS) is addressed by an ISO norm: STEP-AP214 (ISO 10303-
214:2001). In STEP terminology, vehicle descriptive features or
attributes are known as specifications (abbrev. specs), grouped in
specifications_categories (abbrev. spec_cat).
 A spec_cat is a variable whose discrete possible values are the
specs. For example we have a spec_cat ‘gearbox type’ with 2
specs: ‘manual’ and ‘automatic’. A spec is an instantiation of a
spec_cat, and we will attach a boolean variable (abbrev. bvar) to
each spec, among which we will find our configuration variables.
The set of spec_cat, called lexicon, is globally common to all
models of the constructor’s range, with some exceptions. A
specific vehicle is uniquely defined by a tuple of specs, one and
only one for each spec_cat of the lexicon.
 A subset of the vehicle range is intentionally defined by a
boolean formula on specs, called a specification_expression
(abbrev. spec_expr).
 Vehicle diversity is usually not practically enumerable, and this
prevents an extensional definition such as a simple enumeration.
Diversity must be intentionally specified, by spec_expr.

 The basic idea is that the entire combination of specs is allowed,
except those that are explicitly excluded by boolean constraints
expressed by spec_expr. The task of PDS is to build, control, store
and retrieve these constraints.
 Actually, for ergonomic and convenience reasons, engineering
staff in charge of PDS do not usually directly manipulate
spec_expr, but instead they complete compatibility tables of
various shapes and size, they explicitly enumerate valid tuples of
specs on selected subset of the lexicon, and sometimes they write
spec_expr in a simplified syntax.
 The main point is that PDS of any form can be translated into
boolean constraints in linear time, giving a CDNF (Conjunction of
Disjunctive Normal Form). Alternatively, a CSP (Constraint
Satisfaction Problem) formalism can be used, but it is known to be
equivalent.
 Implicit constraints due to the spec_cat/spec structure must be
explicitly added: inside a spec_cat, any 2 specs are exclusive and
the disjunction of the specs is TRUE.

 Our model of vehicle diversity is thus a pure boolean CDNF,
equivalent to a propositional theory, and in this first step, we have
transformed Renault PDS into a propositional knowledge base
(PKB) able to feed a configuration engine. In this model, most
interesting tasks become reasoning tasks, involving logical
inference [21, 19, 20] , such as satisfiability tests and clausal
entailment.
 This first modelling step is necessary but is not sufficient,
because as it turns out, most available complete algorithms for
those tasks are exponential in the number of variables or in the
number of constraints. Brute force, even with gigahertz computers,
leads us instantly to exponential blow-up.
 A typical Renault Model is described by a lexicon of 100
spec_cat containing about 400 specs. The CDNF has about 2 to
3000 conjunctive terms and commercial diversity (size of the
search space for the configurator) ranges from 103 to 1010 . At the
engineering stage, diversity is much higher, reaching 1020.
 An example of translated PDS for a Renault X64 model can be
found for benchmarking purpose at :
 http://www.irit.fr/ACTIVITES/RPDMP/CSPconfig.html
A cnf sample file is also available on demand (10813 clauses on
658 variables)

4 PRINCIPLES OF RENAULT
CONFIGURATION ENGINE C2G

We have to deal with the well known NP-completeness of the
propositional satisfiability problem, and consequently of boolean
configuration. But NP-completeness doesn’t prevent polynomial or
even linear solutions in specific domains. While a general
polynomial time configurator is impossible, a linear time vehicle
configurator proves possible if you can exploit the structure of the
domain.
 C2G is fully based on the standard compiled representation of
Renault vehicle diversity in the form of a cluster tree that has been
used in various applications since 1995 . Compiled approaches for
propositional theories, increasingly popular, consist in investing
once in a heavy off-line compilation whose computational
overhead can be amortised with many fast on-line queries. The size
of the compiled structure is not directly related to the number of
models of the theory and can be exponentially smaller. BDD
(binary decision diagrams [5]), finite automata (a variant of BDD
[9, 18]), DNNF (Deterministic negation normal form [7]), prime
implicates [15] are mainly used to this effect. See also [13] for a
classification of compiled approaches. We must stress that there is
no best compilation, because it depends on the structure of your
problem and on what you intend to do with your data. We, at
Renault, decided to use cluster tree compilation, as the most
effective and efficient representation of vehicle diversity, seen as a
propositional theory, for deductive and probabilistic inference.
 Cluster trees are well known in the field of probabilistic
inference, especially in the Bayesian Network area. A main
advance was given by Lauritzen and Spiegelhalter [6, 11] with the
use of a secondary structure, the cluster tree (also called join tree,
junction tree, clique tree) and an exact probabilistic inference
algorithm based on Probability Propagation in the Cluster Tree
(PPCT). See [10] for a procedural description of PPCT. We are
not aware of any significant use of cluster trees in deterministic
inference problems, except by Darwiche [7, 8] and Dechter [22].

4.1 Construction of the cluster tree

A cluster tree is a tree whose nodes are clusters of variables,
satisfying the running-intersection property: if a variable is shared
by 2 nodes, it must be present in every node on the path between

37

http://www.irit.fr/ACTIVITES/RPDMP/CSPconfig.html

the 2 nodes. This property is needed for the completeness of
inference algorithms operating on the cluster tree. The treewidth of
the cluster tree is the number of variables in the largest cluster. The
best cluster tree is the one with minimal treewidth w* (the size of
the cluster tree is exponential in w*). In a sense, the treewidth is a
measure of the connectivity of the constraints graph.
 We are looking for the minimal treewidth cluster tree in which
every constraint fits in at least one cluster (i.e. all the bvars of the
constraint belong to this cluster).
 We first build the interaction graph of the boolean constraints in
the following way: we create a node for each boolean variable, and
put an edge between node i and j if vi and vj appear simultaneously
into a constraint. This graph shows graphically the structure of the
problem.
 We then built the cluster tree with the smallest possible
treewidth. This is a NP-hard problem, but a number of algorithms
are available in the literature for computing a close to optimal
cluster tree from an acyclic undirected graph. [2, 3]. Moreover, a
linear time algorithm for finding tree decompositions of small
treewidth was presented by Bodlaender [4]

4.2 Cluster implementation

Clusters are supposed to be small enough so that brute force can
solve any inference problem inside the cluster. Yet, a clever
implementation is still of utmost importance to improve speed and
allow for bigger clusters. First we build the set of all boolean
variables instantiations consistent with the constraints that fit in the
cluster (logical models). We associate to each bvar xi a boolean
vector (VBV) whose ith position is set to TRUE if xi is TRUE in
the ith model, FALSE otherwise.

Figure 1. A cluster implementation

 We then build a cluster state vector (CSV) a boolean vector
whose ith position is set to TRUE if the ith model is consistent with
the current state of knowledge on the values of the bvar of the
cluster, FALSE otherwise.
 During the configuration process, when a bvar is instantiated by
the user, the CSV is re-evaluated by a boolean AND operation
between the prior CSV and the VBV or its negation. The effect of
the change is then propagated to all other bvar of the cluster that
are deduced to TRUE (resp. FALSE) if its VBV (resp. the negation
of its VBV) is compatible with the CSV.
 Local inference in the cluster is sound and complete in linear
time in the number of models. In the worst case, this size is
exponential in the number of variables, but as a cluster groups a
small number of variables with high interaction, the real size is

usually much lower. This cluster implementation has two nice
properties:
• the more we add constraints to the cluster, the smaller its size

is.
• All operations are vector boolean operations, taking

advantage of internal register parallelism on 32 or 64 bit
words.

4.3 Propagation on the cluster tree

We choose an arbitrary cluster as the root of the tree.
 Two adjacent nodes of the cluster tree share variables. We can
treat these variables as a cluster, named the sepset, that we
introduce on the graph as a new node between the two clusters.
 Propagation of state from cluster i to parent cluster j involves 2
phases:
• Marginalisation: propagation from cluster i to sepset ij: we

set to FALSE all positions of the CSV of the sepset whose
compatible positions in the CSV of cluster i are all FALSE.

• Dispatching: propagation from sepset ij to cluster j: For
every position k of the sepset with a FALSE value, we set to
FALSE all compatible positions of the CSV of the cluster j.

Whenever the state of a cluster changes, we make a global
propagation on the whole structure, by propagating the change up
to the root following the path of the cluster tree, and then
propagating down to the leaves. During this process, whenever a
cluster’s state changes, it propagates the change to all the variables
in the cluster.
 In this way all bvar truth values that can be deduced from a state
change are deduced, and we have a deductively complete truth
maintenance system.

 Figure 2. A cluster tree with its sepsets

4.4 Main benefits of the cluster tree

Cluster tree compilation is efficient and compact because logical
independence is built in the structure: The compiled structure fully
exploits the factorisation resulting from the logical conditional
independence relations expressed graphically by the cluster tree:
any two nodes and their descendants are logically independent
given an instantiation of their shared variables.

4.5 Characteristics of Renault’s cluster trees

The cluster tree structure is not related in any way to the physical
structure of the car. The treewidth is around 40 to 50 for our
model’s cluster tree representation, depending on the model. But,

ABDP

ABCJ

ADE BDF

Clusters

A B

A D BD

Sepset
A B C

ABCHK

Root

Marginalize

Dispatch

 000000001001100100 CSV

a 111111110000000000
b 010001000100010010
c 111100001111000000
d 111011101110111000
e 100110011001100100

Variables

VBV
of bvar d

Set of models (in columns)
for the constraint C: (a*b=>c+d)*(e=>-b)*(a+c=>d+e)

FALSE

TRUE

38

as noted above, the constraints application strongly reduces the
size of the biggest cluster, usually around a few hundreds columns.
 Constraints can change every week, so a full offline compilation
has to be done 4 to 6 times a month for each country: 10 to 15
cluster trees are compiled in about 2 minutes, with a total storage
requirement of 300 to 400 KB for the logical structures.

4.6 Other uses of the cluster tree

The cluster tree is a highly tractable compiled representation of
diversity for Renault vehicles: a number of different NP-complete
real life problems involving diversity can be solved with it in
polynomial time, and often in linear time.
• Probabilistic applications: Probabilistic constraints used to

express vehicle forecast fit in the cluster tree, and by solving a
linear problem, we can compute a factorised joint probability
distribution (JPD) consistent with the forecast. The global
JPD is split into local JPD, expressed at the cluster level by a
probability vector for each model of the cluster.

• Propagation algorithms: the same scheme of propagation up
and down allows for rapid calculus of the

o cardinality of the solutions space
o maximum entropy distribution by iterating

propagations
o entropy of a factorised jpd, cross entropy between 2

JPD’s
o probability of a variable under evidence on other

variables

Within Renault Information Systems, they are used routinely in
various applications, with about 60,000 queries per day:

• Consistency of Product Diversity Specification
• Consistency of parts documentation with diversity

specification
• Consistency of vehicle forecast with diversity specification
• Vehicle forecasting with Maximum Entropy completion of

incomplete forecast
• Engineering and Commercial vehicle configuration

5 FILTERING ON A MAXIMUM PRICE

In theory, we could handle the price in a pure boolean way:
We add a new spec_cat ‘Price’ with specs ranging from $5,000 to,
say, $50,000 (by increments of $1), and calculate the price of
every vehicle configuration, then, for every value x we build the
boolean constraints expressing the equivalence between spec $x
and the DNF of all vehicle configurations costing $x.
 Practically, it would be intractable, and we will of course
proceed in another way: The idea is to represent the cost function
as a utility function that can be factorised on the cluster tree, and to
use a propagation algorithm that finds the cheapest vehicle
compatible with the current state of the configuration in linear
time, thus enabling fast exact filtering by a customer’s constraint
on a maximum price.

5.1 Price List external specification

The total cost of a vehicle is the sum of pricing elements that apply
only for certain vehicles. There is a price for a version, and prices
for the various options available on this version.
 A Price List is a list of pricing elements, each consisting of a set
of 2 elements: a spec_expr and a price.

5.2 Price List internal representation

We assume that every spec_expr fits in at least one cluster. If it
were not the case, we would rebuild the cluster tree to satisfy this
condition. We associate a numerical Price Vector to the (boolean)
state vector of each node and sepset of the cluster tree.
 The ith position is set to the sum of all the prices associated with
spec_expr satisfied with the partial instantiation i of specs in the
cluster. In this way, the price vector stores the contribution of each
partial instantiation of the bvars of the cluster to the global price.
Propagation of price vector from cluster i to parent cluster j
involves 2 phases:
• Marginalisation: propagation from cluster i to sepset ij: set

every position k of the price vector of sepset ij to the min of
its compatible positions in the price vector of cluster i.

• Dispatching: propagation from sepset ij to cluster j: For
every position k of the sepset, set all compatible positions of
the price vector of the cluster j to the kth value of the price
vector of the sepset.

We are now ready to describe our algorithm MPP (Minimal price
by Propagation):

5.3 Algorithm MPP

1 Initialise each cluster’s Price Vector
2 For each node, from the leaves up to the root:

- Combine the direct descendant messages by adding their
propagated price vector

- Propagate up:
- Marginalize min price on the sepset
- Dispatch up

3 Select the min price on the price vector of the root

6 RESTORING CONSISTENCY

This is a major feature for a commercial configurator, as it has
been discussed in a earlier section.
 Whenever a contradiction is deliberately entered by the user,
C2G finds a minimal subset of inconsistent former choices, in
linear time in the number of former choices. The user then has to
change at least one of these choices. This change may in turn
create a new contradiction, so the process is recursive. The
maximum price given by the user is treated like any other vehicle
feature’s choice. Very commonly, there will be an inconsistency
between the maximum price and the set of n options chosen,
showing a n+1 choices inconsistency, that can be eliminated by
changing the maximum price or dropping any subset of options, at
the user’s request. In any case, restoring consistency is a fully user-
driven process.
 Finding a minimal subset of inconsistent former choices is
performed in this way:
We maintain an ordered list of user choices. The completeness of
inference of G2G guarantees that the contradiction is detected
when it happens, on the last choice. We then reorder the list by
putting this last choice in first position, we make a full roll-back in
the configuration session, and a roll-forward with the reordered
list, reintroducing one by one each former choice. We will
necessarily encounter a new contradiction, that will give us the 2nd

term of the contradiction, and so on until all terms of the
contradiction are grouped in the beginning of the list.

39

7 SUMMARY AND CONCLUSION

Modelling vehicle diversity by a system of boolean constraints is a
first necessary step, but it is insufficient to solve efficiently NP-
Complete problems of interest such as clausal entailment, and
especially to feed a complete configurator.
 Renault C2G configurator does not make inferences by
constraint propagation, but adds a second crucial step by compiling
the constraints into a secondary structure, a cluster tree on which
complete deductive inference by state propagation is linear on the
size of the compiled structure (which in turn happens to be
exponential in the treewidth w* of the interaction graph). Provided
that w* is small, we can perform complete inference with a
bounded response time guarantee.
 As it happens, small treewidth is the general case for vehicles
diversity, as well as many other industrial domains, and our
approach has a certain generality.
 The key step to transforming a NP-Complete general problem
into a linear time algorithm is thus to exploit the structure of the
problem, as expressed by the connectivity of the interaction graph.
The small treewidth of this graph allows for fast dynamic
construction of the cluster tree from the boolean constraints and for
compact representation of the nodes of the cluster tree.
 This off-line compilation allows for very fast predictable on-line
queries, and the computational overhead of the compilation can be
easily amortised with thousands of queries. Compilation pays for
itself.
 Propagation algorithms we developed are closely related to
probability propagation (see [6, 10, 11, 15]).
 These ideas were implemented at Renault in a new configuration
engine, C2G, that will be used by Q3 2002 for commercial
configuration applications, proving their robustness in real life
industrial-strength problems.

REFERENCES

[1] Amir, E and McIlraith, S (2001) Theorem proving with structured
theories,

 17th Intl' Joint Conference on Artificial Intelligence (IJCAI'01), 2001
 http://www-formal.stanford.edu/eyal/papers/oor-theory-1.0-ijcai-final.ps
[2] Amir, E (2001) Efficient Approximation for Triangulation of

Minimum Treewidth, 17th Conference on Uncertainty in Artificial
Intelligence (UAI '01), 2001.

 http://www-formal.stanford.edu/eyal/papers/decomp-uai01-final-1.0.ps
[3] Becker, A and Geiger, D. A Sufficiently Fast Algorithm for Finding

Close to Optimal Junction Trees
 In Proceedings of the 12th Annual Conference on Uncertainty in

Artificial Intelligence 1996
[4] Bodlaender, H. L. (1992) A linear time algorithm for finding tree-

decompositions of small treewidth.
 ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1992/1992-27.pdf
[5] Bryant, R. (1992) Symbolic Boolean Manipulation with Ordered

Binary-Decision Diagrams.
 In ACM Computing Surveys Vol. 24 n° 3.
 http://www.cs.cmu.edu/~bryant/pubdir/acmcs92.ps
[6] Cowell, Dawid, Lauritzen, Spiegelhalter. (1999) Probabilistic

Networks and Expert Systems, Springer Verlag .
[7] Darwiche, A. (1999) Compiling knowledge into decomposable

negation normal form.
 In Proceedings of International Joint Conference on Artificial

Intelligence (IJCAI), 1999
 http://singapore.cs.ucla.edu/darwiche/dnnf.ps
[8] Darwiche, A. (2000) On the Tractable Counting of Theory Models and

its Applications to Belief Revision and Truth Maintenance. in
International Workshop on Belief Change & Journal of Applied Non-
Classical Logics, 2000

 http://www.cs.ucla.edu/~darwiche/count.ps

[9] Fargier, H and Amilhastre, J (2000) Handling interactivity in a
constraint based approach of configuration ECAI 2000

[10] Huang C. , Darwiche A. (1996) Inference in belief networks: A
procedural guide.

 International Journal of Approximate Reasoning, 15(3):225-263.
 http://www.cs.ucla.edu/~darwiche/ijar95.pdf
[11] Lauritzen, S. L. and Spiegelhalter, D. J.(1988) Local computations

with probabilities on graphical structures and their application to
experts systems. In journal of the Royal Statistics Society, B, 50,157-
224 1988

[12] Mathieu, P and Delahaye, J.P. (1994) A kind of logical compilation for
knowledge bases.

 Theoretical Computer Science 131 (1994) 197-218
 ftp://ftp.lifl.fr/pub/projects/achievement/tcs94.ps.gz
[13] Marquis, P and Darwiche, A (2000), A Perspective in Knowledge

Compilation In IJCAI-01.
 http://www.cs.ucla.edu/~darwiche/ijcai-01.ps
[14] Marquis, P (1995) Knowledge Compilation Using Theory Prime

Implicates. IJCAI 1995
[15] Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference
 Morgan Kaufmann, San Mateo, California, 1988.
[16] Roussel, O (1997)
 L’achèvement des bases de connaissance en calcul propositionnel et

en calcul des prédicats.
 Thèse de doctorat. Lille 1997
 ftp://ftp.lifl.fr/pub/projects/achievement/these_roussel.ps.gz
[17] Schrag, R and Miranker, D. (1996) Compilation for critically

constrained Knowledge Bases.
 submitted to the Journal of Artificial Intelligence Research.
 http://www.iet.com/users/schrag/my-papers.html
[18] Veron, M Fargier, H and Aldanondo, M (1999) From CSP to

configuration problems
 AAAI-99 Workshop on Configuration
 http://wwwold.ifi.uni-klu.ac.at/~alf/aaai99/08Veron.doc
[19] C. Sinz, A. Kaiser, W. Küchlin (2000) SAT-Based Consistency

Checking of Automotive Electronic Product Data. Presented at the
ECAI 2000 Configuration Workshop, Berlin.

 http://www-sr.informatik.uni-tuebingen.de/projects/pdm/ecai2000.ps
[20] C. Sinz, A. Kaiser, W. Küchlin (2001) Detection of Inconsistencies in

Complex Product Configuration Data Using Extended Propositional
SAT-Checking. Proceedings of the 14th International FLAIRS
Conference, AAAI Press

[21] Kaiser, A. and Küchlin, W (2001) Automotive Product
Documentation. Proceedings of the 14th International IEA/AIE
Conference, Springer, 2001.

[22] Dechter, R and Pearl, J (1989) Tree Clustering for Constraint
Networks, Artificial Intelligence pp. 353-356 1989

 http://www.ics.uci.edu/~csp/r06.pdf

40

http://www-formal.stanford.edu/eyal/papers/oor-theory-1.0-ijcai-final.ps
http://www-formal.stanford.edu/eyal/papers/decomp-uai01-final-1.0.ps
ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1992/1992-27.pdf
http://www.cs.cmu.edu/~bryant/pubdir/acmcs92.ps
http://singapore.cs.ucla.edu/darwiche/dnnf.ps
http://www.cs.ucla.edu/~darwiche/count.ps
http://www.cs.ucla.edu/~darwiche/ijar95.pdf
ftp://ftp.lifl.fr/pub/projects/achievement/tcs94.ps.gz
http://www.cs.ucla.edu/~darwiche/ijcai-01.ps
ftp://ftp.lifl.fr/pub/projects/achievement/these_roussel.ps.gz
http://www.iet.com/users/schrag/my-papers.html
http://wwwold.ifi.uni-klu.ac.at/~alf/aaai99/08Veron.doc
http://www-sr.informatik.uni-tuebingen.de/projects/pdm/ecai2000.ps
http://www.ics.uci.edu/~csp/r06.pdf

Constraint-based Product Structuring for Configuration
Barry O’Sullivan

�

Abstract. Traditionally, applications of Artificial Intelligence have
regarded configuration as the problem of arranging parts, from pre-
defined sets of alternatives, in a manner consistent with a predefined
product structure. While such work is valuable, and represents a sig-
nificant portion of the AI body of research, real-world configuration
is a more complex task. In real-world configuration, the development
and maintenance of the initial product structure is a core activity.
Alternative product structures provide a basis for developing prod-
uct families and variants, desirable for satisfying market demands
for customized product delivery. In addition, the availability of prod-
uct structuring rationale can be exploited when attempting to support
product re-configuration in the field and recognizing redundancies
in product configurations. This paper presents a constraint-based ap-
proach to supporting the synthesis of alternative product structures
for configuration. The approach is based upon an expressive and gen-
eral technique for modeling: the design knowledge which a designer
can exploit during a design project; the life-cycle environment which
the final product faces; the design specification which defines the
set of requirements that the product must satisfy; and the alternative
structures that are developed by the designer.

1 INTRODUCTION

Configuration is becoming a well studied design activity. In partic-
ular, there has been a growing interest in issues such as diagnosis
of knowledge-bases for configuration [4], explanation generation [5]
and tradeoff generation for interactive configuration [6].

While such work is valuable, and represents a significant portion
of the AI body of research, real-world configuration is a more com-
plex task. In real-world configuration, the development and mainte-
nance of the initial product structure is a core activity and warrants
further study. Alternative product structures provide a basis for devel-
oping product families and variants, desirable for satisfying market
demands for customized product delivery. In addition, the availabil-
ity of product structuring rationale can be exploited when attempting
to support product re-configuration in the field and recognizing re-
dundancies in product configurations.

This paper presents a constraint-based approach to supporting the
synthesis of product structures for configuration. This synthesis pro-
cess can be regarded as an instance of conceptual design [7]. The ap-
proach is based upon an expressive and general technique for mod-
eling: the design knowledge which a designer can exploit during a
design project; the life-cycle environment which the final product
faces; the design specification which defines the set of requirements
that the product must satisfy; and the alternatives structures that are
developed by the designer. The approach also facilitates the devel-
opment, evaluation and comparison of alternative product structures

�

Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Ireland – (b.osullivan@cs.ucc.ie)

and product configurations, but due to space reasons this issue is not
discussed here (see [7] for a detailed discussion).

The remainder of the paper is organized as follows. Section 2
presents a brief overview of the theory of conceptual design for
configuration upon which the research presented in this paper is
based. Section 3 discusses how this theory can be modeled in a
constraint programming language. Section 4 presents a simple case-
study which highlights some pertinent details of approach presented
here. In Section 5 a number of concluding remarks are made.

2 A THEORY OF CONCEPTUAL DESIGN

The model of conceptual design adopted in this research is based
on the hypothesis that during the conceptual design process a de-
signer works from an informal statement of the requirements that
the product must satisfy and generates alternative configurations of
physical elements which satisfy them. These physical elements, re-
ferred to in this research as “design entities”, can be regarded as
proto-components, between which are defined a set of context re-
lationships restricting the nature of the interfaces between the design
entities. During a configuration session with a human user, these
proto-components are extended into parts. In addition, as parts are
being introduced into the scheme the precise meaning of the appro-
priate context relationships becomes known and define the interfaces
between them.

Central to the process of product structuring is an understanding
of function and how it can be provided. The process involves the
development of a function decomposition which provides the basis
for a configuration of physical elements that form a scheme. The
configuration of physical elements with partially specified interface
definitions between them can be regarded as a scheme for a set of
product structures. Depending on the degree of detail that the de-
signer has specified, each product structure will either be very gen-
eral or specific. Since, in the configuration domain, we are generally
only concerned with problems where the sets of parts and interfaces
are known. The product structuring problem is concerned with de-
veloping a sufficiently detailed scheme from which the customer can
configure the product of choice.

In the remainder of this section a brief overview of the theory of
conceptual design of product structures used in this research will be
presented. It will be shown how the approach presented here can sup-
port design for configurability by supporting the synthesis of product
structures which contain all of the necessary constraints required to
define a particular configuration problem. For a more complete dis-
cussion of the theory the reader is encouraged to refer to the more
detailed literature available [7].

2.1 The Design Specification

The conceptual design process is initiated by the recognition of a
need or customer requirement. This need is analyzed and translated

41

into a statement which defines the function that the product should
provide (referred to as a functional requirement) and the physical
requirements that the product must satisfy. This statement is known
as a design specification.

A design specification will always contain a single functional re-
quirement, since this represents the highest level of abstraction which
defines the purpose of a product.

In addition, two classes of physical requirement can be identified:
product requirements and life-cycle requirements. A product require-
ment can be either a categorical requirement that defines a relation-
ship between attributes of the product or it can be a preference related
to some subset of these attributes. A life-cycle requirement can be
either a categorical requirement that defines a relationship between
attributes of the product and its life-cycle, or it can be a preference
related to some subset of these attributes.

2.2 Conceptual Design Knowledge

During conceptual design, the designer must synthesize a product
structure defined in terms of physical elements which satisfies each
of the functional and physical requirements in the design specifica-
tion. To do so, the designer needs considerable knowledge of how
function can be provided by physical means. Often, this knowledge
exists in a variety of forms; a designer may not only know of partic-
ular parts and technologies that can provide particular functionality,
but may be aware of abstract concepts which could also be used. For
example, a designer may know that an electric light-bulb can gener-
ate heat or, alternatively, that heat can be generated by rubbing two
surfaces together. The latter concept is more abstract that the former.
In order to effectively support the human designer during concep-
tual design, these alternative types of design knowledge need to be
defined and modeled in a formal way.

2.2.1 The Function-Means Map

The notion of the function-means tree has been proposed by re-
searchers from the design science community as an approach to cat-
aloging how function can be provided by means [1]. The use of
function-means trees in supporting conceptual design has attracted
considerable attention from a number of researchers [3].

Here a generalization of the function-means tree, called a function-
means map, is used to model functional design knowledge [7]. In a
function-means map two different types of means can be identified:
a design principle or a design entity.

A design principle is a means which is defined in terms of
functions that must be embodied in a design in order to provide
some higher-level functionality. Design principles are abstractions of
known approaches to providing function. By utilizing a design prin-
ciple during product structuring, the designer can decompose higher-
level functions without committing to a physical solution too early
in the design process. The functions that are required by a particu-
lar design principle collectively replace the function being embodied
by the principle. The functions which define a design principle will,
generally, have a number of context relations defined between them.
These context relations describe how the parts in the scheme, which
provide these functions, should be configured in abstract terms so
that the design principle is used in a valid way. An example design
principle based on the abstraction of a bicycle is show in Figure 1.
In this figure functions are illustrated as round-edged boxes, context
relations are represented in dashed lines. Note that the design princi-
ple is not just a model of a known physical design solution, but is an

function: provide transport

drives supports

supports

supports

supports

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

wheel assembly

pedal assembly

handlebar assembly

saddle

Design Principle

Physical Instance

bicycle

frame

Figure 1. Abstracting an example design principle from a bicycle.

abstraction which can be used to encourage creativity and analogical
reasoning during design.

A design entity, on the other hand, is a physical, tangible means
for providing function. A design entity is defined by a set of param-
eters and the relationships that exist between these parameters. For
example, an electronic resistor would be modeled as a design entity
which is defined by three parameters, resistance, voltage and current,
between which Ohm’s Law would hold.

2.2.2 Embodiment of Function

As the designer develops a scheme for a product structure every func-
tion in the scheme is embodied by a means. Each means that is avail-
able to the designer has an associated set of behaviors. Each behavior
is defined as a set of functions that the means can be used to pro-
vide simultaneously. Each behavior associated with a design princi-
ple will contain only one function to reflect the fact that it is used to
decompose a single function. However, a behavior associated with a
design entity may contain many functions to reflect the fact the there
are many combinations of functions that the entity can provide at
the same time. For example, the bulb design entity mentioned above
may be able to fulfill the functions provide light and generate heat
simultaneously. However, when a design entity is incorporated into a
scheme (for the purpose of supporting functionality provided by one
of its behaviors), it is not necessary that every function in this be-
havior be used in the scheme. In this respect redundant functionality
may be introduced into a scheme which may become useful at a later
stage when trying to incorporate new functionality into the scheme
during a re-configuration exercise.

2.3 Scheme Configuration using Interfaces

When a designer begins to configure a scheme for a product struc-
ture, the process is initiated by the need to provide some functional-
ity. The designer considers the various means that she has available

42

in her design knowledge-base. Generally, the first means that a de-
signer will select will be a design principle. This design principle
will substitute the required (parent) functionality with a set of child
functions. Ultimately the designer will embody all leaf-node func-
tions in the scheme with design entities. During this embodiment
process the context relations, from the design principles used in the
scheme, will be used as a basis for defining the interfaces between
the design entities used in the scheme. The precise nature of these in-
terfaces cannot be known with certainty until the designer embodies
functions with design entities; this is because the link between func-
tions and design entities is generally not known with certainty during
the development of the function decomposition for the scheme. Once
the set of design entities, and the interfaces between them, are known
the resultant scheme can be regarded as a product structure which de-
fines the configuration problem. Until the precise nature of a particu-
lar interface is known, they are modeled as relations between design
entities which can be used to reason about the product structure; for
example, interfaces may represent simple spatial relationships which
can inform an evaluation related to the relative position of parts in a
product. In Section 3.2.4 a detailed example will be discussed.

The types of interfaces that may be used to synthesis a product
structure will be specific to the engineering domain within which the
designer is working. Indeed, these interfaces may also be specific
to the particular company to which the designer belongs in order to
ensure the configurability of the product.

3 CONSTRAINT-BASED IMPLEMENTATION

The implementation language used in this research was an extended
form of Galileo [2], a frame-based constraint programming language
based on the First-Order Predicate Calculus.

It is believed that the approach to product structuring presented
here has wide applicability; it has been already tested in a vari-
ety of real-world domains. Consequently, its implementation can
distinguish between those features which are generic to all ap-
plications and those features which are specific to individual de-
sign/configuration domains. In the following sections important as-
pects of the details of the constraint-based implementation of the de-
sign theory presented in Section 2 will be presented. For a more de-
tailed treatment, the reader is encouraged to refer to the literature [7].

3.1 Implementing Generic Concepts

In Figure 2 the Galileo model of a generic scheme is presented.

domain scheme
=::= (scheme_name : string,

structure : embodiment).

Figure 2. The representation of a generic scheme.

Since a scheme exists solely to provide the functionality required
in the design specification, its structure should be the embodiment of
that functionality. This model is based of the fact that the designer
is mostly concerned with producing embodiments for intended func-
tions by choosing, from among the known means, those which will
provide the required functionality (Figure 3).

domain embodiment
=::= (hidden scheme_name : string,

intended_function : func,
chosen_means : known_means,
reasons : set of func_id).

Figure 3. Modeling the embodiment of a function.

The same type of functionality is frequently needed in different
parts of a scheme. Thus, we must represent, not a function, but an
instance of a function. The definition of an instances of a function,
referred to here as a func, is presented in Figure 4.

domain func
=::= (verb : string,

noun : string,
id : func_id).

Figure 4. Modeling a function instance in Galileo.

The final field in the definition of an embodiment (Fig-
ure 3) is called reasons. The reasons field associated with
an embodiment records the motivation for the existence of the
embodiment. It does so by recording the identity numbers of the
function instances whose provision introduced the need for the em-
bodiment. The reasons field of an embodiment provides the ba-
sis for identifying those design entities between which context rela-
tions must be considered.

3.1.1 A Generic Model of Means

Figure 5 illustrates how the generic notion of a means can be mod-
eled. Note that there are two kinds of means: principles and en-
tities. The final field in the definition of the generic notion of a
means, called funcs provided, is used to store which function
instances within a scheme the means is being used to provide. Of
course, a means should be used to provide only those function in-
stances which it is capable of providing; this requirement is captured
by a universally quantified constraint. The definition of the relation
is a possible behaviour of is an application-specific con-
cept.

domain means
=::= (hidden scheme_name : string,

type : means_type,
funcs_provided : set of func_id).

domain means_type
=::= { a_principle, an_entity }.

all means(M):
is_a_possible_behaviour_of(M.funcs_provided, M).

Figure 5. Modeling a design means in Galileo.

Based on the generic notion of a means, generic definitions for
design principles and design entities can be defined. The generic no-
tion of a principle and an entity are defined in Figure 6 as
specializations of the generic notion of a means.

domain principle
=::= { P: means(P) and

P.type = a_principle }.

domain entity
=::= { E: means(E) and

E.type = an_entity }.

Figure 6. Generic design principle and design entity models.

3.1.2 Context Relationships and Entity Interfaces

Eventually, each embodiment is realized by the introduction of de-
sign entity instances. Thus, to ensure that design entities are config-
ured appropriately, the context relationships between embodiments,
due to any design principles used during the function decomposition,
will have to be realized by interfacing appropriately the entity in-
stances which realize the embodiments. The generic definition of an
interface is is provided in Figure 7.

43

domain interface
=::= (hidden scheme_name : string,

entity_1 : entity_id,
entity_2 : entity_id).

all interface(I):
exists entity(E1), entity(E2):

I.entity_1 = E1.id and
I.entity_2 = E2.id and
is_in_the_same_scheme_as(I, E1) and
is_in_the_same_scheme_as(I, E2).

Figure 7. Modeling generic interfaces between design entities.

It can be seen that an interface is defined between a pair of
entities. We shall see later how this generic definition of an interface
can be used to define application-specific interfaces for embodying
context-relations.

3.2 Implementing Application-Specific Concepts

The generic concepts introduced above serve as the basis for defining
the application-specific concepts that are needed to support product
structuring. The definition of these application-specific concepts in
terms of the generic concepts will now be considered briefly.

3.2.1 Defining Known Means

The various design principles and design entities that are ap-
proved for use by designers working for the company constitute a
set of known means. The functionality that is offered by these
known meansmust be known in advance. In addition, each of these
principles and entities must be described in detail by defining them
as specializations of the generic representation of a means.

domain known_means
=::= { an_axle, a_bicycle, a_wheel_assembly, ... }.

relation can_simultaneously_provide(known_means,
set of func)

=::= { ... }.

Figure 8. Defining of known means available to designers.

In Figure 8 an example of a small collection of means which
are available to a designer working for Raleigh Leisure Vehi-
cles Limited is presented. As well as listing the known means
that are available to designers working for a company, the
company knowledge-base must specify the functions that each
known means can provide. This is done by declaring the relation
called can simultaneously provide. This relation describes
the functionality that can be simultaneously provided by the various
known means available to engineers working for a particular com-
pany.

3.2.2 Defining Company-specific Design Principles

Application-specific design principles can be defined as specializa-
tions of the generic design principle (Figure 6). Consider, for exam-
ple, a principle based on a bicycle is defined in Figure 9.

This application-specific principle is defined to be a specialization
of the generic notion of a principle. It was seen in Figure 1 that a
bicycle principle involves five embodiments. The context re-
lationships between the embodiments which are shown in Figure 1
are also defined. For example, a drives relationship must exist be-
tween the embodiment e2 and embodiment e1. These context
relationships constrain the manner in which the design entities in the
final product structure are configured.

domain bicycle
=::= { B: principle(B) and

exists(B.e1 : embodiment) and
exists(B.e2 : embodiment) and
exists(B.e3 : embodiment) and
exists(B.e4 : embodiment) and
exists(B.e5 : embodiment) and
provides_the_function(B.e1.intended_function,

’facilitate’, ’movement’) and
provides_the_function(B.e2.intended_function,

’provide’, ’energy’) and
provides_the_function(B.e3.intended_function,

’support’, ’passenger’) and
provides_the_function(B.e4.intended_function,

’change’, ’direction’) and
provides_the_function(B.e5.intended_function,

’provide’, ’support’) and
drives(B.e2, B.e1) and
supports(B.e5, B.e1) and
supports(B.e5, B.e2) and
supports(B.e5, B.e3) and
supports(B.e5, B.e4) }.

Figure 9. Definition of a company-specific design principle.

3.2.3 Defining Application-Specific Design Entities

Company-specific design entities are defined as specializations of the
generic model of a design entity which was presented in Figure 6.
In every company there are particular properties of parts that are of
general interest. Thus, Figure 10, presents a definition of a company-
specific design entity called a raleigh entity which has these
properties.

domain raleigh_entity
=::= { E: entity(E) and

exists(E.width : real) and
exists(E.mass : real) and
exists(E.material : raleigh_material) and
E.mass = mass_of(E) }.

domain raleigh_material
=::= { cfrp, titanium, aluminium, steel }.

function mass_of(raleigh_entity) -> real
=::= { E -> 2: E.material = cfrp,

E -> 3: E.material = titanium,
E -> 5: E.material = aluminium,
E -> 10: E.material = steel }.

Figure 10. The implementation of a company-specific design entity called
raleigh entity.

In this figure it can be seen that the concept of a
raleigh entity is defined to be a specialization of the generic
notion of an entity. The specialization consists of an additional
three fields, representing width, mass and material, with an
equational constraint for estimating the mass. When a company
has defined its own pseudo-generic concept of a design entity, it
can define a repertoire of company-specific design entities. These
company-specific design entities may be specializations, with further
additional fields, of the company’s pseudo-generic concept of design
entity or they may be merely synonyms of it. A set of primitive eval-
uation functions can be defined in terms of the properties of design
entities.

3.2.4 Defining Application-Specific Context Relationships

If a design principle specifies a context relationship between some
of its embodiments, that relationship must, ultimately, be realized
by some analogous relationship between the sets of design entity in-
stances which realize the embodiments so that the product is config-
ured in a valid way and can be properly evaluated.

For example, the bicycle principle defined in Figure 9 specifies
that a drives relationship must hold between the first two embodi-
ments introduced by the principle, those which embody the functions
provide energy and facilitate movement.

The drives relationship between two embodiments is defined
in Figure 11. This definition specifies that the drives relationship

44

relation drives(embodiment, embodiment)
=::= { (E1,E2): drives({ X | exists entity(X):

derives_from(X, E1) },
{ Y | exists entity(Y):

derives_from(Y, E2) }) }.

relation drives(set of entity, set of entity)
=::= { (E1s,E2s): exists E1 in E1s, E2 in E2s:

drives(E1, E2) }.

relation drives(entity, entity)
=::= { (P,W): pedal_assembly(P) and wheel_assembly(W) and

is_in_the_same_scheme_as(P, W) and
!exists chain(C):

is_in_the_same_scheme_as(P, C) and
!exists mechanical_interface(M1):

M1.entity1 = P.id and
M1.entity2 = C.id and
M1.relationship = drives and

!exists mechanical_interface(M2):
M2.entity1 = W.id and
M2.entity2 = C.id and
M2.relationship = drives }.

Figure 11. The meaning of the drives context relation between
embodiments.

holds between two embodiments if and only if an analogous rela-
tionship, also called drives, holds between the two sets of entity
instances that derive from these embodiments. The drives rela-
tionship between sets of derived entity instances is defined in terms
of yet another analogous relationship, this time between individual
entity instances.

The precise realization of the context relationship specified in a
principle depends on which design entities are used to realize the em-
bodiments that must satisfy the context relationship. Suppose that a
pedal assembly is the design entity used to provide energy
and a wheel assembly is the design entity used to facilitate
movement, we can see in Figure 11 the relationship that would have
to be satisfied between these two entity instances in order to properly
embody the drives context relation.

A mechanical interface (Figure 12) is simply a special-
ization of the generic notion of an interface. It can be seen to be
a specialization of a application-specific notion of interface, called
a raleigh interface, which is a specialization of the generic
notion of interface.

domain mechanical_interface
=::= { S: raleigh_interface(S) and S.type = mechanical and

exists(S.relationship : mechanical_relationship) }.

domain mechanical_relationship
=::= { controls, drives, supports }.

domain raleigh_interface
=::= { I: interface(I) and

exists(I.type : raleigh_interface_type) }.

domain raleigh_interface_type
=::= { spatial, mechanical }.

Figure 12. Modeling company-specific interfaces.

4 CASE-STUDY

In this section an example of how product structures can be synthe-
sized as schemes will be presented. The example illustrates a very
simplified instance of product structuring for configuration. How-
ever, the approach presented in this paper has been validated in real-
world design domains such as mechatronics, optical systems and
electronics design.

In Figure 13 an illustration of the various means contained in an
example design knowledge-base is presented. This knowledge-base
comprises one design principle, called bicycle, and a number of de-
sign entities, such as a wheel assembly and a saddle. The set of be-
haviors for each means in the knowledge-base are presented under
the icon representing the means.

In Figure 14 an instance of the design principle bicycle, called bi-
cycle 1, has been used to embody the function provide transport. This

drives supports

supports

supports

supports

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

bicycle

saddle

chainframe

engine chassis harness

skateboard

behaviours = { { provide support,
support passenger } }

molded frame

behaviours = { { provide transport } } behaviours = { { faciliate movement } } behaviours = { { provide energy } } behaviours = { { support passenger } }

behaviours = { { transmit energy } }behaviours = { { provide support } }behaviours = { { change direction } }

behaviours = { { faciliate movement } } behaviours = { { provide energy } } behaviours = { { provide support } } behaviours = { { support passenger } }

behaviours = { { change direction } }behaviours = { { provide transport } }

wheel assembly pedal assembly

handlebar assembly

air cushion

steering assembly

behaviours = { { support wheel, faciliate rotation },
{ punch holes } }

axle

Figure 13. The means contained in an example design knowledge-base
and their possible functionalities.

drives supports

supports

supports

transport
provide

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

supports

bicycle 1

Figure 14. Using a design principle to embody the functional requirement.

design principle introduces the need for five more functions to be em-
bodied. The designer must now select means for embodying each of
these functions. The presence of these additional embodiments is due
to the constraint-based description of the bicycle design principle.

In Figure 15 the designer selects the wheel assembly design entity
to embody the function facilitate movement. This introduces an in-
stance of this means, called wheel assembly 1, into the scheme. As
the designer introduces design entities into the scheme the context
relations that exist between the function embodiments must be con-
sidered. However, since there is only one design entity in the scheme
presented in Figure 15 no context relations are considered at this
point in the scheme’s development.

In Figure 16 the designer has chosen to embody the function pro-
vide energy with the pedal assembly design entity. This introduces
an instance of this means, called pedal assembly 1, into the scheme.
Since the drives context relation must exist between the embodi-
ments of the functions facilitate movement and provide energy, this
caused, in addition to the existence of the design entities wheel as-
sembly 1 and pedal assembly 1, the introduction of an instance of the
chain design entity, called chain 1. Both of these interfaces are used,
along with chain 1, to embody the drives relation that should exist
between wheel assembly 1 and pedal assembly 1.

Figure 17 shows the state of the scheme after the designer has cho-

45

drives supports

supports

supports

supports

transport
provide

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

bicycle 1

wheel assembly 1

Figure 15. Using a design entity to embody a function in the scheme.

drives supports

supports

supports

supports

transport
provide

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

bicycle 1

drives
mechanical interface 2

drives
mechanical interface 1

wheel assembly 1

chain 1

pedal assembly 1

Figure 16. The effect of a context relation on the configuration of design
entities.

sen to embody the function support passenger with the design entity
saddle, the function change direction with the design entity handle-
bar assembly and the function provide support with the design entity
frame. Due to the bicycle design principle, a context relation called
supports must exist between the embodiment of the function pro-
vide support and the embodiments of each of the functions facilitate
movement, provide energy, support passenger and change direction.
Each of these context relations is embodied by a mechanical inter-
face that defines a supports relationship. The details of these mechan-
ical interfaces that define a supports relationship will be specified in
detail during configuration. Since all the functions have been em-
bodied in the scheme presented in Figure 17, it can be regarded as a
product structure which can be be used as the basis for supporting in-
teractive configuration through which a human user will detail parts
for the design entities and the interfaces between them. In making
these decisions the designer must ensure that the various constraints
that are imposed on her due to the design specification or the design

drives supports

supports

supports

supports

transport
provide

movement
faciitate provide

energy
support
passenger

change
direction

provide
support

bicycle 1

drives
mechanical interface 2

drives

supports

supports

supports

mechanical interface 1 supports

mechanical interface 4

mechanical interface 3

wheel assembly 1

chain 1

saddle 1pedal assembly 1 handlebar assembly 1 frame 1

mechanical interface 5

mechanical interface 6

Figure 17. An example scheme configuration.

knowledge-base must be satisfied.

5 CONCLUSION

This paper presents a constraint-based approach to supporting the
synthesis of alternative product structures for configuration. The ap-
proach is based upon an expressive and general technique for mod-
eling: the design knowledge which a designer can exploit during a
design project; the life-cycle environment which the final product
faces; the design specification which defines the set of requirements
that the product must satisfy; and the alternatives structures that are
developed by the designer.

REFERENCES
[1] Mogens Myrup Andreasen. The Theory of Domains. In Proceedings of

Workshop on Understanding Function and Function-to-Form Evolution,
Cambridge University, 1992.

[2] James Bowen and Dennis Bahler. Frames, quantification, perspectives
and negotiation in constraint networks in life-cycle engineering. Artifi-
cial Intelligence in Engineering, 7:199–226, 1992.

[3] Amaresh Chakrabarti and Lucienne Blessing. Guest editorial: Repre-
senting functionality in design. Artificial Intelligence for Engineering
Design and Manufacture, 10(4):251–253, 1996.

[4] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumpter. Consistency-based diagnosis of configuration knowledge-
bases. In Proceedings of the 14h European Conference on Artificial
Intelligence (ECAI’2000), pages 146–150, 2000.

[5] Eugene C. Freuder, Chavalit Likitvivatanavong, and Richard J. Wallace.
A case study in explanation and implication. In In CP2000 Workshop on
Analysis and Visualization of Constraint Programs and Solvers, 2000.

[6] Eugene C. Freuder and Barry O’Sullivan. Generating tradeoffs for in-
terative constraint-based configuration. In Proceedings of the Seventh
International Conference on Principles and Practice of Constraint Pro-
gramming – CP-2001, November 2001.

[7] Barry O’Sullivan. Constraint-Aided Conceptual Design. PhD thesis, De-
partment of Computer Science, University College Cork, Ireland, July
1999. (Also published by Professional Engineering Publishers, Engi-
neering Research Series, 2001).

46

A Student Advisory System: a configuration problem for
constraint programming

�

Kevin McDonald and Patrick Prosser �

Abstract. Today, many universitiesareopting for modulardegree
programmes.Suchmodularcoursesprovide greaterflexibility for
students,allowing themto learnaboutsubjectspreviously inacces-
sibleto them.Suchasystemis naturallycomplex. Modulesmayfea-
ture pre and co-requisitesandmay run over differently periodsof
times(andhave differentcredit values).Generaluniversity require-
mentswill needto bemetby studentsto continuetheir studies.

Studentsthemselvesmay further complex the processby explic-
itly wantingto take or avoid modules.They may requirea general
overview to seewhatoptionsareavailableto them,suchasthedif-
ferentroutesto a particulardegree.TheUniversityof Glasgow cur-
rently hasno automatedprocessto help with this. To find answers
studentsmay needto visit several different facultiesto investigate
possiblemoduleselections.Studentsmayhaveto spendlargeperiods
of time with their advisermanuallyworking throughthe university
coursecataloguefinding what modulesareandarenot availableto
them.This paperdescribesour initial efforts in applyingconstraint
programmingto this problem.

1 Introduction

Studentsdesigntheir own degrees.A universitydegree(for example
ComputerScience)is typically composedof a setof modules,each
correspondingto aspecificsubject,suchasdatabases,algorithmsand
datastructures,communications,etc.Eachof thesemodulesis worth
a certainamountof credits.To progressfrom oneyear to the next
a studentmustaccumulatea minimum amountof credits.In a year
of studytherewill bea setof modules.Typically, a subsetof these
will be coremodulesthat mustbe taken. Additional modulesmust
thenbeselectedto achieve theminimumnumberof credits.This se-
lectionmaytheninfluencesubsequentmodulesthatcan,andcannot,
be taken in later years.For example,a studentcannottake a third
yearcourseon algorithmsif shehasnot takena secondyearcourse
on discretemathematicsi.e. discretemathematicsis a pre-requisite.
Similarly, certainmodulesmustbe taken togetheri.e. they areco-
requisites.Addedto this, thereis a limit to thenumberof modulesa
studentcantake in any year, andsometimesin any term.

Studentsare then facedwith a dauntingtask.They may decide
that they wanta certaindegree,saySoftwareEngineering,yet there
arecertainmodulesthat they do anddo not want to take, andsome
termsthat they want to minimise the numberof modulesthat they
take (maybesothatthey cancompletea year’s project).Whatmod-
ulesshouldthey take, andwhat are the consequences?Much time
canbespentby advisorsof studyassistingstudentsin decidingwhat
�

This work wassupportedby EPSRCresearchgrantGR/M90641.�
ComputingScience,Glasgow University,17 Lilybank Gardens,Glasgow
G128RZ,Scotland,email:pat@dcs.gla.ac.uk

to study, andexplainingwhy certainmodulescannotbetakeni.e. the
advisorshelp the studentsdesigntheir course.Althoughall this in-
formationis availablein theuniversity handbook,it may requirean
expertto interpretit.

What we have attemptedhere,is to demonstratethat the taskof
advisinga courseof study is essentiallya problemof design,and
that a constraintbasedmodel is mostappropriate.We demonstrate
this by presentingthe 4th yearcurriculumfrom our department,an
encodingof this in the Chococonstraintprogrammingtoolkit, and
samplequeriesthata studentmayaskof sucha model.

2 A Fourth Year Problem

The4thyearof studyis split acrosstwo semesters.All studentsmust
doanindividualfinal yearproject(proj) andcompletethemoduleon
professionalissues(pi). Studentshave thento take 8 othermodules,
selectedfrom thefollowing options:

1. FormalMethods(fm) semester1
2. InformationRetrieval (ir) semester1
3. Security& Cryptography(sc)semester1
4. AdvancedCommunications(ac)semester2
5. Artificial Intelligence(ai) semester2
6. Algorithmics(al) semester2
7. ComputerArchitecture(ca)semester1
8. Databases& InformationSystems(dbis)semester1
9. Design& Evaluationof MultimediaSystems(dems)semester2

10. Issuesin Collaborative & DistributedSystems(hci) semester1
11. ModellingReactive Systems(mrs)semester2
12. NeuralComputing(nc) semester2
13. Network CommunicationsTechnology(nct) semester1
14. RequirementsEngineering& Re-engineering(rer) semester2
15. SafetyCritical Systems(scs)semester1
16. SyntheticGraphics(sg)semester2

In the first semestera studentmust take 4 or 5 modules.The
semester1 moduleNetwork CommunicationsTechnology(nct) is
a pre-requisitefor the AdvancedCommunications(ac) module in
semester2.

We representthe above curriculum as a constraintsatisfaction
problem[4] usingtheChocotoolkit [1]. This is shown in Figure1.
TheChocofunction,level4(), deliversanobjectrepresentinga con-
straintsatisfactionproblemcomposedof integer variablesandcon-
straints.Eachmoduleis a 0/1 variable,with a value of 1 if taken,
0 otherwise.The two compulsorymodules,ProfessionalIssues(pi)
and Individual Project (proj), are representedfor completenessso
thata studentis awarethat they mustbetaken(i.e. assigneda value
of 1). Theconstrainton line B representsthepre-requisite:Network

47

[level4()� : Problem
-> let pb := makeProblem("Level 4",20),

proj := makeIntVar(pb,"proj",0,1),
pi := makeIntVar(pb,"pi",0,1),
fm := makeIntVar(pb,"fm",0,1),
dbis := makeIntVar(pb,"dbis",0,1),
hci := makeIntVar(pb,"hci",0,1),
scs := makeIntVar(pb,"scs",0,1),
ca := makeIntVar(pb,"ca",0,1),
ir := makeIntVar(pb,"ir",0,1),
nct := makeIntVar(pb,"nct",0,1),
sc := makeIntVar(pb,"sc",0,1),
al := makeIntVar(pb,"al",0,1),
rer := makeIntVar(pb,"rer",0,1),
mrs := makeIntVar(pb,"mrs",0,1),
ai := makeIntVar(pb,"ai",0,1),
nc := makeIntVar(pb,"nc",0,1),
sg := makeIntVar(pb,"sg",0,1),
dems := makeIntVar(pb,"dems",0,1),
ac := makeIntVar(pb,"ac",0,1),
must := list(proj,pi),
sum1 := makeIntVar(pb,"sum1",list(4,5)),
sum2 := makeIntVar(pb,"sum2",list(3,4)),
sem1 := list(fm,dbis,hci,scs,ca,ir,nct,sc),
sem2 := list(al,rer,mrs,ai,nc,sg,dems,ac)

in (post(pb, sumVars(must) == 2), // A
post(pb, implies((ac == 1),(nct == 1))), // B
post(pb,sumVars(sem1) == sum1), // C
post(pb,sumVars(sem2) == sum2), // D
post(pb,sum1 + sum2 == 8), // E
pb)]

Figure 1. level4(), aconstraintprogrammingencodingof thecurriculum
designproblemfor ���	� yearComputerScienceatGlasgow University

CommunicationsTechnology(nct) is a pre-requisitefor Advanced
Communications(ac).Theconstraintonline C guaranteesthateither
4 or 5 modulesaretaken in thefirst semester, andtheconstrainton
line D guaranteesthateither3 or 4 modulesaretakenfrom thesec-
ondsemester. Thefinal constraintE ensuresthat8 modulesaretaken
in total. Someof theseconstraintsmight initially appearsuperflu-
ous,but aswe will soonsee,they arethereto allow moreinteresting
queriesby theuser.

3 Making Choices: an example

The above problemis not solved in the conventionalsense;instead
a userinteractwith it. Theinteractioninvolvesenforcinga decision
andthenseeingtheconsequencesof this, askingfor anexplanation
as to why certainchoicesare forceduponthe user, or why certain
choicesarenot available.We now presenta typical sequenceof de-
cisionsandqueries.

Assumewe have createdtheproblem(i.e. p:Problem:= level4()),
and that we have (male) studentX. X wantsto get startedon his
projectandreckonsthat hemight do well to lighten his load in the
first semester. In Choco,we createa new world (i.e. world+()), set
sum1to 4 (i.e.setVal(sum1,4)),andpropagatethis throughtheprob-
lem (i.e. propagate(p)).This will setsum2to 4, forcing thestudent
to take4 modulesin thesecondsemester. Notethatin creatinganew
world, we can manuallyretractthe most recentdecisionby back-
trackingvia the function call world-(), and in the extremewe can
returnto our initial problemstatevia thecall world=(0).

StudentX doesnotwantto takethefirst semestermoduleNetwork
CommunicationTechnology(nct). Again, we createa new world,
now moving to world 2. We setvariablenct to 0 (i.e. setVal(nct,0))
andpropagatethis decision.SinceNetwork CommunicationTech-

nologyis apre-requisitefor AdvancedCommunication(ac)thevari-
ableacis setto 0 via propagation.Consequently, studentX now has
a reducedsetof optionsin thesecondsemester.

Theabove stepscanbe performedquite easilywithin the Choco
interpreterwith just a handfulof functions,for selectingandsetting
variables.That is, asa proof of conceptwe neednot develop a user
interface,but merely interactvia the interpreter. This might not be
unreasonableconsideringthatthis modelwould only beusedby 4th
yearComputerScientists.However, if andwhenwe move to a more
complex environmentwith morenaive users,we expectthata good
userinterfacewill beessential.

We could have encodedthe above problem differently. In par-
ticular, we could have hada constraintstatingthat 4 or 5 modules
mustbetakenin thefirst semesteri.e.sumVars(sem1)== 4 ORsum-
Vars(sem1)== 5, andsimilarly that3 or 4 modulesmustbetakenin
thesecondsemesteri.e.sumVars(sem2)== 3 ORsumVars(sem2)==
4. However, this would not have allowedstudentX to make thede-
cisionthathewill take4 modulesin semester1. By doingawaywith
thevariablesum1,weno longerallow thestudentto make thestrate-
gic decisionto spreadhis studyloadevenly over thetwo semesters.
Clearly, our choiceof modelinfluencesthekindsof decisionsthata
usercanmake.

4 Giving Explanations

In [2] Junker presentsa simple and elegant methodfor delivering
explanationsfor conflicts.Assumewe have a sequenceof decisions
���
 ���
 �����������
�� , where

��
is our last decisionbeforewe detect

a conflict. Thereforewe know that

��

mustbe oneof the culprits.
But what other decisionsmight be involved?Junker proposesthat
we retractall our decisionsandthenenforce

��
. If this resultsin a

contradictionwehaveanexplanation,i.e.

��

on its own. If this is not
thecasewethenattemptto makethesequenceof decisions

���
��
, up

to conflict. Assumethaton makingdecisions

 � �����
�� we againhave

a conflict.We canthenbesurethatdecisions

��

and

 �

togetherare
asubsetof theculprit decisions.Wethenrepeatthisprocess,making
decisions

 �
and

��
, andthenthesequenceof decisions

�����
 � �
���� ,
againup to conflict, alwaysaddingthe lastdecisionthat fails to the
setof culprits.Thissetof culpritsis thenasoundandminimalexpla-
nation3.

Junker’s techniquecan be easilyextendedto cover the situation
wherewewantto determinewhy propagationsetsaspecificvariable
to a specificvaluei.e. why studentX must take a given moduleor
cannottake a given module.We modify the above proceduresuch
that ratherthanstoppingwhena contradictionis detected,we stop
whena specifiedvariableis setto a specifiedvalue.In fact,we can
generaliseevenfurther, producinganexplanationfor theremoval of
a value,a setof values,thesettingof avariable,etc.

We usethis procedureto deliver explanations.We recordall de-
cisionsmadeby the userin a history list . Whena userasksfor
anexplanation,we returnto our initial problemvia theChocofunc-
tion call world=(0).This returnsusto thefirst world, whereno deci-
sionshave beenmade.We thenusethe above procedureon the list
 building up thelist of culprits.

5 Future Work and Conclusion

Within thisdepartment,therehavebeenannumberof failedattempts
atproducingasystemthatcanbeusedto advisestudentsonacourse
!

However, theremaybemany otherexplanations.

48

of study. Thesefailed systemstendto be dominatedby attemptsto
capturethestudenthandbookin adatabaseandallow accessto it via
a userinterface.Essentially, suchsystemsfail becausethey do not
capturethedynamiceffectsof decisionmaking.In this project4 our
goal hasbeento producea convincing demonstrationof constraint
programmingasa solutionto this problem.Our goalwasnot to pro-
duceafully fledgedsystem,but ratherto produceaproofof concept.
Webelieve thatwehave donethat.

Clearly, the above testcase(4th yearComputerScience)is very
small.Attemptingto extendthis to coverafaculty, let aloneanentire
university, is ahugetask(for example,seevanderLinden’sPhDthe-
sis [5]). However, we shouldexpectthatsomeday it will becomea
necessity, especiallysoasuniversitiesbecomemoreinvolvedin dis-
tancelearning.Onecurrentexampleis lifelong learningin theOpen
University. It is ourintentionto tacklealargerproblemanddevelopa
userinterface.Weshouldthenbein apositionto field thesystemand
evaluateit. In addition,wemightalsoconsiderhigerlevelsof consis-
tency. At present,only arc-consistency is establishedwhenmakinga
decision.It mightbeinterestingto investigateproblemswherehigher
levels of consistency arerequired,i.e. problemswhereillegal deci-
sionsarelessobvious.

So far, we have not neededto usetechniquesfrom dynamiccon-
straint satisfaction [3]. However, as the model becomeslarger and
richerwe expectthis will bea necessity. We arepleasantlysurprised
at thesimplicity andeffectivenessof Junker’s explanationtechnique;
this fits well with theabove problem.

ACKNOWLEDGEMENTS

We would like to thanktheComputingSciencedepartmentof Glas-
gow University for supportingthis final yearstudentproject,andin
particularAlison Mitchell for patientlyexplainingtheproblemto us.
We would also like to thank the OCREproject teamfor their help
with Choco.

REFERENCES
[1] CHOCO. http://www.choco-constraints.net/ home of the choco con-

straintprogrammingsystem.
[2] Ulrich Junker, ‘Quickxplain: Conflict detectionfor arbitraryconstraint

propagationalgorithms’,in IJCA’01 workshop on Modelling and Solving
Problems with Constraints, pp.81–88,(2001).

[3] S. Mittal and B. Falkenhainer, ‘Dynamic constraintsatisfaction prob-
lems’, in Proceedings of AAAI-90, pp.25–32,(1990).

[4] EdwardTsang,Foundations of Constraint Satisfaction, AcademicPress,
1993.

[5] Janetvan der Linden. An approachto dealingwith non-standardcon-
straintsatisfactionproblems.PhDThesis,Oxford Brookes,2000.

"
... a final yearprojectcarriedout by thefirst authorandsupervisedby the
second.

49

Problem Decomposition in Configuration
Diego Magro, Pietro Torasso and Luca Anselma

�

Abstract.
In the present work the issue of decomposing a configuration prob-

lem is approached in a framework where the domain knowledge is
represented in a structured way by using a KL-One like language
and whole-part relations play a major role in defining the structure
of the configurable objects. The representation formalism provides
also a constraint language for expressing complex relations among
components and subcomponents.

The paper presents a notion of boundness among constraints
which assures that two components not involved in a same set of
bound constraints can be independently configured. The computa-
tion of boundness among constraints is the basis for partitioning con-
straints associated with each component to be configured. Such a par-
titioning induces a decomposition of the configuration problem into
independent subproblems.

Both a recursive and a non recursive decomposition strategies are
presented and the savings in computational time and reduction in
search space are shown in the domain of PC configuration.

1 Introduction

In recent years configuration has attracted a significant amount of
attention not only from the application point of view but also from
the methodological one [11]. In particular, logical approaches such
as [12, 4] and approaches based on CSP have emerged [8, 2, 10, 13].
In CSP approaches, configuration can exploit powerful constraint
problem solvers for solving complex problems. From the other hand,
logical approaches make use of a more explicit and structured rep-
resentation of the entities to be configured (e.g. [7]). Logical ap-
proaches seem to offer significant benefits when interaction with the
user (e.g. [6]) and explainability of the result (or failure) are major
requirements.

Configuration, as many other tasks, can be computationally ex-
pensive; therefore, the idea of problem decomposition looks attrac-
tive since, from the early days of AI, problem decomposition has
emerged as one of the most powerful mechanisms for controlling
complexity. Ideally, the solution of a complex problem should be
easily assembled by combining the solutions of the subproblems the
initial problem has been decomposed into. Unfortunately, in many
cases it is not obvious at all how to decompose the problem into a set
of non-interacting subproblems.

In the present work the issue of decomposing a configuration prob-
lem is approached in a framework where knowledge about the enti-
ties is represented in a structured way by using a KL-One like lan-
guage augmented with a constraint language for expressing complex
inter-role relations (see section 2 for a summary of the representation
�

Dipartimento di Informatica, Università di Torino. Corso Svizzera 185;
10149 Torino; Italy.
e-mail: � magro,torasso � @di.unito.it

language). Partonomic relations provide the basic knowledge for de-
composing the configuration problem. In fact, two subparts involved
into two partonomic relations can not be independently configured if
there is at least a constraint that links them together. For this reason
we have introduced a notion of boundness among constraints (sec-
tion 3) which assures that two components not involved in a same set
of bound constraints can be independently configured.

Section 4 provides a high-level description of the configuration
algorithm and of the decomposition strategy, while an example of an
application of the algorithm is shown in section 5. Section 6 reports a
preliminary experiment showing encouraging results as concerns the
computational effort. A discussion is reported in section 7.

2 The Conceptual Language

In the present paper the language ����� [5] is adopted to build the
conceptual model of the configuration domains. In ����� (Frames,
Parts and Constraints), there is a basic distinction between atomic
and complex components. Atomic components are described by
means of set of features characterizing the component itself, while
complex components can be viewed as structured entities whose char-
acterization is given in term of subparts which can be complex com-
ponents in their turn or atomic ones. ����� offers the possibility of
organizing classes of (both atomic and complex) components in tax-
onomies as well as the facility of building partonomies that (recur-
sively) express the whole-part relations between each complex com-
ponent and any one of its subcomponents. Configuration of an atomic
component involves the selection of appropriate values for each fea-
ture characterizing the component, while the configuration of a com-
plex component involves a proper assembly of its subparts by using
both atomic and complex components. The configuration process has
to take into account the constraints restricting the set of valid com-
binations of components and subcomponents. These constraints can
be either specific to the modeled domain or derived from the user’s
requirements.
Frames and Parts. Each frame represents a class of components (ei-
ther atomic or complex) and it has a set of member slots associated
with it. Each slot represents a property of the components belonging
to the class and it can be of type either partonomic or (alternatively)
descriptive. Any slot 	 of a class
 is described via a value restric-
tion � (that can be another class or a set of values of a predefined
kind) and a number restriction (i.e. an integer interval [� ,
] with
����
), as usual in the KL-One like representation formalisms.
A slot 	 of a class
 with value restriction � and number restriction
[� ,
] captures the fact that the property 	 for any component of type

 is expressed by a (multi)set of values of type � whose cardinality
belongs to the interval [� ,
].

Partonomic slots are used for capturing the whole-part relation
between a complex component and a part of its. In ����� this relation

50

is assumed to be asymmetric and transitive.Formally, any partonomic
slot � of a class � is interpreted as a relation from � to its value
restriction � such that ������������� �"!$# �%�&�'�(#%!*)+�,� , being [� ,)]
its number restriction; the meaning is straightforward: any complex
component of type � has from a minimum of � up to a maximum
of) parts of type � via a whole-part relation named � .

In the following we restrict our attention to partonomic slots since
they represent the basic knowledge for problem decomposition.

Figure 1 contains a toy conceptual model that we use here as an
example. Each rectangle represents a class of complex components,
each oval represents a class of atomic components and any thin solid
arrow corresponds to a partonomic slot. In the figure, it is stated,
for instance, that � is a class of complex components and the parto-
nomic slot �%- specifies that each instance of � has to contain one
or two (complex) components of type �.- ; while the partonomic slot
��/ states that any instance of � has to contain one or two (atomic)
components of type 0�1 .

In any conceptual model, a slot chain 243�5 �76'8(9(9(9(8��+:�; , start-
ing in a class � and ending in a class � is interpreted as the re-
lation composition �<:�=>�+:@?%6A=B9(9(9�=>�%6 from � to � . The chain
represents the subcomponents of a complex component �C�4� via
the whole-part relations named �76(8(9(9(9'8��+: . In figure 1, for example,
5 �%-D8�E@-'; denotes the subcomponents (of type 0.-) of each instance
of � through the partonomic slots �%- and E@- . Similarly, a set of slot
chains F$3HGD2I6'8(9(9(9(8�2@J�K (where each 2@L starts in � and ends in
�BL) is interpreted as the relation union M JL N%6 2@L from � to M JL N%6 �BL .

Besides the partonomies, also the taxonomies are useful in the
conceptual models. In figure 1 the subclass links are represented by
thick solid arrows. In that toy domain we assume that each class of
atomic components 0�O is partitioned into two subclasses 0�O - and
0�O&P . Only the partitioning of 0.- into 0.-D- and 0.-'P is reported in
figure.
Constraints. A set (possibly empty) of constraints is associated to
each class of complex components. These constraints allow one to
express those restrictions on the components and the subcomponents
of the complex objects that can’t be expressed by using only the
frame portion of Q�R�S , in particular the inter-slot constraints that
cannot be modeled via the number restrictions or the value restric-
tions.

Each constraint �(� associated to � is of the form TVUXW , where
T is a conjunction of predicates or the boolean constant true and W
is a predicate or the boolean constant false. The meaning is that for
every complex component ���C� , if � satisfies T then it must satisfy
W . It should be clear that if TY3[Z \']I^ , then, for each �.�_� , W must

CONSTRAINTS
Associated with C:
[co1]({<p1,q1>})(1;1) ==> ({<p2,q5>})(1;1)
[co2]({<p1,q2>})(1;1) ==> ({<p2,q3>})(1;1)
[co3]({<p2,q3>})(1;1) ==> ({<p2,q4>})(2;2)
[co4]true ==> ({<p1,q1>})(in A11 (1;4))
[co5]({<p3>})(1;1) ==> ({<p3>})(in A71)
Associated with C1:
[co6]({<q1>})(1;1) ==> ({<q6>})(in A61)

C

p1(1;2)

p2(1;2)

p3(1;2)

A7

A2

A6

C1

q1(1;2)

q2(1;2)

q6(1;2)

A1

A11 A12

A5
A4

C2

q4(1;1)q5(1;2)
A3

q3(1;2)

Figure 1. A toy conceptual model

always hold, while if W_3[`�a@b&c(^ , then, for each �.�C� , T can never
hold.

In the following we present only a simplified version of some pred-
icates available in Q�R�S . For a more complete description of them
see [5].

Let Fd3dGD2I6(8(9(9(9(8(2@J�K , where each 2@L>3$5 �+L�e'8(9(9(9��+L�f�; is a slot
chain starting in a class of � complex components. For any �B�Y� ,
F��&�'� denotes the values of the relation F computed for � .
1) � F����&g%h�i�� . ���j� satisfies the predicate iff gj![# F��&�'�(#D!�i , where
g , i are non negative integers with gj!�i .
2) � F���� O&)+k@� . ���j� satisfies the predicate iff F��&�'�mlVk , where k is a
union of classes in the conceptual model.
3) � F���� O&)+kI�&g%h,i��,� . ���C� satisfies the predicate iff g�![# F��&�'�Dn�k�#D!
i , where g , i are non negative integers with gC!�i and k is a union
of classes in the conceptual model.

For example, the constraint �(o@p states that if only one component
playing the partonomic role ��/ is present in a configuration of an
object of type � , then this component must be of type 0�1@- . The
constraint �(oDq states that there must be from 1 up to 4 subcomponents
of type 0.-D- in each instance of � (through the partonomic slots �%-
and E@-).

3 Bound and Unbound Constraints

Given this framework, configuring a complex object of type � means
to completely determine an instance � of � in which all the parto-
nomic slots of � are instantiated and each direct component of �
is completely configured too. � has to respect both the conceptual
model (number and value restrictions imposed by the taxonomy and
the partonomy as well as the constraints associated with the classes
of components involved in �) and the user’s requirements.

Configuring a complex component by taking into consideration
only its taxo-partonomical description would be a straightforward
activity. In fact, for any well formed model expressed in Q�R�S in
which no constraints are associated with any class, a configuration
respecting that model would always exist. A simple algorithm could
find it without any search and by simply starting from the class of the
target object, considering each slot � of that class and, for it, choosing
its cardinality, i.e. choosing the number of components playing the
partonomic role � to introduce into the configuration, and the type
for each such component. This process must be recursively repeated
for each complex component introduced in the configuration, until
all the atomic ones are reached. In this process the algorithm needs
only to respect the number and the value restrictions of the slots,
since the choices made for one partonomic slot do not interfere with
the choices for another partonomic slot.

Unfortunately, this is not realistic. The conceptual model usually
contains complex constraints that link together different slots. In this
more realistic situation a solution can not be found generally without
any search and by making only a set of local choices.

Moreover, the requirements usually imposed by the user to the tar-
get artifact further restrict the set of legal configurations. This means
that the search for a configuration is not guaranteed to be fruitful
any more. In fact, even assuming the consistency of the conceptual
model, the user’s requirements could be inconsistent w.r.t. it and in
such a case no configuration following the model and satisfying the
requirements exists.

Therefore, in general, the task of solving a configuration prob-
lem can be rather expensive from a computational point of view. As
we have mentioned above, in Q�R�S framework this is mainly due
to the constraints (both those that are part of the conceptual model

51

and those imposed as user’s requirements) that link together different
components and subcomponents. In these situations a choice made
for a component during the configuration process might restrict the
choices actually available for another one, possibly preventing the
latter to be fully configured. In such cases the configurator needs to
revise some decision that it previously took and to explore a different
path in the search space. Usually, in real cases the search space is
rather huge and many paths in it do not lead to any solution.

However, in many cases it does not happen that every constraint
interacts with each other and the capability of recognizing the sets
of (potentially) interacting constraints can constitute the basis for de-
composing a problem into independent subproblems.

In principle, once a problem has been decomposed into a set of in-
dependent subproblems, these could be solved concurrently and with
a certain degree of parallelism, potentially reducing the overall com-
putational time. However, also a sequential configuration process can
take advantage of the decomposition. In fact, at least for large config-
uration problems, solving a set of smaller subproblems is expected to
be easier than solving the original one. Moreover, if two subproblems
are recognized to be independent, the configurator is aware that no
choice made during the configuration process of the first one needs
to be revised if it enters a failure path while solving the second one.

To be effective, the task of recognizing the decomposability of a
problem (and of actually decomposing it) should not take too much
time w.r.t. the time requested by the whole resolution process.

In our approach, the partonomic knowledge can be straightfor-
wardly used in recognizing the interaction among constraints (with
an acceptable precision) and in defining a way of decomposing a
configuration problem into independent subproblems.

With this aim, we introduce the bound relation among constraints,
which is based on the exclusivenessassumption on parts, stating that,
in any configuration, a component can not be a direct part of two dif-
ferent (complex) components, neither a direct part of a same compo-
nent through two different whole-part relations.

Intuitively, two constraints are bound iff the choices made during
the configuration process in order to satisfy one of them can interact
with those actually available for the satisfaction of the second one. Ifr is a complex component in a configuration, the bound relation smt
is defined in the set u�v�wjx%yAz�xm{ r'| of the constraints that r must
satisfy, as follows: let }+~��I~��V�ju�v�wjx%yAz�xm{ r'| . If } and � contain
both a same partonomic slot � of r(���I�'� { r'| then }�smt�� (i.e. if } and �
refer to a same part of r , they are directly bound in r); if }�smt(� and
�@s�t(� then }�s�t(� (i.e. } and � are bound by transitivity in r).

It is easy to see that s�t is an equivalence relation. If � is an equiv-
alence class in the quotient set u�v�wjx%yAz�xm{ r'|,� s�t , every constraint
in � could interact with any other constraint in the same class during
the configuration process of r . While, if ���Vu�v�wjx%yAz�xm{ r'|,� smt
is different from � , it means that in r the constraints in � do not
interact in any way with those in � , since the exclusiveness assump-
tion on parts assures that the components and subcomponents of r
involved in the constraints in � are different from those referred to
by the constraints in � . This means that the problem of configuringr by taking into consideration u�v�wjx%yAz�xm{ r'| can be split into the
set of independent subproblems of configuring r by considering the
set �C� of constraints, for each �����ju�v�wjx%yAz�xm{ r'|,� s�t .

In the next section, we sketch a configuration algorithm that be-
haves differently on the basis of the value of the parameter � in the
procedure r(�@�+�+� � }��(� . If �d��� no decomposition is performed,
while if ���4� the algorithm tries to recursively decompose the prob-
lem of configuring each complex component, starting with the target

object (recursive decomposition). 2

4 Problem Decomposition
At any stage the current configuration y is represented as a tree. The
root yAv represents the target object and each node represents a com-
ponent (either complex or atomic). Each child of a node represents
a direct component of it. Given a node � of y , with r(���I�'� { �+| we
indicate the most specific class (w.r.t. the taxonomy) to which � be-
longs. The configuration tree y contains also pieces of information
useful for the control strategy. In particular: the current componentr r(�@� �%{&y | (i.e. the one that is being considered currently); the cur-
rent queue r � }I�D}I�@{&y | containing the direct complex components
of r r(�@� �%{&y | that still need to be expanded; the information rele-
vant to the constraints holding for r r(�@� �%{&y | , that is the classes of
constraints r(���I�'� � � u �@�+�'� � � {&y | that still need to be considered and
the class of constraints r r(���I�'� u �@�+�'� � � {&y | that is being considered
currently.

Each call to r(�@�+�+� � }��(�@{&�+~,y>~(u�� | corresponds to the request
of extending the configuration y by configuring the componentr r(�@� �%{&y | given the constraints in r r(���I�'� u �@�+�'� � � {&y | . u�� is
the conceptual model (i.e. the �� �¡ knowledge base) and � defines
the decomposition policy. r(�@�+�+� � }��(� returns the pair ¢ zA� � ~�vm��� �+£ ,
where zA� � can be either the extended configuration tree or the���I��� }��(� message and vm��� � is a stack containing the open choices
for the configuration of r r(�@� �%{&y | . At the beginning, r(�@�+�+� � }��(� is
invoked (by a main) with y containing only the root yAv and withr r(�@� �%{&y | �*yAv (r(���I�'� � � u �@�+�'� � � {&y | and r r(���I�'� u �@�+�'� � � {&y |
are properly initialized as well).

PROCEDURE configure(k,T,CM){
Open := <>;
WHILE(TRUE){//WHILE-1

<Expanded_T, L_Open> :=
insertDirectComponents(T,CM);

Open := append(Open,L_Open);
IF(Expanded_T == failure){//IF-1

IF(Open == <>){RETURN <failure, <> >;
}ELSE{T := pop(Open);}

}ELSE{/*Expanded_T =/= failure*/
T := Expanded_T;
c := c_comp(T);

WHILE(c_queue(T) =/= <>){//WHILE-2
c_comp(T) := extract(c_queue(T));
IF(k == 1){
classesConstrs(T) := NoDecompose(T,CM);
}ELSE{classesConstrs(T) := decompose(T,CM);}
WHILE(classesConstrs(T) =/= <>)

{//WHILE-3
c_classConstrs(T) :=

extract(classesConstrs(T));
<Extended_T, L_Open> := configure(k,T,CM);
IF(Extended_T == failure){//IF-2
- delete from Open all the elements

labelled with the indentifier of
c_comp(T);

IF(Open == <>){//IF-3
RETURN <failure, <> >;

}ELSE{
- Try to complete the configuration
by properly revising the past
choices on the basis of Open;

- RETURN the result;¤
In the first case a much simpler algorithm could be written. Due to space
constraints, we describe the two different approaches within a single algo-
rithm.

52

}//IF-3
}ELSE{/*Extended_T =/= failure*/
IF(L_Open =/= <>){
- label L_Open with the
c_comp(T) identifier;

push(L_Open,Open);}
T := Extended_T;}//IF-2

}//WHILE-3
c_comp(T) := c;

}//WHILE-2
RETURN <T, Open>;
}//IF-1

}//WHILE-1
}//configure

The first step performed by ¥(¦@§+¨+© ªI«�¬(­ is the introduction of the
direct components of the current component ¥ ¥(¦@®�¯%°&±A² . This is
done by considering each (not yet considered) slot ¯ of the class
¥(³�´Iµ'µD°&¥ ¥(¦@®�¯%°&±A²,² and by choosing both the number of the compo-
nents playing the partonomic role ¯ to be inserted in the configuration
and the type for each of them. 3 Any time a direct complex component
of ¥ ¥(¦@®�¯%°&±A² is introduced, it is inserted in ¥ ¶D«I­D«I­@°&¥ ¥(¦@®�¯%°&±A²,² .
All the open choices are stored in ·m¯�­D§ . 4 It can happen that in this
phase there is no way to insert the direct components of ¥ ¥(¦@®�¯%°&±A²
into the configuration without violating any constraint. In this case, if
no alternative is available in ·m¯�­D§ the ¨�´I©�³&«�¬(­ message is returned,
otherwise an alternative is considered.

The WHILE-2 loop considers each complex direct component of
¥ ¥(¦@®�¯%°&±A² that has not been expanded (i.e. configured) yet. Such a
component becomes the new current component in ± . The way in
which the set ¥(³�´Iµ'µ(­Dµ'¸�¦@§+µ'¹ ¬'µD°&±A² is computed for this new current
component defines the behaviour of the configuration process w.r.t.
the decomposition.

If it is computed by the º�¦@»B­'¥(¦@®�¯�¦@µ(­@°&±>¼ ¸�½4² function (i.e.¾�¿[À
), all the constraints relevant to the current component are con-

sidered in a unique chunk and no decomposition is performed, since
º�¦@»B­'¥(¦@®�¯�¦@µ(­@°&±>¼,¸�½4² ¿XÁDÂ ¸�¦@§+µ'¹ ¬'µ.ÃYÄ ¸�¦@§+µ'¹ ¬'µ'Å ; whereÂ ¸�¦@§+µ'¹ ¬'µ is the set containing all the current constraints of the
parent component of ¥ ¥(¦@®�¯%°&±A² (if any) that mention some slot of
¥(³�´Iµ'µD°&¥ ¥(¦@®�¯%°&±A²,² , and Ä ¸�¦@§+µ'¹ ¬'µ is the set of constraints asso-
ciated with ¥(³�´Iµ'µD°&¥ ¥(¦@®�¯%°&±A²,² and those expressing the user’s re-
quirements for that component. If

¾V¿�Æ.Ç ­'¥(¦@®�¯�¦@µ(­@°&±>¼,¸�½4² ¿
° Â ¸�¦@§+µ'¹ ¬'µmÃ�Ä ¸�¦@§+µ'¹ ¬'µ'²,ÈDÉ�Ê Ê Ë,Ì�ÍDÎ ÏIÐ function is invoked.

By making use of the bound relation É Ê among constraints (see
section 3),

Ç ­'¥(¦@®�¯�¦@µ(­ partitions the constraints into classes of
bound constraints and returns these classes (i.e. it returns the quo-
tient set ¸�·�ºjÑ%±AÒ�Ñm°&¥ ¥(¦@®�¯%°&±A²,²,ÈDÉ�Ê Ê Ë,Ì�ÍDÎ ÏIÐ).

One such computed class of constraints is considered at
a time (WHILE-3 loop), i.e. a current class of constraints
¥ ¥(³�´Iµ'µ'¸�¦@§+µ'¹ ¬'µD°&±A² is repeatedly extracted from the set
¥(³�´Iµ'µ(­Dµ'¸�¦@§+µ'¹ ¬'µD°&±A² and the ¥(¦@§+¨+© ªI«�¬(­ procedure is invoked
to configure the current component ¥ ¥(¦@®�¯%°&±A² w.r.t. the current
class of constraints 5. This means that the problem of configuring the
current component w.r.t. the constraints ¸�·�ºjÑ%±AÒ�Ñm°&¥ ¥(¦@®�¯%°&±A²,²
has been split into a set of subproblems, one for each class of
constraints contained in ¥(³�´Iµ'µ(­Dµ'¸�¦@§+µ'¹ ¬'µD°&±A² . These subprob-
Ó

When we speak about choices made while configuring a component we
refer exactly to these two kinds of choices.Ô
For simplicity, we can assume that at this point, each time one or more
alternatives are available and before actually modifying the configuration,
such alternatives are stored in the current configuration tree which is then
pushed into Õ Ö>×@Ø,Ù .Ú
It is worth noting that the procedure Û,Ü�Ù�Ý@Þ ßDà@á'Ø considers at each
time only the slots of Û,â ãDä�ä(å&Û Û,Ü�æ�×Iå�ç>è è appearing in the constraintsÛ Û,â ãDä�ä�é>Ü�Ù�ä,ê&á'ä(å�ç>è .

lems have been entailed by the partitioning of the constraints
¸�·�ºjÑ%±AÒ�Ñm°&¥ ¥(¦@®�¯%°&±A²,² into a set of classes. Since any two
constraints of two different classes are unbound, the configuration
choices made while taking into consideration one of them are inde-
pendent from those relevant to the second one. Of course, whenever
¥(³�´Iµ'µ(­Dµ'¸�¦@§+µ'¹ ¬'µD°&±A² contains a single class, no decomposition is
performed. If the called ¥(¦@§+¨+© ªI«�¬(­ procedure succeeds in config-
uring the component ¥ ¥(¦@®�¯%°&±A² w.r.t. ¥ ¥(³�´Iµ'µ'¸�¦@§+µ'¹ ¬'µD°&±A² (ELSE
branch of IF-2), the calling one (whose task is to configure the parent
component of ¥ ¥(¦@®�¯%°&±A²) stores the returned stack Ä ·m¯�­D§ of
(local) open choices for ¥ ¥(¦@®�¯%°&±A² by pushing it in its ·m¯�­D§ stack.
Thus, the elements stored in ·m¯�­D§ can either be configuration trees
or stacks in their turn. In the first case they (explicitly) represent the
open choices relevant to the insertion of the direct components. In
the second one, they (implicitly) represent the open choices relevant
to the configuration of the complex direct components. Each stack
pushed in ·m¯�­D§ is labeled with the identifier of the complex direct
component to which it refers. In this way, if the configuration of
any direct component w.r.t. a given class of constraints fails (THEN
branch of IF-2), all the open choices relevant to the configuration
of the same component w.r.t. each previously considered class
of constraints can be removed easily. Therefore, some useless
backtrackings are avoided.

If a failure occurs while configuring a direct component and ·m¯�­D§
contains some alternatives (ELSE branch of IF-3), a revision of the
configuration takes place. If the top of the stack ·m¯�­D§ contains a
configuration tree, this is analogous to the the case of failure while
introducing the direct components. If the top of ·m¯�­D§ is a stack in its
turn, the nesting of stacks is used it order to maintain the correspon-
dence between the recursive calls of ¥(¦@§+¨+© ªI«�¬(­ and the partonomic
structure of the configuration. We do not enter into the details of such
a revision because of space limits.

Before presenting a simple example, we outline that a third decom-
position policy can be defined in which only the constraints relevant
to the target object ±A· are partitioned. This can be done by using
the

Ç ­'¥(¦@®�¯�¦@µ(­ function (in the main) before calling ¥(¦@§+¨+© ªI«�¬(­ for
the first time and then by calling it with

¾V¿"À
. In this way, only

the main problem can be decomposed, but the decomposition does
not take place in the components and subcomponents of ±A· (non
recursive decomposition).

5 An Example
Figure 2 reports five snapshots of a possible configuration process
for configuring an object of type ¸ (fig. 1) 6. In figure 2, each ¥ ©
identifies the ©ìë�í component of type ¸ . The numbers preceding the
identifiers express the order in which the components have been in-
troduced into the configuration. We consider the recursive decompo-
sition policy.

At the beginning, only the root ¥ À
is inserted (by the main)

into the configuration (as current component). The main invokes theÇ ­'¥(¦@®�¯�¦@µ(­ that partitions the set of constraints for ¥ À
into the two

different classes of bound constraints î%ï ¿4Á ¥(¦ À ¼ ¥(¦ Æ ¼,¥(¦DðI¼ ¥(¦Dñ@Å and
îIò ¿dÁ ¥(¦@óDÅ . The main problem is thus decomposed into two inde-
pendent subproblems (one relevant to î%ï and the other relevant to
îIò). ¥(¦@§+¨+© ªI«�¬(­ is invoked (with

¾C¿dÆ
) to solve the first subprob-

lem. The direct components ¥ À À
and ¥ Æ À

are inserted and the open
choices (i.e. the alternative cardinality

Æ
for both the slots ¯ À

and ¯ Æ
)

are saved in ·m¯�­D§ .
ô

For simplicity, we do not distinguish between the constraints present in the
conceptual model and those representing the user’s requirements.

53

p1
(1)c_1

(2)c1_1
q1

q6

(4)a11_1

p2 (3)c2_1

a)

(5)a61_1
q2

(6)a21_1

p1
(1)c_1

(2)c1_1
q1

q6

(4)a11_1

p2 (3)c2_1

b)

(5)a61_1
q2

(6)a21_1

q5 (7)a51_1

p1
(1)c_1

(2)c1_1

q1

q6

(4)a11_1

p2 (3)c2_1

c)

(5)a61_1
q2

(6)a21_1

q5 (7)a51_1

q3
(8)a31_1

p1
(1)c_1

(2)c1_1

q1

q6

(4)a11_1

p2

(3)c2_1

d)

(5)a61_1
q2

(6)a21_1q2

(7)a21_2

p1
(1)c_1

(2)c1_1
q1

q6

(4)a11_1

p2

(3)c2_1

e)

(5)a61_1
q2

(6)a21_1q2

(7)a21_2

(8)a51_1q5
q3

(9)a31_1q3

(10)a31_2

(11)a41_1

q4

p3

(12)a71_1

Figure 2. A configuration example

Then, the configuration of the component õDö ö is split into ÷ other
subproblems, since its constraints (those inherited from õ ö and the
local one õ(øDù) are partitioned into the ÷ classes ú�û�ü4ý'õ(øIöDþ,õ(øDÿIþ õ(øDù��
and ú���üVý'õ(ø@÷�� . It is worth noting that in õ ö the constraint õ(ø@÷ be-
longs to the same class as the constraints õ(øIö and õ(øDÿ , while in the
component õDö ö the constraint õ(ø@÷ belongs to a class different from
that containing õ(øIö and õ(øDÿ . In fact, the constraint õ(ø@÷ can interact
with the constraints õ(øIö and õ(øDÿ during the configuration process of
õ ö ; but, õ(ø@÷ does not interact with õ(øIö or õ(øDÿ while configuring the
component õDö ö . It is worth noting that at least in the case under ex-
amination, the recursive decomposition policy was able to recognize
that a set of constraints that are bound in the larger context of the con-
figuration of the target object õ ö can actually be split in the (smaller)
context relevant to the configuration of the component õDö ö .

The solutions of the two subproblems corresponding to ú�û and ú��
lead to the situation depicted in fig. 2 a (the thick arrow points to the
current component: in this case, õDö ö). Then (fig. 2 b) the problem of
configuring õ'÷ ö is decomposed into ÷ subproblems associated with
the two classes ú���ü ý'õ(øIö�� and ú���ü ý'õ(ø@÷@þ,õ(ø�	�� . After consider-
ing ú�� , the problem associated with ú�� is taken into consideration
(fig. 2 b). It should be clear that the configuration in fig. 2 c can not
be extended in any way satisfying õ(ø�	 . Choosing a different type (i.e.
 	@÷) for the eighth component would not solve the problem. Since
this was the only open alternative in the configuration of õ'÷ ö w.r.t.
ú�� (in fact, due to õ(ø@÷ , no alternative cardinality could be chosen for�) the resolution of the subproblem associated with ú�� fails. It is
worth noting that the alternatives for the subproblem associated with
ú�� are not considered (see the THEN branch of IF-2 in õ(ø�
���� �������)
and a revision of the configuration of õDö ö takes place (fig. 2 d). In
this way, õ'÷ ö can be completely configured and thus the subprob-
lem associated with ú�� is successfully solved. The resolution of the
problem associated with ú�� adds the ���@ö ö component to the config-
uration (fig. 2 e).

6 Preliminary Results

The domain of PC configuration has been used for testing the im-
pact of the decomposition strategies. We have generated a test set of
ö���	 configuration problems: for each of them we have specified the
type of the target object (e.g. a PC for graphical applications) and the
requirements that it must satisfy (e.g. it must have a CD writer of a
certain kind, it must be fast enough and so on).

The goal of the experiment is to compare (w.r.t. the computational
effort) among them a configuration strategy without decomposition
(i.e. no constraints partitioning in the main that calls õ(ø�
���� ������� pro-
cedure with �_ü$ö) (Strategy ö), the non-recursive strategy that at-
tempts to decompose only the main configuration problem (see sec-
tion 4) (Strategy ÷) and the recursive one (Strategy).

The configuration system has been implemented in Java us-

ing JDK 1.3 and the experiment has been performed on a Duron
700/Windows 2000 PC with 128 Mbytes RAM. A problem is con-
sidered solved iff the configurator provides a solution for it within
the time threshold of 	Dù�� sec. or if it detects (within the same time-
out) that the problem does not admit any solution.

Strategies ö and ÷ both solved the same ö���� problems (i.e. their
competence was of ����), while strategy 	 solved all the ö���	 cases.
As regards the computational effort, for the ö���� problems solved by
all the three strategies, the average computation time was (in msec.)
����	�� for strategy ö ; �'ÿDù�� for strategy ÷ (i.e. !"	�# �� w.r.t. strategy ö)
and ÷D÷���� for strategy 	 (i.e. !Aù���# �� w.r.t. strategy ÷); the average
number of backtrackings was ����� for strategy ö ; ���@ö for strategy ÷
(i.e. !�÷�# �� w.r.t. strategy ö) and �'ù�� for strategy 	 (i.e. !�÷'ÿ�# ��
w.r.t. strategy ÷). The benefits of strategy ÷ w.r.t. strategy ö become
more evident if we consider the ÿ�� solved problems that were actu-
ally decomposable with strategy ÷ . For these problems, the average
CPU time was (in msec.) 	DÿDù�� for strategy ö and ÷����'ÿ (i.e. !�÷���# ù�)
for strategy ÷ ; the average number of backtrackings was ����� for strat-
egy ö and ���Iö for strategy ÷ (i.e. !�ö���# ÿ�).

7 Discussion and Future Work
The present paper addresses the problem of partitioning a config-
uration problem into simpler subproblems by exploiting as much as
possible the implicit decomposition provided by the partonomic rela-
tions of complex components. The adoption of a structured approach
based on a logical formalism plays a major role since the criterion
for singling out ”unbound” constraints is based on an analysis of the
partonomic slots mentioned in the constraints. Moreover, the con-
straints are associated with each complex component. The config-
uration algorithm tries to recursively decompose the configuration
problem each time it is invoked to configure a component or a sub-
component.

The paper presents a centralized version of the configuration strat-
egy in which the subproblems resulting from a decomposition are
sequentially solved. An alternative configuration strategy based on a
distributed approach could be conceived: each time a configuration
problem is split into a set of independent subproblems, these could
be sent to a pool of configurators running in parallel.

Our main motivation for decomposing configuration problems is
saving in computational effort. Preliminary results are encouragingin
this respect since benefits are present even with a sequential approach
to configuration. The preliminary experiments have also shown that
the results are influenced by the order in which the partonomic slots
are considered. Therefore, it is worth investigating strategies able to
suggest convenient order in instantiating partonomic slots. In the fol-
lowing, we will sketch one of such strategies, based on hypergraph
cut techniques similar to the one proposed for decomposing the prob-
lem of satisfiability testing on large propositional CNF formulas, pre-

54

co1

co3

co2

co4

<p2> <p1>

<p1,q1>

<p2,q3>

a)

co1

co3

co2

co4

<p1,q1>

<p2,q3>

b)

co5 co5

Figure 3. Hypergraphs associated with the constraints for $ %

sented in [9]. 7 In that approach, a hypergraph is associated with a
CNF formula & such that each variable of & corresponds to a hy-
peredge connecting all the clauses in which it occurs. Then, such a
hypergraph is used to find an appropriate set '�(of variables allow-
ing two subformulas &*) and &,+ of & to be individuated such that the
problem of testing the satisfiability of & corresponds to the problem
of verifying if there is some compatible truth assignment to the vari-
ables in '�(that makes &-) and &,+ satisfiable. For each assignement
to the variables in '.(, &-) and &,+ simplify into two formulas that can
be tested independently (see [9] for details).

Following this framework, we can associate a hypergraph to the set/101243,5"673-8:9�;
that any complex component

9
in a configuration

must satisfy. For example, in figure 3.a the hypergraph associated
with the constraints for target object

9 <
is depicted. In such a hy-

pergraph, each constraint corresponds to a vertex and two constraints
are connected by a same hyperedge iff they are directly bound. In
figure 3.a, for instance, the constraints

9�=�<
and

9�=�>
belong to a same

hyperedge, since they are directly bound, while there is no hyper-
edge containing both

9�=�?
and

9�=�@
, since they are not directly bound.

Moreover, two constraints are bound iff they belong to a same con-
nected component in the hypergraph. For example, in figure 3.a,

9�=�?
and

9�=�@
are bound (even if not directly), since they belong to a same

connected component. Instead, the constraint
9�=�A

belongs to a con-
nected component different from the one containing all the other con-
straints, therefore

9�=�A
is not bound to any other constraint. It should

be clear that each connected component of the hypergraph associated
with the constraints

/101243,5"673-8:9�;
corresponds to an equivalence

class w.r.t. the bound relation BC(. Thus, computing the quotient set/101243,5"673-8:9�;ED BF(means computing the set of connected compo-
nents of the hypergraph associated with

/101243,5"673-8:9�;
.

Differently from the hypergraphs introduced in [9], the hyperedges
of a hypergraph associated with a set of component constraints in theGIH7J

framework do not represent simple variables. Instead, each hy-
peredge represents a structured entity, namely a slot chain providing
an explanation of the fact that the constraints belonging to the hyper-
edge are directly bound. For example, the hyperedge labelled K L >�M in
the hypergraph of figure 3.a states that the constraints

9�=�<
,
9�=�>

and9�=�?
are directly bound in

9 <
by means of the slot chain K L >�M . More-

over, the hyperedge labelled K L >�NPO�?�M states that the constraints
9�=�>

and
9�=�?

are directly bound in
9 <

by means of the slot L > and that
they still remain directly bound (by means of the the slot

O�?
) in each

direct component of
9 <

playing the partonomic role L > .
Despite this difference, the decomposition methods presented

in [9] suggest the opportunity of investigating a possible improve-
ment of our decomposition technique. Let’s consider again the hyper-
graph in figure 3.a. Removing the hyperedges K L <�M and K L >�M would

Q
The potential similarity between our approach and the one presented in [9]
has been suggested by an anonymous reviewer.

increase the number of connected components (figure 3.b), i.e. it
would increase the number of equivalence classes in the quotient set/101243,5"673-8:9 <�;ED BF() . This means that, after having introduced
into the configuration the direct components of

9 <
through L < and

L > , the subproblem of configuring the target object
9 <

by consid-
ering the constraints '�)SRUT 9�=�<�NE9�=�>�NV9�=�?�NE9�=�@�W (see section 5) can
be further split into two other subproblems corresponding to the two
sets of constraints T 9�=�<�NV9�=�@�W and T 9�=�>�NE9�=�?�W . In fact, these two sub-
problems can be solved independently, since the only choices that
can interact with them are those made for L < and L > .

Therefore, as in the case of satisfiability testing of CNF proposi-
tional formulas, hypergraph cut techniques can be used to find an ap-
propriate set of hyperedges (i.e. of slot chains) whose deletion from
the hypergraph would increase the number of connected components.
Such set of slot chains can then be used by the configuration algo-
rithm in order to guide the selection of the slots to be considered at
each time and to dynamically split the configuration problems.

Besides the reduction in computational effort, there are other good
reasons for investigating decomposition. First of all, in some do-
mains, the configuration problems are distributed by their nature [1].
Moreover, one of the serious problems in configuration is the expla-
nation task [3]. The adoption of a structured approach for modeling
the domain knowledge and the introduction of a decomposition mod-
ule able to specify which constraints involved in the configuration of
a given component can interact with each other is a first step for mak-
ing progresses in the explanation of failure in configuration.

REFERENCES
[1] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘Distributed con-

figuring’, in Proc. IJCAI-01 Configuration WS, pp. 18–24, (2001).
[2] G. Fleischanderl, G. E. Friedrich, A. Haselböck, H. Schreiner, and

M. Stumptner, ‘Configuring large systems using generative constraint
satisfaction’, IEEE Intelligent Systems, (July/August 1998), 59–68,
(1998).

[3] E. Freuder, C. Likitvivatanavong, and R. Wallace, ‘Explanation and im-
plication for configuration problems’, in Proc. IJCAI-01 Configuration
WS, pp. 31–37, (2001).

[4] G. Friedrich and M. Stumptner, ‘Consistency-based configuration’, in
AAAI-99, Workshop on Configuration, (1999).

[5] D. Magro and P. Torasso, ‘Description and configuration of complex
technical products in a virtual store’, in Proc. ECAI 2000 Configuration
WS, pp. 50–55, (2000).

[6] D. Magro and P. Torasso, ‘Supporting product configuration in a virtual
store’, LNAI, 2175, 176–188, (2001).

[7] D. L. McGuinness and J. R. Wright, ‘An industrial-strength de-
scription logic-based configurator platform’, IEEE Intelligent Systems,
(July/August 1998), 69–77, (1998).

[8] S. Mittal and B. Falkenhainer, ‘Dynamic constraint satisfaction prob-
lems’, in Proc. of the AAAI 90, pp. 25–32, (1990).

[9] T. Joon Park and A. Van Gelder, ‘Partitioning methods for satisfiability
testing on large formulas’, Information and Computation, (162), 179–
184, (2000).

[10] D. Sabin and E.C. Freuder, ‘Configuration as composite constraint sat-
isfaction’, in Proc. Artificial Intelligence and Manufacturing. Research
Planning Workshop, pp. 153–161, (1996).

[11] D. Sabin and R. Weigel, ‘Product configuration frameworks - a survey’,
IEEE Intelligent Systems, (July/August 1998), 42–49, (1998).

[12] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen, ‘Unified configu-
ration knowledge representation using weight constraint rules’, in Proc.
ECAI 2000 Configuration WS, pp. 79–84, (2000).

[13] M. Veron and M. Aldanondo, ‘Yet another approach to ccsp for con-
figuration problem’, in Proc. ECAI 2000 Configuration WS, pp. 59–62,
(2000).

55

A multi-perspective approach for the design of
configuration systems

L. Hvam, J. Riis & M. Malis1

1 Centre for Product Modelling, www.productmodels.org
Department of Manufacturing and Management, Technical
University of Denmark, Building 423, DK-2800 Lyngby,
Denmark.

ABSTRACT
This article presents a procedure for building product
models to support the specification processes dealing with
sales, design of product variants and production
preparation in manufacturing companies. The procedure
includes, as the first phase, an analysis and redesign of the
business processes that are to be supported by the use of
product models. The next phase includes an analysis of
the product assortment and the set up of a so-called
product master. Finally the product model is designed by
using object-oriented modelling.

The procedure has been tested in several companies. This
article includes the experiences gained from the most
recent project that was carried out at Demex-electric – a
Danish company, which manufactures electronic
switchboards. The research has been carried out at the
Centre for Product Modelling, Department of
Manufacturing Engineering at the Technical University of
Denmark.

1. INTRODUCTION
This article presents a procedure for building product- and
product-related models that support the specification
process (figure 1).

The activities in the “specification process” includes an
analysis of the customer’s needs, design and specification
of a product which full-fill the customer’s needs and
specification of e.g. the products manufacturing,
transportation, erection on site and service (specification
of the product’s life cycle properties). The activities in the
specification process are characterised by having a
relatively well-defined space of (maybe complex)

solutions as a contrast to product development, which is a
more creative process.

The Specification process (customized product variants)

Sales

Product
customization

Process
customization

Customer

Customer
order Order

specification

Product
specification Production

Production
requirements

Production
specification

Request for
additional

customer info.

Request for
additional

product info.

The Development process (Long term)

Market
development

Product
development

Production
development

Request for
additional
customer

info.

Figure 1. The specification process

Typical goals for the specification process are the ability
to find an optimal solution according to the customer’s
needs, high quality of the specifications, short lead time
and a high productivity of the work carried out in the
specification process. The typical critical goals for the
development process are to derive new original concepts
of product designs with improved functionality and life
cycle properties, and to reduce time to market for the new
product designs. The diversification of tasks and goals in
the specification and development processes leads to a
separation of the two processes as suggested in figure 1
above.

Today we see numerous examples of projects aiming at
implementing product- and product-related models to
support the specification processes. Experiences from a
considerable number of Danish and international
companies show that often these models are constructed
without the use of a strict procedure or modelling

56

techniques. As a result of this, the systems are
unstructured and undocumented, and therefore difficult or
impossible to maintain or develop further.

Thus there is a need for developing a procedure and the
associated modelling techniques, which can ensure a
proper structure and documentation, so that the systems
can be maintained continually and developed further.
Experiences also show that the product- and product-
related models are not always designed to fit the business
processes that they are meant to support. Finally an
important precondition for building product models is the
fact that products must be designed and structured in a
way, which makes it possible to define a general master
of the product, from which the customer specific products
can be derived.

Consequently, in order to cope with these challenges a
procedure for building product models should include: An
analysis and redesign of the specification processes in
focus, an analysis and eventually redesign/ restructuring
of the products to be modelled, and finally, a structured
“language” - or modelling technique - which makes it
possible to document the product- and product-related
models in a structured way.

The procedure suggested here – or part of the procedure -
has been tested in several companies, e.g. F.L.Smidth,
American Power Conversion (APC), Aalborg industries,
NEG-Micon, GEA-Niro and IBM-SMS. The article
includes the experiences acquired from the latest project
at Demex-electric – a Danish manufacturer of electronic
switchboards. The procedure is based on four aspects
(figure 2).

Modelling concepts Product analysis

Organisational aspects Developement of
business processes

Figure 2. Four aspects incorporated in the procedure.

1. Modelling concepts – based on object-oriented
modelling.

2. Product analysis – concerning the transformation
of product knowledge into structured and visual
information.

3. Organizational aspects – how to organize the
development of product- and product-related
models and the subsequent use of the models.

4. Development of business processes – how to
identify and redesign new business processes
supported by product- and product-related
models.

2. A PROCEDURE FOR BUILDING PRODUCT
MODELS
The procedure contains 7 phases. The starting point of the
work is an analysis and redesign of the business processes

that will be affected by the product- and product-related
models (phase 1). In phase 2 the products are analysed
and described in a so-called product master [3]. Phase 3
includes the final design of the product- and product-
related models by using the object-oriented modelling
techniques. Phases 4 to 7 deals with design,
programming, implementation and maintenance of the
product models. Phases 3 to 7 are based on the general
object-oriented project life cycle.

There may be some overlap and iterations between the
individual phases. The procedure is shown in figure 3.

Phase Description

1 Process Analysis
Analysis of the existing specification process (AS-IS),
statement of the functional requirements to the process.
Design of the future specification process (TO BE). Overall
definition of the product- and product-related models to
support the process. [6],[7].
Tools: IDEF0, flow charts, Activity Chain, Model, key
numbers, problem matrix, SWOT, list of functional
describing characteristics and gap analysis.

2 Product Analysis
Analysing products and eventually life cycle systems.
Redesigning/ restructuring of products. Structuring and
formalizing knowledge about the products and related life
cycle systems in a product master.
Tools: List of features and product master [3].

3 Object-oriented Analysis (OOA)
Creation of object classes and structures. Description of
object classes on CRC-cards. Definition of user interface.
Other requirements to the IT solution.
Tools: Use cases, screen layouts, class diagrams and CRC-
cards.

4 Object-oriented Design
Defining and further developing the OOA-model for a
specific programming tool.

5 Programming
Programming the system. Own development or use of
standard software.

6 Implementation
Implementation of the product- and product-related models
in the organization. Training users of the system, and
further training of the people responsible for maintaining
the product- and product-related models.

7 Maintenance
Maintenance and further development of the product- and
product-related models.

Figure 3. A procedure for building product models, [1].

3. CASE STUDY
The procedure has been used for building and
implementing a sales configurator in the Danish company
Demex-electric. The experiences gained from the process
are described in the following sections.

3. 1 CASE COMPANY: DEMEX-ELECTRIC
Demex-electric is a Danish manufacturer of electronic
switchboards. It has more than 100 employees and a

57

turnover of approx. 15 million Euro. An example of a
switchboard is showed in figure 4.

Figure 4. An example of an assembled unit manufactured
at Demex.

3. 2 PHASE 1: PROCESS ANALYSIS
As the process is now, the customer indicates, among
other things, the power required, the electricity companies
that can supply the power, the demands for protection, the
switchboard outlets etc. Then Demex starts specifying the
switchboard and prepares a list of parts, makes a sketch,
calculates the price and writes a quotation letter. When
the customer has accepted the offer, the list of parts and
the sketch are detailed, and can now form the basis of
purchasing and production.

The lead-time for generating quotations is 3 to 5 days.
Demex uses 2 to 4 man-hours for each quotation. The
process may lead to frequent errors, and often the time
necessary for the optimisation of the boards cannot be
found. When the future process requirements at Demex
were to be set, a SWOT analysis was also made, as shown
in figure 5.

As a consequence of this Demex has made an alliance
with Solar A/S – a company selling electronic equipment.
In Denmark Solar A/S has a turnover of € 250 million, 50
% of the products are sold directly via Solar’s homepage.

Opportunities Treats

Sale, quotations and configuration
of switchboards on the Internet

Improved quality of specifications
Reduction of costs of assembly
Logistics will be improved
Market size DKK 1.5 billion

Many competitors (35)

All switchboards are identical seen
from a customer point of view
Not possible to differentiate
Low net profit ratio within this
business sector

Strengths Weakness

Knowledge and experience of
employees
Good image and branding
Broad product range

SC-utilisation
Size in the market

Figure 5. SWOT-analysis.

In the alliance between Demex-electric and Solar A/S,
Solar A/S hosts the system for configuring an electronic
switchboard as an integrated part of their homepage for
selling electronic equipment. When a customer configures
and orders an electronic switchboard, Solar A/S ships the
parts needed for building a switchboard to Demex. The
switchboards are then assembled and shipped. The future
process focuses on ensuring efficient quotations by using
the Internet. The lead-time and the consumption of
resources, from the generation of quotations until the
specifications lie in the production department, are
considerably reduced. In connection with the analysis of
the existing process at Demex, a number of flow diagrams
were made.

With the new product model the company gets a much
more structured process flow where the knowledge of
Demex regarding construction of switchboards is made
available to the customers, and complex calculations can
be made very quickly. This is illustrated in figure 6.

Figure 6. The Future process flow when applying a con-
figurator.

The configurator is named mexEcon. The effects of
mexEcon are identified as:

1. Customers can make a quotation in 10 minutes
24 hours a day.

2. Reduction of lead time from 3-4 days to 10
minutes when generating quotes.

3. Possible to optimise a configuration in relation to
e.g. materials used and performance of the
switchboard.

www.demex-
electric.dk

www.solar.dk

www.
mexecon.dk Configuration

Customer files
Product files

Quotation Placing of
orders

Order info
are entered

Order
processing

EDI-
requisition

Order
confirmation

Components
pickup

Switchboard
is constructed

SwitchboardTh
e

cu
st

om
er

m
ex

Ec
on

de
m

ex
el

ec
tr

ic
So

la
r

Requirements

Search for
components via

Solarlink

58

4. The time used for the specification of
switchboards is reduced from 2-4 hours to 10
minutes.

3. 3 PHASE 2: PRODUCT ANALYSIS
In this phase the products to be modeled are analyzed in
order to gain an overview of the product families and their
structure. The analysis covers the function, structure,
properties and variations of the product and the related
systems in the product’s life cycle. Figure 7 shows a
general architecture for describing products including the
above-mentioned views.

Figure 7. An architecture for describing products
[2], [3].

A formal way of describing the product assortment is a
so-called product master [3]. A product master consists of
two main elements: a generic part-of structure and a
generic kind-of structure. Experiences from this case
showed that the product master was a very good tool for
discussing the product assortment, i.e. where to start
modelling in the configuration system, which variants to
include, which technologies are stable and which
technologies will change etc. The product master is
described on a big piece of paper around 3 x 1meters.
Once a week (in several months) a meeting was held in
order to discuss the products. All the domain experts were
present at these meetings. This was mainly to ensure
commitment and agreement. A part of the product master
is illustrated in figure 8.

Switchboard

15. Intrance section

Length

Width

16. Intrance field

Number

17. Inlet switch

Amperage
[63, 125, 160, 250, 400,
630, 1000]

Poles
3 (Norway)
4 (Denmark)

Switch

17. Inlet switch

Fuse
switch

Max
interrupter

Max
interrupter
w. ground
fault

Type-OT
63
125
160
250
400
630
1000

Type -
Holec
QSA
125
250
400
630

Type-NS
100
160
250
400
630
125A
160A
250A
400A

Type-OT
RC2121
RC2122
RC2123
RC2124

Figure 8. A part of the product master.

The left side of the product master (the part of structure)
includes the modules or parts used in the entire product
family. This is due to the aggregation structure in object-
oriented modelling. The left side of the product master
(kind of structure) includes the parts, which can be
exchanged in the product. This is due to the specialisation
structure in object-oriented modelling.

3. 4 PHASE 3 & 4: OBJECT ORIENTED ANALYSIS
AND DESIGN
OOA is a method used for analysing a given problem
domain and the field of application in which the IT
system will be used. The purpose of the OOA is to
analyse the problem domain and the field of application in
such a way that relevant knowledge can be modelled in an
IT system. The problem domain is the part of reality
outside the system that needs to be administrated,
surveyed or controlled. The field of application is the
organization (person, department) that is going to use the
system to administer, survey or control the problem
domain.

The OOA model can be made through the activities
described in figure 9 which describes the OOA as
consisting of five phases or layers. These layers can be
seen as different viewpoints, which together make up the
OOA model. Normally the five activities are carried out
through a top down approach, but there are no restrictions
in that sense. Typically the OOA model will be the result
of a number of iterations of the analysis process.

Figure 9. The five layers of OOA modelling [13].

Process
Functions
Organs
Parts

Variant
sCommonality

Product
Structure

Production
Sales
Use

Maintenance
Disposal

Control
Kinematics

Thermodynamics
Man/Machine

Etc

Property
views

Product
assortsment
views

Product
life
views

Generic
product
views

Subject layer

Class & object
layer
Structure layer

Attribute layer

Method layer

59

The subject layer contains a sub-division of the complete
domain, which is to be modelled in different subject
areas. In relation to the use of product models, a subject
area can for example be a product model or a factory
model.

The class and object layer contains a list of the classes
and objects, which have been identified in the individual
subject areas.

The structure layer contains the relationships between the
objects, i.e. a specification of generalization and
aggregation.

The attribute layer contains a specification of the
information associated with the individual objects, i. e
what the objects know about themselves.

The method layer contains a description of the individual
objects methods (procedures), i. e. what the objects can
perform.

The static structure is mirrored in the layers of theme,
classes and objects, structure and attributes, while the
more dynamic aspects in the model mainly are related to
the method layer. The result of the OOA can be illustrated
in a class diagram and on CRC-cards (Class-,
Responsibility and Collaboration Cards) [4], [11], [12].
The notation used in the class diagram is illustrated in
figure 10, which shows a class and four different
structures. The notation is part of the Unified Modelling
Language (UML), which has been chosen since it is the
preferred standard worldwide and is used in many
development tools [14].

Figure 10. Notation for Class Diagram (UML) [4]

The second part of the OOA consists of an analysis of the
field of application. Here the interaction between man and
machine is analyzed in order to determine the
functionality of the system, the user interface, and
software integration to other IT-systems etc. Other
elements that need to be determined are also requirements
to response time, flexibility and so on. The result of this is
a description of the user interface and a requirement
specification for the product and product related models.

In order to model the switchboards at Demex an object-
oriented model has been made. The model is based on the
product master. It consists of a class diagram and CRC-
cards. A part of the model is illustrated in Figure 11 and
12.

Entry switch

Transport

Switch board surroundings

Switch board

Switchboard encapsulation

Cubic-encapsulation Tabula-encapsulation

Maximum switchFuse switch

Switch

Figure 11. Class diagram.

Number: 18 Name: Entry switch

Date: 22.12.2000 Version: 2

Responsible person: JS

Responsibilities:
Specification of height and width of the encapsulation, BOM no., loss
of heat, power and time for assembly.

Attributes:
Encapsulation [Tabula, Cubic]
Dim [3x1, 2x1, 3x2]
BOM no. [OT*]
Price [DKr.]
Time for assembly [min.]

Sketch:

Methods:
Name Space

(b x
h)

BOM no. Price
[Kr]

Time for assembly
[min]

OT 63 3 x 1 OT63T1 98,38 35
OT 63 2 x 1 OT64T1 132,86 35
OT 100 3 x 1 OT65T1 194,88 35
OT 100 2 x 1 OT66T1 229,36 35
QA 125 3 x 2 OT67T1 541,03 45
QA 125 3 x 2 OT68T1 580,33 45
QA 125 2 x 1 OT69T1 548,77 45
QA 200 3 x 2 OT610T1 562,66 45
QA200 2 x 1 OT611T1 554,50 45
QA 200 3 x 2 OT612T1 601,96 45

Collaboration:

With class 4, 8 and 11

Figure 12. Example of a CRC Card.

+method1()
+method2()

-attribute1
-attribute2

Class

+method1()
-attribute1
Superclass

+method1()
+method2()

-attribute1
-attribute2

Subclass1

+method1()
+method3()

-attribute1
-attribute3

Subclass2

+method1()
-attribute1

Class1

+method2()
-attribute2

Class2

*

1

+method1()
-attribute1

Class1

+method2()
-attribute1

Class2

*

1

Class with attributes
 and method

Generalization Aggregation Association

60

The software from Invensys CRM / Baan was selected for
the programming phase.

3. 5 PHASE 5: PROGRAMMING
When programming a standard system the concepts for
programming are sat by the supplier. The Baan
Configurator is logic and constraint based [5], [6]. The
product attributes and constraints are programmed based
on the attributes and methods listed on the CRC-cards
from the OOA-model.
The constraints are constructed with Boolean constraints,
arithmetic constraints and warning constraints. Boolean
constraints use logical operators like AND, OR, NOT,
TRUE, FALSE etc. As an example a constraint
concerning the Cubic module is showed below:
Cubic_module_CV AND
H_input_large_plus_Cubic_Y_DIN2M_CV3x2x1[0..2]
--> Cubic_CV[CV3x2x1]

The main part of the constraints in the system is of this
type. Arithmetic constraints use operators like +, -, *, /, <,
> etc. The last type is warning constraints that give a
message if some criteria are broken.

There are approx. 12.000 Boolean variables and 7.000
constraints in the configurator, which is close to the
maximum no. of variables and constraints the Baan
Configurator can handle.

An example of a user interface is illustrated in figure 13.

Figure 13. Example of user interface from the
configurator.

4. CONCLUSION
The proposed procedure is based on well-known and
proved theory elements. The aim of the procedure is to
serve as guidance for engineers, working with product
modelling. The procedure has been tested at several
manufacturing companies in Denmark and abroad with
positive results.

The proposed procedure includes several fields of
expertise:

1. Business process reengineering, and business
strategy

2. Product design and manufacturing technology
3. Theory for structuring mechanical systems, and

structuring product- and product-related models
4. Object-oriented modelling
5. IT, Artificial intelligence and knowledge

representation
6. Organizational aspects of application of product

modelling

The wide range of theory is included in the procedure in
order to cope with the questions raised in the introduction
of the paper. I.e. how to deal with the business processes
affected by the models, how to analyse and structure
products and how to implement the models in IT-systems.

The project described in this article has shown how to
build a configurator with automatic dimensioning and the
specification of complex switchboards. The customers
save time, money and energy when using the
configurator. The users can now specify the demands to a
switchboard system and then use the configurator as
guidance when an optimal configuration is to be selected.
Different parameters such as loss of heat and price
summarisation of the system can be easily displayed. In
this way corrections to a configuration will be shown
immediately.

The effects of introducing a configurator in Demex
electric/Solar A/S can be summarised as follows:

1. Reduction of lead time from 3-4 days to 10
minutes when generating quotes.

2. Possible to optimise a configuration in relation to
e.g. resource consumption. This means up to 10
% reduction of materials.

3. Huge reduction in specification hours.

The configurator will be implemented in full scale at
Solar A/S homepage in summer 2002.

61

6. REFERENCES
[1] Hvam, L., Riis, J., Malis, M. & Hansen, B., 2000, A

procedure for building product models, Product Models
2000-SIG PM, Linköping, Sweden.

[2] Hubka, V. & Eder, W.E.: Theory of Technical Systems,
Springer-Verlag. Berlin, 1988.

[3] Mortensen, N. H., Yu, B., Skovgaard, H. and Harlou, U.:
Conceptual modeling of product families in configuration
projects, 2000.

[4] Booch, G., Rumbaugh, J. & Jacobson, I., 1999, The Unified
Modeling Language User Guide, Addison-Wesley.

[5] [Sabin et. al., 1998]: Daniel Sabin, Rainer Weigel; Product
Configuration Frameworks – A Survey, University of New
Hampshire and Swiss Institute of Technology, IEEE
Intelligent systems, 1998.

[6] [Jackson, 1999]: Peter Jackson; Introduction to expert
systems, third edition, Addison-Wesley, 1999.

[7] [Hammer, 1990]: Michael Hammmer; Re-engineering work:
Don’t automate, obliterate, Harvard Business Review, July-
August, 1990.

[8] [Hammer et al., 1993]: Michael Hammer, James Champy;
Reengineering the Corporation, Harper Collins Publishers,
1993.

[9] [Schwarze, 1996]: Stephan Schwarze; Configuration of
Multiple-variant Products, BWI, Zürich, 1996.

[10] [Schwarze & Burke,1994]: Stephen Schwarze, L. Burke; The
procedure of Product Configuration and Handling the
Configuration Knowledge, Proceeding of the Third IERC,
Atlanta, May 1994.

[11] [Tiihonen et. al., 1996]: Tiihonen, J., Soininen, T.,
Männistö, T., Sulonen, R.; State-of-the Practice in Product
Configuration – a Survey of 10 Cases in the Finnish
Industry, Helsinki University of Technology, 1996

[12] Hvam, L. & Riis, J.: CRC Cards for Product Modelling,
 Department of Manufacturing Engineering, Technical

University of Denmark, 1999. Antonio, Texas, November
17-20 1999.

[13] [Coad et al., 1991a]: Peter Coad, Edward Yourdon;
Object-oriented analysis, Prentice-Hall, Inc., Second
edition, 1991.

[14] Alexander Felfernig, Gerhard E. Friedrich And Dietmar
Jannach; UML as domain specific language for the
construction of knowledge-based configuration systems
International Journal of Software Engineering and
Knowledge Engineering, 2000.

62

Using Knowledge-Based Configuration for Configuring
Software?

Lothar Hotz
�

and Andreas Günter
�

Abstract. In this paper, we present a short survey on research topics
which come into play when applying knowledge-based configuration
techniques known in Artificial Intelligence (CAI) to the field of Soft-
ware Configuration Management (SCM). Knowledge-based configu-
ration deals with generic, logic-based methods for configuring com-
ponents of a given domain. Typically these domains are hardware-
based, like PCs, electrical drives, but in principle the methods are
not restricted to those domains. Because the methods are well under-
stood and configuration systems implementing those methods exist,
it is natural to examine them in an upcoming project for configuring
industrial products. Thus, this paper describes work that will be done
based on work that was already done by us. As such, it is a position
paper.

1 Introduction

Software is an important basis of most technical systems. Growing
complexity and variability of technical systems replace the develop-
ment of single software products with the development of product
families. Furthermore, the increasing use of embedded systems com-
bining hardware and software make the process of software devel-
opment to a difficult task. To get started, we will analyse software
product development processes of industrial companies, restricting
us to industrial product lines with hardware and software compo-
nents. As industrial products, we will focus on the car periphery su-
pervision domain, which includes services like pre-crash detection,
parking assistance, parking spot detection, blind-spot-supervision,
and adaptive-cruise-control. Besides considering software and hard-
ware components, also requirement templates, feature models, and
intermediate representations will be examined.

To handle this task, configuration management systems have been
developed. Properties of configurations, which are computed by such
systems, should be:

� consistency, i.e. the components stacked together can be used to-
gether;

� correctness, i.e. not the wrong components (in respect to specific
application needs) are selected;

� completeness, i.e. all necessary components are selected;
� feasability, i.e. a possibly good (not necessarily optimal) solution

out of the big number of possible solutions is selected;
� transparency, i.e. controlling the process of configuration should

be possible.

A prerequisite for such a support is a modeling method for the soft-
ware to be constructed and a support for the configuration process.

�

HITeC, Fachbereich Informatik, Universität Hamburg, email:
hotz@informatik.uni-hamburg.de�

dito, email: guenter@informatik.uni-hamburg.de

From the developers point of view, important modeling aspects are:
modeling of evolution, concise representation of variability, option-
ality, dependencies/relations between components, non-complicated,
non-chaotic modeling, architectural descriptions [3].

Knowledge-based configuration known in Artificial Intelligence
provides a generic way for configuring technical artefacts. A model
of a domain represented in a well-defined declarative configura-
tion language is the basis of the configuration methodology. The
configured results can be shown to have properties like correctness
and completeness according to the specified model. Because of the
generic approach, construction of software can be examined as a fur-
ther application domain for CAI. In SCM a deep understanding of the
domain of software configuration has been obtained, where in CAI,
experiences in representing domain models and inferencing config-
urations from a model are available. Hence, a combination of both
approaches might be promising [13].

This paper is structured as follows: First, we give a short presen-
tation of basics of SCM methods and systems (Section 2) and a short
overview of the methodologies developed in CAI (Section 3). In Sec-
tion 4, we discuss the research challenges of SCM and their possible
solutions in CAI. While these sections mainly deal with general as-
pects of combining CAI and SCM, in Section 5, we sketch a more
restricted approach which we will follow in a new upcoming project.

2 Short view on SCM

Software Configuration Management systems focus on controlling
the whole evolutionary process of software system development.
This process is seen as a continuous process which does not stop
while the software is in use. To support this constantly changing
process, SCM systems have been developed. There are a number
of SCM systems which support the main concepts of SCM systems
more or less (for surveys in SCM see e.g. [2, 3, 6, 16]). These con-
cepts are: The representation of software objects as atoms by giving
them a rudimentary name and a not further specified content ”de-
scription” (e.g. ”program code”, ”documentation”, ”test result” etc.),
or as configurations by enumerating independently changing atoms
or other configurations. Version control examines how interim prod-
ucts are produced in the course of product development and how de-
velopment of different aspects of the product can proceed in paral-
lel. Change control examines how changes to the software objects
are more or less formally described by giving information about the
change like the objective of the change, the state of the change (e.g.
open, rejected) etc. Process control supports the whole software de-
velopment process, by describing the process in terms of ”comple-
tion, acceptance, integration & test, take over”. Distribution is re-
lated to distributed development of software by locally distributed
developers.

63

Besides these basic concepts of SCM, there are further approaches
especially in the research community in development but not in-
cluded in commercial systems. The system Adele [4], (see also the
discussion in [2]) is based on an entity-relationship database with
more elaborate data modeling capabilities than those offered by file
lists. However, drawbacks of such a system are: non strict object-
orientedness, lack of sophisticated structured representations, incom-
plete support of attributes (the user has to manage some declared
attributes instead of the system), no system independent semantics.
Also the inference methods (which are based on so-called interfaces)
are only centered around attributes and relations, not around software
objects as a whole. However, with Adele it is possible to capture the
evolution of all architectural elements in a single system model.

Summarising, conventional configuration management tools are
intended to aid the production of single products, or products with
limited variability. Although they offer some support for configura-
tion, using them for families of products, which developers are cur-
rently forced to do, quickly leads to considerable adaptation effort
through support utilities. Over and above this, there is little support
for checking the consistency of configurations or for using inference
to generate parts of the configuration.

3 Knowledge-based configuration known in
Artificial Intelligence (CAI)

The configuration of technical systems is one of the most successful
application areas of knowledge-based systems. [8] made a general
analysis of configuration problems in which four central aspects (or
knowledge types) concerned with configuration tasks were identi-
fied:

� A set of domain objects (concepts) in the application domain and
their properties (parameters). By instantiating a domain object
concept instances are created. Thus, a domain object describes its
instances.

� A set of relations between domain objects. Taxonomical and com-
positional relations with alternatives, number restrictions, and op-
tionality are of particular importance for configuration. But further
relations can be expressed between arbitrary domain objects.

� A task specification (configuration objective) that specifies the de-
mands, which a created configuration must fulfil.

� Control knowledge for specifying the configuration process.

For all those kinds of knowledge not only a model can be declara-
tively defined but also an inference machinery is given, which inter-
prets the knowledge. Thus, CAI provides not only a modeling facility
like STEP or UML but operational, processable models. In the so-
called structure-based approach a compositional, hierarchical struc-
ture of the domain objects serves as a guideline for controlling the so-
lution process, and as a logical basis for configuring. That means, that
the constructs used for modeling can be mapped to a logical language
where the semantics are well-defined [14]. The constraint-based ap-
proach consists of representing restrictions between objects or their
properties by means of constraints, and evaluating these by constraint
propagation. This approach is not in conflict with the structure-based
approach but is frequently combined with it. Other approaches are
resource-based and case-based configuration.

Concepts used in the area of configuration have well-defined, sys-
tem independent semantics which are manifested in implementations
termed configuration systems (CS) like EngCon [1]. Such systems
provide a more formal notion of consistency and completion than
Software Configuration Management systems [13]. For instance, in

CS the consistency of the hierarchy is well-defined (namely a strict
specialization hierarchy) and will be checked by a specific module
of a CS. Constraint solving uses methods that have been proven cor-
rect, and property values of components can be inferred. The control
mechanism determines that all open issues (e.g. properties, parts) of
the configuration are handled by the configuration process [7]. All
these modules of a CS are general and thus, domain independent.
A domain specific configuration system can be obtained by imple-
menting a domain specific application user interface over the domain
specific configuration model. In CAI, this has been done tradition-
ally for domains where hardware components are configured. For
software, the main challenge is to understand the specific concepts
of the software development process in terms of the general concepts
of the logic-based configuration terminology.

4 Where are challenges/ problems in the field of
SCM and their possible solutions with CAI

In this section, we discuss problems mentioned in the SCM commu-
nity and their potential solutions with methodologies coming from
CAI. We focus on software product representation, versioning, and
representing distinct kinds of knowledge. Other aspects like evolution
are presented in similar approaches like [12] and [5].

Software product representation In current commercial SCM sys-
tems files and file handling are the basic components, thus, oper-
ations like merging, revision etc. are based on files not on objects
[3]. Models and software products (instances) are roughly seen
as the same kind of entities namely software programs [5]. These
facts demonstrate a main problem: there is no abstract, declara-
tive model of the source code being configured [12]. Each task
is done directly on source code and files. In CAI a configuration
language is given which provides the means for defining the four
central aspects of configuration tasks (see Section 3). With such
a model, software products could be defined on a concept level,
and the instances (e.g. files, source code), which realize a specific
application, can be computed by the configuration system. An ex-
ample for modeling a software system with CAI is given below.
In this example, we describe parts of a tool box with the (here
simplified) language used in EngCon. The example specifies the
situation: ”our-tool-box is a kind of software-systemwhere
the parameters are specialized to the indicated, alternative values
(between {}) and its diverse relations are specialized to diverse
obligate or optional concept types (indicated by concept names
and numbers)”:

def-concept
:name our-tool-box
:superconcept software-system
:parameters
system-purpose {configuration consistent-test layout-planning}
procedure {not-fixed heuristic case-based}
requirement-for-the-solution {no optimal}
requirement-for-efficiency {no efficient very-efficient}

:relations
has-userinterface [userinterface 1 1]
has-supporting-module

[interface 1 1] [obk 1 1] [slot-contexts 0 1]
has-basic-module

[ontology 0 1] [constraints 0 1] [task-description 0 1] [control 0 1]
has-extension-module [multiple-inheritance 0 1] [fuzzy-ontology 0 1]

[fuzzy-constraints 0 1] [measurements 0 1] [requirement-modeling 0 1]
[case-based-configuration 0 1] [optimal-configuration 0 1]
[formulars 0 1] [taxonomical-inferencing 0 1] [backtracking 0 1]

An example for describing a relation between multiple compo-
nents using constraints is given below. It is specified: ”An our-
tool-box with an interactive-strategy as extension-
module has to have exact one basic-module of the type
control and exact one userinterface of type graphical-
userinterface”. The ”?” is used to mask local variables:

def-conceptual-constraint
:name interactive-strategy-requirements
:selected-components
?system :name our-tool-box
?sub-module :name interactive-strategy

64

:relations extension-module-of ?system
:constraint-calls

number-restriction
(?system has-basic-module) [control 1 1]
number-restriction
(?system has-userinterface) [graphical-userinterface 1 1]

Versioning In [16] it is mentioned that versioning is mainly based
on a directed acyclic graph by using the is-version-of relation.
In CAI one could represent this aspect in the framework of spe-
cialization hierarchies. Here, versions can be described in terms
of subconcepts with specializing properties or relations. Thus, also
version management of structures, relationships and interfaces can
be modeled, which is a further requirement mentioned in [6]. As
described in Section 3, not only a model but also an inference ma-
chinery is given by CAI, hence, consistent configurations selected
from multiple versions can be computed. Thus, the selection of
appropriate components is dynamically supervised by the config-
uration system.

Representing distinct kinds of knowledge The CAI methodology
is general and generic. Hence, distinct aspects like features, re-
quirements, designs, test cases, task agenda, standard code arte-
facts and their relations, etc. could be represented (see [16]). These
diverse aspects of a domain can be modeled in distinct knowledge
basis and can be combined, e.g. by using strategies [7], in an inte-
grated system. As an example, in [10] a feature model is described,
which includes common and variable aspects of the capabilities of
software products. Such a feature model could be used by a con-
figuration system for identifying suitable software and hardware
components.

There are some issues, which do not have an obvious solution
and are still research aspects in both fields, CAI and SCM: com-
bining CAI methods and SCM techniques, representing functional-
ity of software modules [11], product variability [6], and distributed,
concurrent work [6]. Aspects, which are more related to SCM, are
discussed in [3, 6, 16]: Automated change integration and merging
of changes; interoperability among configuration management sys-
tems; relationship between software architecture and configuration
management systems; constructing executable object modules; rep-
resenting data flow among modules; representing control flow among
modules; deployment issues and post deployment phase; distributing
software into the field and maintaining it. How these problems can
be handled if CAI is used as a kernel technology, is still open.

5 Configuration of Industrial Product Families

In the new project Configuration of Industrial Product Families
(ConIPF) following issues are examined:

� In order to support realistic industrial applications, guidelines will
be described for facilitating domain modeling (see [13, 15] for
similar approaches).

� A further focus is set to products that can be developed quickly
and with little effort. On the one hand an early result can be pro-
duced and on the other hand, for those components libraries can
be developed for reusing generic software components.

� For modeling, known configuration description languages will be
used and possibly further developed for describing specific aspects
of software modules, like functionality and state descriptions.

� A technology used for modeling will be Description Logics (DL),
which provides a well-defined semantics for basic concept and
role (=relation) definitions (for a description of a DL system see
[9]). The combination of a DL with CAI will be examined to sup-
port inferencing on the concept level, for e.g. automatically clas-
sifing new component models in a specialization hierarchy.

The project is a three year EU-Project and is composed of two indus-
trial partners: Robert Bosch GmbH, and Thales Nederland B.V. and
two university partners: University of Groningen and University of
Hamburg/HITeC.

6 Summary

SCM provides a clear view of the software construction domain, and
of the main configuration aspects of that domain like evolution, ver-
sioning. CAI provides a generic kernel technology for configuring
diverse types of knowledge. The logic-based representation and in-
ferencing methods of CAI provide the basis for a new step in the di-
rection of ”modeling instead of programming”, which is in our opin-
ion the main challenge for software construction. By combining the
already developed tools of SCM with the kernel technology of CAI,
we see even further possibilities.

REFERENCES
[1] V. Arlt, A. Günter, O. Hollmann, T. Wagner, and L. Hotz, ‘Engcon -

engineering & configuration’, in Proc. of AAAI-99 Workshop on Con-
figuration, Orlando, Florida, (1999).

[2] S. Dart, ‘Concepts in configuration management systems’, in Proc. of
the 3rd. Intl. Workshop on Software Configuration Management, Trond-
heim, Norway, (1991).

[3] J. Estublier, ‘Software configuration management: a roadmap’, in ICSE
- Future of SE Track, pp. 279–289, (2000).

[4] J. Estublier and R. Casallas, ‘The Adele configuration manager’, in
Configuration Management, ed., Walter Tichy, 99–133, John Wiley and
Sons, Ltd., Baffins Lane, Chichester, West Sussex PO19 1UD, England,
(1994).

[5] J. Estublier, J.M. Favre, and Morat P., ‘Toward PDM / SCM: inte-
gration?’, in Proc. of the 8. Intl. Workshop on Software Configuration
Management, LNCS 1439, pp. 75–95, Bruxelles, Belgium, (July 1998).
Springer Verlag.

[6] K. Frühauf and A. Zeller, ‘Software configuration management: State
of the art, state of the practice’, in 9th International Symposium on Sys-
tem Configuration Management (SCM-9), Toulouse, France, (1999).

[7] A. Günter and R. Cunis, ‘Flexible control in expert systems for con-
struction tasks’, Journal Applied Intelligence, 2(4), 369–385, (1992).

[8] A. Günter and C. Kühn, ‘Knowledge-based configuration - survey and
future directions’, in XPS-99: Knowledge Based Systems, Proceedings
5th Biannual German Conference on Knowledge Based Systems, ed.,
F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570, (1999).

[9] V. Haarslev and R. Möller, ‘Consistency testing: The race experience’,
in Proceedings TABLEAUX’2000. Springer-Verlag, (2000).

[10] A. Hein, M. Schlick, and R. Vinga-Marting, ‘Applying feature models
in industrial settings’, in Software product lines - Experience and re-
search directions, ed., Donohoe P., pp. 47–70. Kluwer Academic Pub-
lishers, (2000).

[11] C. Kühn, ‘Modeling structure and behaviour for knowledge based
software configuration’, in 14th Workshop, New Results in Planning,
Scheduling and Design (PuK2000), ed., http://www-is.informatik.uni
oldenburg.de/sauer/puk2000/paper.html, (2000).

[12] T. Männistö, Towards Management of Evolution in Product Configura-
tion Data Models, Ph.D. dissertation, University Helsinki, 1998.

[13] T. Männistö, T. Soininen, and R. Sulonen, ‘Product configuration view
to software product families’, in Software Configuration Workshop
(SCM-19), Toronto, Canada, (2001).

[14] R. Möller, C. Schröder, and C. Lutz, ‘Analyzing configuration
systems with description logics: A case study’, in http://kogs-
www.informatik.uni-hamburg.de/˜moeller/publications, (1997).

[15] J. Tiihonen, T. Lehtonen, T. Soininen, A. Pulkkinen, R. Sulonen, and
A. Riitahuhta, ‘Modelling configurable product families’, in Proc. of
the 4th WDK Workshop on Product Structuring, Delft, The Netherlands,
(October 1998).

[16] A. van der Hoek, D. Heimbigner, and L.W. Wolf, ‘Does configuration
management research have a future?’, in Proceedings of the 5th In-
ter. Conf. on Software Configuration Management, LNCS 1005, Berlin,
(1995). Springer-Verlag.

65

Experiences with a procedure for
modeling product knowledge and building product configurators

- at an American manufacturer of air conditioning equipment

Benjamin Hansen1 & Lars Hvam

1 Ph.D. student at Department of Manufacturing Engineering
 and Management, Technical University of Denmark.
 e-mail: blh@ipl.dtu.dk

Abstract
This paper presents experiences with a procedure for
building configurators. The procedure has been used in an
American company producing custom-made precision air
conditioning equipment. The paper describes experiences
with the use of the procedure and experiences with the
project in general.

Introduction
At the Department of Manufacturing Engineering and
Management at the Technical University of Denmark there
have been several research projects involving the
application of expert systems/configurators in
manufacturing and engineering companies. Configurators
have been built to support the creation of customer specific
quotes, bill-of-materials, drawings, diagrams, routings, etc,
i.e. specifications created in the customer-related business
processes.

Since most mass-producing companies do not really have
complex configuration tasks in the customer-related
processes, most research projects have been carried out in
engineering companies. These companies are typically
small and medium-sized companies that customize
products to fit specific customer needs. Often these
companies have not been highly industrialized because it
has not been possible to automate knowledge work. All
over the western world such companies exist and they
need to cut costs and reduce lead times to survive in the
global economy. Different IT systems such as CAD, PDM
and configurators may help to reach this goal.

This paper presents experiences with the use of the DTU
[Hvam et. al, 2000] procedure during a configuration
project in such a company.

The case company
The case company is an American company with 200
employees, manufacturing custom-made precision air
conditioning equipment. The company was recently
acquired by a much larger company and is now a division
in that company. The customers are primarily companies
in need of precision cooling to maintain the right inner
climate in rooms with electronic equipment.

The objective of the acquisition is to transform the former
small engineering company into a highly modern division
that can mass-customize products on a large scale. An
important part of this is to automate the customer related
configuration process with IT. This led to an initiative of
building a configurator for the most suited air product
family.

Figure 1: A picture of the air configuration equipment

The project
The project followed the procedure used in projects
connected to research at DTU. The project procedure is
illustrated in Figure 2. The main experiences with the use
of the procedure are discussed for each phase.

Figure 2: The general procedure with indication of
specific project activities.

Pre-project initiatives
Before the actual project started there had been a rough
analysis of the business process and the product to be
configured in it. This analysis indicated that an IT-based
configuration of a quote and of a bill-of-material was
possible, but that it a simplification of the product
structure was necessary to be able to do it efficiently. The
main arguments for doing so were the following:

• There were too many low level part numbers
being involved in the configuration process.

Business
Process
Analysis

Pre-project Product
Analysis

Object
orientated
analysis and

design of the
product model

Programming
the

configurator

Implementing
 the

configurator in
the organization

Maintenance
of the

configurator

6 month project time line, (Phases were iterative!)

66

• The mother company requires all configure-to-
order products to be structured in subassemblies
and designed for easy assembly.

This resulted in a new assembly structure of the product in
manufacturing. All low-level components were grouped
into sub-assemblies that were classified in module classes.
The final product now consists of a model with 12 classes,
with 1 or more sub-assemblies/modules in each class. Each
sub-assembly consists of 1-50 low-level part numbers.
Thus the assemble-to-order model is no more than 3 levels
deep, consisting of a top level product variant, a list of
sub-assemblies and a list of parts in each sub-assembly.

As stated often under Business Process Re-engineering
projects it is important to simplify a process before
automating it [Hammer, 1990]. This was exactly what was
done through the modularization efforts [O’Grady 1999].
It made the configuration task a whole lot simpler, which
meant that the basic structure of the configuration process
was simplified dramatically. This simplification of the
product structure was not an easy task. In fact it was not at
all finished when the configuration project was started,
which meant that rules where changing during the
modeling phase, and that a lot of time was spent waiting
for updated lists of the assembly “super” BOM.

Thus, one of the main experiences from this project is:
• Redesigning the product structure and defining

sub-assemblies was the biggest single task
related to the configurator project.

Business Process Analysis
The business process analysis is made to get an overview
of the specifications created in the process, and to define
what the requirements are for the configurator to be built.
To support this the procedure presents some analysis tools
(IDEF0, flowcharts, and a list of characteristics to be
analyzed to understand the task of the
engineering/configuration process).

Through interviews with the people involved a flowchart
of the process was drawn, and examples of specifications
created in the process were collected. This gave an
impression of the flow and the information/specifications
in the process.

Some typical characteristics of configuration processes
were analyzed as illustrated in table 1.

Characteristics Analysis result Future
requirement

Input/Output The customer specifies a
list of 20-40 standard
features. Based upon
this a priced quote is
given. Then a detailed
proposal/submittal is
made. Internally the
specifications:
manufacturing BOM,
arrangement diagram,
drawings, electrical
wiring and a shipping
BOM are made.

The configurator
must generate 80%
of quotes,
manufacturing
BOM’s and shipping
BOM’s.

Frequency 10-15 orders are
processes each week.
The number of quotes is
3-5 times higher.

The configurator
must be able to
support a frequency
10 times higher than
today.

Throughput time “clean orders” ship
within 5 weeks. 2-6
weeks are used during
specification activities.
Few orders are “clean
orders”

The market requires
a significant
reduction of lead
times.

Resource
consumption

1-3 hours are spent on
each quote. 1-3 hours on
BOM creation.

Resource
consumption should
be decreased, but is
not critical.

Quality The quality of
specifications is poor. A
very manual process
with a lot of paper work
result in
misunderstandings. This
may led to wrong items
being shipped.

Quality must be
improved.

Availability The availability of
specifications is poor. A
high degree of paper
makes it difficult to
access documents and
information when it is
needed

Quotes must be
made available to all
sales partners on the
internet.

Learning curves The learning curves are
1-2 years. This causes
big problems when new
people are assigned.

Knowledge must be
put in a configurator.

Table 1: An analysis of specific characteristics of the
business process

67

The main experiences with the business analysis were:
• The analysis tools helped but,
• Many decisions were actually based on “guts-

feelings” from top management.
• The learning process was seen as more important

than short-term economical cost/benefit
evaluations.

Product Analysis
The structuring matrix [Andreasen, 1996] and the
principles of building a product variant master [Mortensen,
2000] were used to analyze the product. These tools are
presented in the procedure as a means to analyzing the
product.

A very important aspect that came to light during the
analysis was the fact that the air-conditioning product did
in fact have different structures in sales, manufacturing
and shipping (also illustrated in Figure 4). This was hard
for some top-level managers to accept, they kept
demanding one single structure. These three viewing
angles did have to be modeled separately, each getting
their own superstructure model (Product Variant Master),
just as the specifications generated from the configurator
would be different for sales, manufacturing and shipping.
This separation of the product model into 3 sub-models
made it a lot simpler to model the knowledge. The product
analysis resulted in 3 rough sketches of “product variant
masters “.

The most important experiences were:
• It was very helpful to have a clear understanding

of the product before the actual design of the
detailed product model was carried out. This
made it possible to make a better overall structure
of the product model. It also supported the
planning of the knowledge acquisition process
needed for the detailed object-oriented design of
the product knowledge (next phase).

• The product was seen from very different angles
in sales and manufacturing. It was hard for some
people to understand that a product may actually
have different structures depending on the point
of view.

• Using the theory of “product structuring”
[Andreasen, 1996] helped people without product
design knowledge to understand the product
better.

Object-oriented analysis and design of the product
model
Based upon the analysis of the business process and the
product, a model of the acquired knowledge was built.
Principles from object-oriented design were used to model
the knowledge [Booch et. al 1999]. These principles are
basically to structure the knowledge in classes following
an aggregation structure similar to the products “super-
BOM”, and to attach attributes and rules to each class.
This encapsulates the knowledge in objects that are easy to
maintain and reuse. The actual tools used were so-called
“Class-Responsibility-Collaboration” cards (CRC-cards)

[Hvam&Riis, 1999], which are used to model attributes
and methods for product models. Positive experiences at
another company [Hvam&Malis, 2001] with Lotus Notes
as a document database, led to the design of a specific
Lotus Notes database to handle the knowledge acquisition
process Figure 3.

The Lotus Notes database with CRC-card documents now
serves as a link between the domain expert and the
programmer. Here there is a written “agreement” on all the
knowledge used in the configurator. A rule must be
documented and maintained here before it is modeled in
the actual configurator. When in doubt about what rules
were given from the domain expert to the programmer,
these CRC-cards served as written proofs of what was
agreed upon. Using Lotus Notes makes it possible to work
together over long distances, which is everyday life in the
company.

Figure 3: The modeling process

The model in Lotus Notes is grouped into 3 sub-models: a
feature model used in sales, an assemble-to-order model
used in manufacturing, and finally a shipping model.

The main experiences with this phase were:
• Object-orientated modeling and the CRC-cards

made it easier to structure the knowledge. Exact
syntax and semantics as used in software
development were not used, since this was too
complex for the domain experts.

• Data redundancy occurred: The knowledge
documented in the model did refer to data and
knowledge used and stored in other systems in the
organization. Part numbers (sub-assemblies) were
documented in a central part specification
database, and in the ERP system. Now they had
to be documented in the knowledge model as well
(and later in the actual configurator software).
This data redundancy was a problem that was
well understood, and it led to an integration of
integrating the CRC-cards in the Lotus Notes
database with the corporate part spec. database
(which was also a Lotus Notes database).
Regarding the knowledge there were as many
levels of redundancy as people in the
organization. Having an easily accessible
knowledge representation on documents in Lotus
Notes made it possible to reduce this knowledge

Product model representation
(in Lotus Notes)Real world representation

Sales

Databases Documents

Knowledge
Top
level

Mfg
BOM

Ship.
BOM

1

...

n

1

...

n

Product model representation
(in Cincom Knowledge Builder)

Sales

Top
level

Mfg
BOM

Ship.
BOM

1

...

n

1

...

n

Object orientated Analysis and Design
Real world language

Programming
Cincom Knowledge Builder Syntax

68

redundancy. In principle there would be no
redundancy since there is only one documented
knowledge model. In reality it has been difficult
to make people understand the importance of
updating knowledge in this single repository, still
making errors of not having the latest knowledge
in the database possible.

• Using Lotus Notes to store the CRC-cards with
attributes and rules, made it a lot easier to collect
and document knowledge.

Programming in Cincom Knowledge Builder
Cincom’s configurator software called Knowledge Builder
(KB2K) [www.cincom.com] was used as configurator
software. This software has been used with success in the
mother company for several of the projects and therefore it
was decided to use this tool again.

The structure of the product model in the program is very
similar to the structure of the product model in Lotus
Notes. For each CRC-card there is a corresponding group
of programming code in KB2K. Part of the code is directly
representing the product model, while another part
represents system specific code used for UI navigation,
web integration etc. The model part of the code is
structured into three main categories: sales, mfg. BOM,
and Shipping BOM Figure 3.

To ease maintenance it has been decided to follow a strict
pattern using Boolean constraints to validate the selection
of features (representing the sales view on the product) on
the user interface. After the features have been selected,
IF-THEN rules are used to pick the right BOM-numbers
on the respective “Super BOM structures” for assembly
and shipping. This is illustrated in Figure 4 .

Figure 4: How constraints and IF-THEN rules are used
in the 3 different parts of the configurator

The separation between sales features (represented on the
UI) and BOM numbers makes it easier to maintain the
configurator. BOM numbers and their selection rules can

be modified and maintained in one part of the code, while
UI, sales features and the constraining (Figure 5) of these
can be maintained in other separated parts of the code.

Figure 5: Constraints (top) and rules (buttom) in
Cincom Knowledgebuilder

Generating output data is done after all features are
selected. When pressing “done” on the last feature
selection page, the configurator starts running over all
rule-trees on the superstructures (Figure 5). This results in
several data-strings, representing the configuration in a
sales view (quote), a manufacturing view (manufacturing
BOM) and shipping view (Manufactured unit + BOM for
shipped standard items). These data strings are then
exported to a database, from where the data can be used in
various applications. In this case they are used for
generating 3 types of reports: a quote, a manufacturing
BOM, and a shipping BOM.

The main experiences were:
• Having a product model on “paper” (Lotus Notes)

made the programming a whole lot faster. Having
data and knowledge written down in the Notes
database made it possible to utilize programming
resources better.

• Without giving a detailed evaluation of Cincom's
Knowledge Builder it can be concluded that the
experiences with this tool were all positive.
Especially the flexibility of the tool to represent
different kinds of knowledge in different ways
was helpful. When standard-modeling techniques
were not enough, a high-level programming
language could be used which also gave a great
flexibility.

• It was possible to represent the programming in
Cincom in the same object-oriented aggregation
structure as in the product model (using
“Categories”), which made maintenance much
easier.

Implementation and description of the solution
The final solution is very similar to other configurators
generating a quote and a BOM. It runs on the web on an

Sales
feature D

Sub-
assembly "A"

IF

IF

THEN

TRUE / FALSE
Constraints

Sales
feature B

Sales
feature C

Sales
feature A

Model "A"

SKU "B"

SKU "C"

SKU "D"

IF

IF

THEN

Sales
feature A

Sales
feature B

Sales
feature B

Sales
feature D

Product
life

cycle

Sales:
Feature structure

Assembly:
Top level

module structure

Shipping:
Finished goods

structure

etc.

Sub-
assembly "B"

Sub-
assembly "C"

Sub-
assembly "D"

69

intranet server. Data are stored in a central SQL database.
Currently the configurator is mainly used internally to
validate quotes and to generate BOM’s. It does fulfill the
requirements set up for it during the business process
analysis.

The most important experiences with the implementation
were:

• It took more time than expected to implement the
configurator in the organisation. Several details
and requirements were not defined until the users
actually experienced the configurator through a
first hand experience.

• Due to the object oriented product model which
was well documented in Lotus Notes and due to a
similar object oriented modeling in Cincom it was
relatively easy to make the necessary changes in
the configurator during the implementation.

Conclusion
Using the procedure helped to structure the project better.
The specific tools presented in the procedure helped in the
different activities where they were applied. But a well-
structured project framework with specific tools did not
make up the success on it's own. In fact other factors were
even more important:

• The strategic focus on mass customization in the
mother company and a vision to support it
ensured the necessary commitment and drive
from the people involved in the project. Without
this it would have been much harder to get
through with the project

• Experiences with other configurator projects did
exist. It was well known that the product would
have to be modularized, and that people would
have to be motivated in order for the project to
become successful. Furthermore Cincom had
been used in the mother company for several
projects, which meant that there were “experts”
available to guide through technical issues. Thus
experiences with this type of projects are just as
important as a structured procedure.

• A network to other companies doing configurator
projects was more or less established before the
project started. This meant that some typical
problems could be avoided, and that inspiration
for specific solutions could be found.

The case shows that transforming specification processes
from manual engineering processes to automated
configuration processes is a very complex task. The IT
aspect is only a smaller part of the development process,
even when the goal is to build an IT system. The company
must have a good understanding of areas such as product
structuring, knowledge acquisition, business process
reengineering, project management, configuration and
database technology etc.

The mother company that bought the little engineering
company was aware of this complexity. Therefore this
configuration project, the first of many has been regarded
as a learning project. Presenting a clear vision, motivating
people, and being willing to spend a lot of resources on
learning by doing, is believed to make it possible for the
organization to cope better with the complexity of the
transition towards mass-customization.

References
1: [Andreassen, 1996] Andreasen M.M. , Hansen C.T. ,
N.H. Mortensen: “The structuring of products and product
programmes”, Proceedings of the 2nd workshop on product
structuring, 3-4th of June 1996, Delft University of
Technology 1996.
2: [Booch et. al 1999] Booch G., Rumbaugh J. & Jacobsen
I.:”The Unified Modeling Language User Guide”,
Addison-Wesley, 1999.
3: [Hammer, 1990] Hammer M. ”Re-engineering work:
don’t automate, obliterate”, Harvard Business Review,
July-August 1990.
4: [Hvam et. al 2000] Hvam L. , Riis J., Hansen B. , Malis
M. ”A procedure for building product models”,
Proceedings from the conference: “Product models 2000”,
Linkoeping, Sweden, 7-8th November 2000.
5: [Hvam & Riis, 1999] Hvam L. Riis J. ”CRC cards for
product modeling”, The 4th Annual International
Conference on Industrial Engineering Theory, San
Antonio, Texas, November 17-20, 1999.
6: [Hvam&Malis, 2001] Hvam L. , Malis M. , ”A
knowledge based documentation tool for configuration
projects”, World Congress on mass customization and
personalization, October 1-2, Hong Kong 2001
7: [Mortensen 2000] Mortensen, Yu, Skovgaard and
Harlou: “Conceptual modeling of product families in
configuration projects”, 2000.
8: [O’Grady, 1999] O’Grady Peter. “The age of
modularity”, Adams and Steele Publishers, October 1999.

70

Fuzzy Case Based Configuration
Laurent Geneste1 and Magali Ruet1

Abstract. We propose in this paper to define a configuration
process based on past configuration experiences. Similar
configuration problems are in this framework expected to have
similar configuration solutions. An integration of Case Based
Reasoning and Constraint Satisfaction techniques (CSP) to support
the configuration process is suggested. Since the manipulated
information is complex and imprecise, we propose to use a fuzzy
object oriented representation and to define appropriate algorithms
for CBR and CSP integration. We illustrate our proposition by an
example about the configuration of a machining operation.

Keywords. Configuration reuse, fuzzy knowledge base, FCSP,
CBR1

1 INTRODUCTION
Many configuration methods propose to use CSP techniques in
order to deal with the complexity of configuration problems. These
techniques do not take into account past configuration problems
that may guide a new configuration. Our aim is to propose a
configuration process taking into account past configuration
experiences. We suggest to search the solution of a configuration
problem in the neighbourhood of a similar past configuration. That
is why the use of case based reasoning (CBR) paradigm is
proposed. Moreover, in order to support the reuse and adaptation
of a relevant past configuration, constraint satisfaction techniques
are integrated in the CBR process.

An object oriented modelling is used for representing
configuration cases. A case is modelled by an object composed of
characteristics (attributes). An attribute can be described by
another object (composition). The possibility to manipulate
imprecise characteristics of cases is integrated. Indeed, the
imprecision on the values of the characteristics is represented by
possibility distributions [5]. A characteristic A is defined on a
reference domain R by a possibility distribution which express the
membership of each value of R to the characteristic A. A
possibility distribution is a function π of a reference domain R to
[0,1] such that sup π(x) = 1, x ∈ R.

In this paper we propose to develop the way we reuse past
configuration experiences. In section 2, we first shortly describe
how the search process of past configuration experiences is carried
out. Then we propose, in section 3, to use techniques of CSP for
the adaptation of past configuration experience. Finally, we
illustrate our proposal on an example about the configuration of a
machining operation.

2 CASE BASED REASONING FOR
CONFIGURATION PROBLEM
Case based reasoning is a paradigm that proposes to use past
experiences in order to solve a current problem, when "similar
problems have similar solutions" [11]. In the CBR process, a past
experience (source case) similar to the current problem (reference
case) is retrieved and its solution is adapted to the current problem.

1 Equipe PA - LGP - ENIT - Avenue Azereix, 65000 Tarbes,
France, email: laurent@enit.fr, ruet@enit.fr

Different applications propose to use Case Based Reasoning
techniques for configuration. For instance, in order to configure a
Personal Computer, past pre-configured PC cases are reused and
adapted according to user requirements [1]. Another example
concerns the elaboration of personal Electronic TV Programme
Guide (EPG): past similar programmes chosen by a user are
reused and combined with items recommended by similar users for
configuring a personal user guide [3].

In order to solve a problem, several steps compose the Case
Based Reasoning process:

- model the problem,
- retrieve past problems,
- reuse the most similar past problem by adapting its solution,
- revise the proposed solution,
- and eventually retain this new case (the problem and its
solution) for future use.
All along this process, the user can intervene in order to guide

the process and to control it.
We introduce in section 2.1 mechanisms we use in order to

retrieve past configuration problem. Then in section 3 we present
our work in combining CSP techniques with the adaptation step of
the CBR process for configuration.

2.1 Search of past similar configuration
The aim of the search step is to provide the past configuration
experience which is most similar to the current problem. A
similarity measure is applied between each possibly similar source
cases (resulting from a rough filtering process which is not
developed here) and the target problem. This similarity measure
takes into account the object oriented structure of cases and
enables the use of possibility distribution in order to represent the
imprecision on the values of characteristics of cases [9]. The result
of the similarity measure is divided into two degrees of similarity:
Ν is the degree of necessity of resemblance of two cases and Π is
the degre of possibility of resemblance of these cases (Ν and Π are
in [0,1]).

We distinguish the local similarity which is computed at
attributes (characteristics) level and the global similarity which is
an aggregation of local similarities and is computed at object level.

The local similarity is computed thanks to a similarity
membership function that enables a user to associate to an attribute
a specific way to compute the similarity (e.g. the membership
function near to, defined by µL(x,y) = 1-|x-y|/∆ where ∆ is a
constant). The user also controls the global similarity (at object
level) by weighting each attribute in the aggregation.

The similarity measure is computed as fallow:
Notations:
- R denotes the reference case and S the source case
- attR,L the name of attribute L of case R; valR,L its value
- DL the domain of attribute L and U = DL x DL
- wL the weight associated to attribute L for the search
- µL the membership function describing the local similarity for

attribute L
- πR the possibility distribution describing valR,L
- πS the possibility distribution describing valS,L
- πD the possibility distribution defined by

71

 πD(x,y) = min(πR(x),πS(y)) (1)

At the level of each attribute L, the possibility and necessity
degrees corresponding to a local similarity are computed as
follows:
 ΠL(valR,L,valS,L) = supu∈ U min(µL(u),πD(u)) (2)
 ΝL(valR,L,valS,L) = infu∈ U max(µL(u), 1-πD(u))

The necessity and possibility degrees represent to which level
two cases are similar. They respectively correspond to the lower
and upper bound of the similarity degree.

After the evaluation of each local similarity the evaluation of the
global similarity is achieved, taking into account the weights
associated to each characteristic of the target problem:

 Π(R,S) = mini=1,n max(1-wi,si) (3)
 Ν(R,S) = mini=1,n max(1-wi,si')
with :

{ }


 =∈∃Π

=
else

attattnjifvalval
s jSiRjSiRL

i 0
.,...,1),(,,,,

{ }


 =∈∃Ν

=
else

attattnjifvalval
s jSiRjSiRL

i 0
.,...,1),(

' ,,,,

In addition to the similarity measure we use an adaptability
measure that reflects how easy past experiences can be reused. See
[10] for more details.

The result of both similarity and adaptability measures allow to
select an appropriate past configuration experience to continue the
process. The solution of this past experience has to be adapted. We
propose to use constraint satisfaction techniques during this
adaptation process. We develop this point in the next section after
a brief literature overview.

3 INTEGRATION OF CBR AND CSP
TECHNIQUES FOR CONFIGURATION
A lot of works propose to combine CSP and CBR techniques as
stated in [19]. We are mainly interested in works where constraint
satisfaction techniques and configuration techniques are used in the
adaptation process of case based reasoning paradigm. We describe
these works in section 3.1 before presenting our proposition in
section 3.2.

3.1 Related works
In the COMPOSER system [16] CSP techniques are used to
support the adaptation process of CBR in the field of engineering
design. The proposed methodology uses cases represented as a
discrete CSP. A matching process is applied between old cases and
the new problem; several cases emerge of this matching. These
cases, their solutions and their constraints form a new problem: the
new CSP which can be solved with CSP algorithms. In
COMPOSER all cases must be modelled as a CSP in order to
apply constraint satisfaction algorithm to adapt found cases.

In [14] the authors propose to use the CBR paradigm on
constraint satisfaction problems in product configuration. The case
based reasoning process is used to help the customer in the
expression of his needs. Past cases represent past sales and
describe past buyers and the product they bought. The adaptation
process is achieved thanks to interchangeability [15] [21]. In fact,
in a CSP, in some situations, a value can be replaced by another
value. Here the problem is to know which variables can be
replaced by which other variable(s), and to use this knowledge in
order to solve the CSP. This is what is done in the CBR adaptation
process.

The IDIOM system [12] aims at promoting interactive design of
building by reusing past designs and adapting them according to

preferences on the design and on the combination of cases. Past
design cases are stored and when an architect designs a new
building, he selects past cases and may add preferences on them if
necessary. Along with past cases, constraint on cases combination
are also stored. The past cases are combined to form a new design.
Cases are then adapted with CSP algorithm according to
knowledge they hold and to preferences.

The approach defined in [20] for testing the interoperability of
networking protocols suggests to represent the knowledge base
(Interoperability tests) as a set of CSPs. When a CSP fails
according to monitored observations, CBR is used to enhance the
CSP according to previous similar cases.

In the field of configuration, the authors of [21] introduce the
idea of starting from a previous configuration close to the customer
requirements (instead of starting from scratch) and to adapt it. In
this system, cases are modelled according to the CSP
representation and adapted thanks to neighbourhood, context
dependent and meta interchangeability concepts

All these works are based on a CSP model of cases. This
modelling seems to be not sufficient to represent expert
knowledge. We propose to use an object oriented modelling of
cases which allows to model expert and complex knowledge.
Moreover the model we use permits to represent constraints
between objects. Hence, cases are not constructed in the form of a
problem of CSP.

In next section, we develop the way we integrate CSP
techniques in a CBR process for configuration.

3.2 CSP for CBR adaptation
CSP techniques can be used for guiding the adaptation of the past
solution to the current problem. In fact, when a case is retrieved in
the case base, we propose to find a solution in the neighbourhood
of this case by constraining this neighbourhood. We need first to
define this area called adaptation domain. We expose our method
to determine it in section 3.2.1. Once the adaptation domains are
found, the propagation of the constraints can begin. We describe
our proposition in section 3.2.2.

3.2.1 Adaptation domain
In order to determine an area all around the retrieved case, we
propose to calculate adaptation domain with three parameters: the
values of the retrieved case (values of its attributes), the similarity
membership function of each attributes of the retrieved case and a
value α that represent a similarity threshold.

The similarity membership function of an attribute (µL) and the
value of this attribute (µS) are used to determine a new membership
function (µR). This one is calculated by the projection on X axis of
the intersection of µL and µS (Fig 1). Then the α-cut is computed in
the new membership function µR (Fig 2). The result of this
calculation gives the adaptation domain of the attribute.

y

x

µL(x,y)

X’0

X0

1

µS(x,y)

y

x

X’0

X0

1

Figure 1. Intersection between µS(x, y) and µL(x, y)

72

1

0

µ

x
[infα,supα]

α

Figure 2. α-cut of the membership function µR(x,y)

3.2.2 Fuzzy constraint propagation
In order to propose a good solution to the user, we suggest to use
CSP techniques to guide the adaptation process. We propose to
propagate domain constraints on the adaptation domain previously
determined.

The various domains of the constraints (discrete, continuous,
both), the arity of the constraints (binary, n-ary), and the dynamic
of the constraint application enable to select between several
propagation techniques such as [2], [4], [8], [18] as suggested in
[13].

But we expect to use more of the CSP techniques possibilities.
In fact, we propose to use fuzzy CSP as described in [6]. First, the
use of soft constraints is in accordance with our proposition that
allows to model imprecise and uncertain knowledge and data.
Second, prioritized constraints and prioritized soft constraints
allow to personalize the constraints description.

Before developing our proposition, we first remind notions on
soft constraint.

As defined in [6] a soft constraint C is described by a fuzzy
relation R so that:
Let D1 x…x Dn be a fuzzy set of values that more or less satisfy C
(D1,…,Dn are the respective domains of the variables {x1,…,xn} of
the constraint C),
then the fuzzy relation R is defined by a membership function µR
which associates to each tuple (d1,…,dn) ∈ D = D1 x…x Dn a
degree of satisfaction µR(d1,…,dn) in [0,1]. This degree expresses
to what level the solution d = (d1,…,dn) is compatible with the
constraint C:
 µR(d1,…,dn) = 1 means that (d1,…,dn) totally satisfies C
 µR(d1,…,dn) = 0 means that (d1,…,dn) totally violates C
 0<µR(d1,…,dn)<1 means that (d1,…,dn) partially satisfies C

Hence, a soft constraint expresses preferences among solutions.
A solution satisfies a constraint with a degree of satisfaction. Hard
constraint are particular soft constraint which degree of satisfaction
is 1 or 0 only.

The author of [7] proposes an extension of AC3 filtering
algorithm integrating fuzzy constraints called FAC-3 defined as
follow:
Let P be a fuzzy CSP defined by : P = (X, D, C, R), so that:
- X is the set of variables
- D is the set of domains of the variables
- C is the set of constraints
- R is the set of fuzzy relations defining each constraint. Ri is

defined by a fuzzy set. Ri is the set of values that satisfy more or
less the constraint Ci.

Let Cons-P-sup be the upper approximation of the overall
consistency degree, and V(R) be the set of variables related by R,
then:

Procedure FAC-3 (P = (X, D, C, R), β = 0)
Cons-P-sup ← 1
Q ← { (i,j) / ∃ Ch ∈ C s.t. V(Ch) = {Xi, Xj}, i ≠ j }
while Q not empty and Cons-P-sup > β, do

select and delete (i,j) from Q
 if Revise (i, j, Cons-P-sup) do
 Q ←Q ∪ {(k,i) / ∃ Ch ∈ C s.t. V(Ch)={Xi, Xk},k≠i,k≠j}
return Cons-P-sup.

Procedure Revise (i, j, Cons-P-sup)
Changed ← false
Height ← 0
for each di of Support(Ri) do
 cons ← 0
 for each dj of Support(Rj) do
 cons ← max (cons, min (µRi(di), µRij(di,dj), µRj(dj)))
 Height ← max (cons, Height)
 if cons ≠ µRi(di), do
 Changed ← true
 µRi(di) ← cons.
Cons-P-sup ← min (Cons-P-sup, Height)
return Changed

Based on this filtering algorithm and associated with a search
algorithm such as Branch and Bound, we can propagate domain
constraints on the adaptation domains [6]. In the next section we
propose an example showing such use of CSP algorithms.

4 EXAMPLE
We illustrate our propositions by an example on the

configuration of a machining operation. A machining operation is
made of a part, a tool and a machine. In this exemple, some
attributes are described thanks to fuzzy number (Fig 3). A
machining operation is represented by an object diagram (Fig 4).

1

0

ac b d

Fuzzy number

-a : double
-b : double
-c : double
-d : double

Figure 3. Fuzzy class model

An instance of the class diagram is described in figure 6, in
which we can see four different operations recorded in the
knowledge base (please note that to be make the schema easier to
read, attributes are written with abbreviations detailed in figure 3).
The operation to configure, called OpX, is represented in figure 5.
This target operation has some attributes known and others that are
not valued. In this example we present the search step of similar
operation (section 4.1) and the adaptation process (section 4.2).

4.1 Search of the most similar operation

Based on the four operations of the knowledge base and on the
works previously presented, we can describe the search of the most
similar and adaptable past configuration.

In order to compute the similarity and adaptability measures of
each past cases we have to weight attributes of OpX and to select
similarity membership functions which have to be used.

In this example, importance is given to attributes "cutting
direction" and "relief angle", attributes of the tool: their weight are
of 1. Numbers placed in front of the characteristics in figure 5
correspond to the weight of characteristics of the operation to
configure.

The similarity function membership used in this example are as
fallow:
- similarity “close to” defined by

else0),(

10if1),(

=

=∆≤−≤
∆
−

−=

yx

yx
yx

yx

µ

µ

- similarity “true/false” defined by
else0),(if1),(=== yxyxyx µµ

73

Continuous Cutting Tool

 height H (mm) : fuzzy number
 width W (mm) : fuzzy number

Plate CCT

 plate attachment : char
 plate :

Conventional CCT

 relief angle : fuzzy number
 material :

Plate

 shape : string
 relief angle : fuzzy number
 material :

Tool

 name : string
 cutting direction : char
 line angle xr : fuzzy number
 nomber of cog nb : int

Discontinuous Cutting Tool

 helix angle : fuzzy number

Operation

 name : string
 cutting speed Vc : fuzzy number
 part length Lg (cm) : fuzzy number
 machined depth Ep (mm) : fuzzy number
 cut depth Ap (mm) : fuzzy number
 lead a (mm/tr) : fuzzy number
 part :
 tool :
 machine :

Material

 name : string
 breaking toughness Rm (da N/mm²) : fuzzy number
 melting temperature t° : fuzzy number

Part

 name : string
 roughness r : fuzzy number
 diameter Dp (cm) : fuzzy number
 material :

Machine

 name : string
 available energy P (kW) : fuzzy number

Made of

Figure 4. Partial schema of the knowledge base

mX : Material

 0.25 - name : string = XC 48
 0 - Rm : fuzzy nbr
 0 - t° : fuzzy nbr

m'X : Material

 0 - name : string
 0 - Rm : fuzzy nbr
 0 - t° : fuzzy nbr

pX : Part

 0 - name : string
 0.75 - r : fuzzy nbr = 2, 2, 2, 2
 0.5 - Dp : fuzzy nbr = 8, 10, 2, 2
 0.25 - material :

opX : Operation

 0 - name : string
 0 - Vc : fuzzy nbr
 0.5 - Lg : fuzzy nbr = 19, 21, 2, 2
 0.75 - Ep : fuzzy nbr = 3, 3, 1, 1
 0 - Ap : fuzzy nbr
 0 - a : fuzzy nbr
 0.5 - part :
 1 - tool :
 0 - machine :

tX : Conventional CC Tool

 0 - name : string
 1 - cutting direction : char = L
 0 - nb : int
 0 - xr : fuzzy nbr = 80, 80, 2, 2
 0 - H : fuzzy nbr
 0 - W : fuzzy nbr
 0.75 - relief angle : fuzzy nbr = 7, 7, 1, 1
 0 - material :

maX : Machine

 0 - name : string
 0 - P : fuzzy nbr

Figure 5. Operation to configure

- “ad hoc” similarity for instance for the comparison of material
defined as follows:
µ XC18 XC25 XC38 XC48 XC60

XC48 0.7 0.8 0.9 1 0.3

- similarity between objects defined as follows for objects o and o':

where β enables to tune the strongness of required similarity.
β=1 corresponds to a loose requirement on the similarity
whereas β=0 corresponds to a strong requirement on the
similarity. In the following, we use this similarity function with
β=1.

Results of the similarity and adaptability of each operation of
the knowledge base are given in table 1.

Table 1. Similarity and adaptability measures results

 Op1 Op2 Op3 Op4
Similarity with
OpX

Π=0.5
N=0.25

Π=0.5
N=0.25

Π=0.33
N=0.25

Π=0.33
Ν=0.25

Adaptability 0.734 0.748 0.752 0.744

We can observe that from a similarity point of view, operation
Op1 and operation Op2 have the same similarity degrees with
operation OpX. Nevertheless operation Op1 can not be easily
adapted to configure operation OpX (since its adaptability is equal
to 0.734: the worst adaptability), when operation Op2 is more
adaptable and therefore is an interesting target for our
configuration process. Operation Op3 is more adaptable but is less
similar and should therefore not be privileged. The same remark
can be done for operation Op4.

4.2 Adaptation

When operation Op2 is chosen, we determine the adaptation
domains for the operation at level α = 0.5. The values for the

example are given for each attribute on figure 7. Constraints of the
domain have now to be propagated on the adaptation domains to
produce a solution for the configuration problem. Three binary
constraints are taken into account in this example:
- an attachment constraint between a machine and a tool: CM-T,
- a compatibility constraint between a tool and its material: CT-TM,
- a machining constraint between the name of a tool material and

the name of a part material: CTM-PM.
The fuzzy relation RTM-PM defining the constraint CTM-PM is as

follows:
µR TM-PM (NTM,NPM) = 1 if NTM = N2, N3, N4, N10
 and NPM = XC48
µR TM-PM (NTM,NPM) = 0.9 if NTM = N1 and NPM = XC48
µR TM-PM (NTM,NPM) = 0.5 if NTM = N13 and NPM = XC48
µR NTM-NPM(NTM,NPM) = 0.4 if NTM = N11 and NPM = XC48

The fuzzy relations defining constraints CM-T and CT-TM are

described in table 2.

Table 2. Description of constraints CM-T and CT-TM

CM-T µ t2 t3 t4 other
 N1 1 1 0 0
 N11 0 0 1 0
 other 0 0 0 0

CT-TM µ t1 t2 t3 t4
 ma1 1 0.7 0.6 0
 ma2 0 1 0.7 1
 ma3 0 1 1 0

In order to construct the search tree of solutions we choose an
order for the instantiation of the variables. The first variable to
instantiate is the name of the part material of OpX (PM=XC48).
Then we choose to instantiate respectively: the name of the tool
material (TM), the tool (T) and the machine (M). At each node of
the tree, a value for the variable is chosen and the filtering fuzzy
algorithm FAC-3 is applied for reducing variables domains.

)',().1()',(.)',(ooNoooo ββµβ −+Π=

74

t3 : Plate CC Tool

 name : string = o3
 cutting direction : char = N
 nb : int
 xr : fuzzy nbr = 75, 75, 1, 1
 H : fuzzy nbr = 105, 110, 1, 1
 W : fuzzy nbr = 24, 26, 1, 1
 plate attachment : char
 plate :

t1 : Conventional CC Tool

 name : string = o1
 cutting direction : char = L
 nb : int = 1
 xr : fuzzy nbr
 H : fuzzy nbr = 190, 201, 1, 1
 W : fuzzy nbr = 24, 26, 1, 1
 relief angle : fuzzy nbr = 6, 6, 1, 1
 material :

p1 : Plate

 shape : string = square
 relief angle : fuzzy nbr
 material :

op1 : Operation

 name : string = carriaging
 Vc : fuzzy nbr = 32, 36, 2, 2
 Lg : fuzzy nbr = 28, 30, 1, 1
 Ep : fuzzy nbr = 4, 4, 1, 1
 Ap : fuzzy nbr = 1, 1, 0.5, 0.5
 a : fuzzy nbr = 0.2, 0.2, 0.1, 0.1
 part :
 tool :
 machine :

m3 : Material

 name : string = high speed steel (ARS)
 Rm : fuzzy nbr
 t° : fuzzy nbr

m1 : Material

 name : string = XC 48
 Rm : fuzzy nbr = 80, 90, 5, 5
 t° : fuzzy nbr

op2 : Operation

 name : string = carriaging
 Vc : fuzzy nbr = 220, 230, 5, 5
 Lg : fuzzy nbr = 30, 31, 0.5, 1
 Ep : fuzzy nbr = 4, 4, 1, 1
 Ap : fuzzy nbr = 1, 1, 0.5, 0.5
 a : fuzzy nbr = 0.3, 0.3, 0.1, 0.1
 part :
 tool :
 machine :

t2 : Conventional CC Tool

 name : string = o2
 cutting direction : char = N
 nb : int = 1
 xr : fuzzy nbr
 H : fuzzy nbr = 145, 155, 4, 4
 W : fuzzy nbr = 24, 26, 4, 4
 relief angle : fuzzy nbr = 6, 6, 2, 2
 material :

m2 : Material

 name : string = XC 38
 Rm : fuzzy nbr = 75, 85, 5, 5
 t° : fuzzy nbr

m4 : Material

 name : string = carbide N1
 Rm : fuzzy nbr
 t° : fuzzy nbr

p2 : Part

 name : string = p2
 r : fuzzy nbr = 2, 2, 1, 1
 Dp : fuzzy nbr = 10, 12, 1, 1
 material :

op3 : Operation

 name : string = carriaging
 Vc : fuzzy nbr = 260, 280, 5, 5
 Lg : fuzzy nbr = 9, 10, 0.5, 1
 Ep : fuzzy nbr = 5, 5, 1, 1
 Ap : fuzzy nbr = 3, 3, 0.5, 0.5
 a : fuzzy nbr = 0.4, 0.4, 0.1, 0.1
 part :
 tool :
 machine :

p3 : Part

 name : string = p3
 r : fuzzy nbr = 2, 2, 0.5, 0.5
 Dp : fuzzy nbr = 12, 13, 1, 1
 material :

p1 : Part

 name : string = p1
 r : fuzzy nbr = 3, 3, 2, 2
 Dp : fuzzy nbr = 8, 10, 2, 2
 material :

ma2 : Machine

 name : string = m2
 P : fuzzy nbr = 24, 24, 2, 1

ma3 : Machine

 name : string = m3
 P : fuzzy nbr = 25, 25, 1, 1

ma1 : Machine

 name : string = m1
 P : fuzzy nbr = 25, 25, 2, 2

op4 : Operation

 name : string = carriaging
 Vc : fuzzy nbr = 225, 230, 4, 4
 Lg : fuzzy nbr = 13, 14, 1, 1
 Ep : fuzzy nbr = 5, 5, 1, 1
 Ap : fuzzy nbr = 3, 3, 0.5, 0.5
 a : fuzzy nbr = 0.3, 0.3, 0.1, 0.1
 part :
 tool :
 machine :

m5 : Material

 name : string = XC 18
 Rm : fuzzy nbr
 t° : fuzzy nbr

p4 : Part

 name : string = p4
 r : fuzzy nbr = 3, 3, 2, 2
 Dp : fuzzy nbr = 9, 11, 0.5, 0.5
 material :

t4 : Conventional CC Tool

 name : string = o4
 cutting direction : char = N
 nb : int = 1
 xr : fuzzy nbr = 75, 75, 1, 1
 H : fuzzy nbr = 100, 120, 2, 2
 W : fuzzy nbr = 24, 26, 2, 2
 relief angle : fuzzy nbr = 6, 6, 1, 1
 material :

m6 : Material

 name : string = carbide N11
 Rm : fuzzy nbr
 t° : fuzzy nbr

Figure 6. Knowledge base

Before beginning the constraint propagation process, variables
domains are as fallow:

DM = {ma1, ma2, ma3} DT = {t2, t3, t4}
DTM = {N1, N2, N3, N4, N10, N11, N13}
DPM = {XC18, XC25, XC38, XC48}

All the variable values belong initially to their domain with a
membership degree to 1.

The first step of the constraint propagation is to choose a value
for the name of the part material: PM = XC48 and to apply the
FAC-3 algorithm. After that, domain will be modified and also
membership degree. FAC-3 algorithm runs to the following
domains with membership degrees for the variables:

DPM = {XC48}, with µPM (XC48) = 0.9
DM = {ma1, ma2, ma3}, with µM (ma1) = 0.7
 µM (ma2) = 0.9
 µM (ma3) = 0.9
DT = {t2, t3, t4}, with µT (t2) = 0.9
 µT (t3) = 0.9
 µT (t4) = 0.4

DTM = {N11, N1}, with µTM (N11) = 0.4
 µTM (N1) = 0.9

The estimated local consistency has a value of 1. The next
variable to instantiate is TM. We choose the value TM = N1 with
the membership degree of 0.9. After applying the FAC-3
algorithm, we obtain the partial search tree represented in figure 8
(values in brackets correspond to the upper bound of local
consistency).

Figure 8. Partial search tree
The complete search tree is shown in figure 9 (intermediate

search steps are not developed, the process is the same as
previously stated).

PM = XC48 (CL=1)

TM = N1 (CL= 0,9)

PM = XC48 (CL=1)

TM = N1 (CL= 0,9)

75

op2 : Operation

 name : string = {carriaging}
 Vc (m/min) : fuzzy nbr = [217, 233]
 Lg (cm) : fuzzy nbr = [29, 32]
 Ep : fuzzy nbr = [3, 5]
 Ap : fuzzy nbr = [0.25, 1.75]
 a : fuzzy nbr = [0, 0.85]
 part : = {p1, p2, p3}
 tool : = {t2, t3, t4}
 machine : = {ma1, ma2, ma3}

t2 : Conventional CC Tool

 name : string = {o2}
 cutting direction : char = {N, L, R}
 nb : int = {1}
 xr : fuzzy nbr
 H : fuzzy nbr = [142.5, 157.5]
 W : fuzzy nbr = [21.5, 28.5]
 relief angle : fuzzy nbr = [4.5, 7.5]
 material : = {m4}

m2 : Material

 name : string = {XC18, XC25, XC38, XC48}
 Rm : fuzzy nbr = [72, 88]
 t° : fuzzy nbr

m4 : Material

 name : string = {N1, N2, N3, N4, N10, N11, N13}
 Rm : fuzzy nbr
 t° : fuzzy nbr

p2 : Part

 name : string = {p2}
 roughness : fuzzy nbr = [1, 3]
 diameter Dp (cm) : fuzzy nbr = [9, 13]
 material : = {m1, m2}

ma2 : Machine

 name : string = {m2}
 P : fuzzy nbr = [22.5, 25]

Figure 7. Adaptation domains

Figure 9. Complete search tree

Thanks to FAC-3 algorithm and CSP propagation techniques,
domain constraints are applied on restricted domains and values for
some variables are found. We can propose the user a machining
operation based on Op2 with some valued characteristics.

5 CONCLUSION
In this paper we describe our work and propositions to base
configuration process on past configuration experiences. First of all
we propose similarity and adaptability measures for searching
among past configuration problems the most similar and adaptable
problem to the current problem to solve. Based on this retrieved
problem we can reuse its solution and adapt it to the current
problem. We define a search space near the retrieved configuration
case. Then we suggest to propagate domain constraints on this
search space in order to solve the target configuration problem and
propose the user an admissible solution.

We illustrate our propositions by an example on the
configuration of a machining operation. This kind of configuration
is complex and in many cases, experts solve machining
configuration problem thanks to their past configuration
experiences. So we propose to combine case based reasoning
process and CSP techniques for configuration.

REFERENCES
[1] R. Bergmann and W. Wilke, Towards a new formal model of

transformational adaptation in case-based reasoning, Proceedings of
the 13th European Conference on Artificial Intelligence, ECAI 98,
Brighton, United Kingdom, ed. H. Prade, pp. 53-57, 1998.

[2] C. Bessière, Arc-consistency in dynamic constraint satisfaction
problems. Proceedings of the 10th AAAI, California, pp. 221-226,
1991.

[3] P. Cotter and B. Smyth, Personalisation technologies for the Digital
TV World, 14th European Conference on Artificial Intelligence,
ECAI 2000, edited by Werner Horn, IOS Press, 2000.

[4] R. Dechter, , and A. Dechter, Structure driven algorithms for truth
maintenance, Artificial Intelligence Journal, 82, pp. 1-20, 1996.

[5] D. Dubois and H. Prade, Fuzzy Sets and Systems. Eds: Academic
Press. New York, Fuzzy Logic CDROM Library, 1996.

[6] D. Dubois, H. Fargier and H. Prade, Possibility theory in constraint
satisfaction problems: Handling priority, preference and uncertainty,
Applied Intelligence (6) pp 287-309, 1996.

[7] H. Fargier, Problèmes de satisfaction de contraintes flexiles,
application à l'ordonnancement de production, PhD Thesis, IRIT,
Toulouse, France, 1994.

[8] E. Gelle, On the generation of locally consistent solution spaces
inmixed dynamic contraint problems, PhD Thesis, Swiss Federal
Institute of Technology (EPFL), Lausanne, 1998.

[9] L. Geneste, M. Ruet and T. Monteiro, Configuration of a machining
operation, 14th European Conference on Artificial Intelligence, ECAI
2000, Configuration Workshop, Berlin, August 2000.

[10] L. Geneste and M. Ruet, Experience based configuration, 17th
International Conference on Artificial Intelligence, IJCAI'01,
Configuration Workshop, Seattle, Washington, USA, August 2001.

[11] J. Kolodner, Case Based Reasoning, Morgan Kaufmann Publishers,
Inc., 1993.

[12] C. Lottaz, Constraint solving, preference activation and solution
adaptation in IDIOM, Technical report, Artificial Intelligence
Laboratory, Swiss Federal Institute of Technology, May/June, 1996.

[13] T. Monteiro, J.L. Perpen, L. Geneste, Configuring a machining
operation as a constraint satisfaction problem, CIMCA'99, Austria,
17-19 February 1999.

[14] N. Neagu and B. Faltings, Constraint satisfaction for case adaptation,
Workshop on Case Adaptation of the International Conference on
Case-based Reasoning, ICCBR'99, Kaiserslautern, Germany, 1999.

[15] N. Neagu and B. Faltings, Exploiting Interchangeability Algorithms
over Discrete CSPs, Artificial Intelligence Laboratory (LIA),
Computer Science Department, Swiss Federal Institute of Technology
(EPFL), 2001.

[16] L. Purvis and P. Pu, An approach to case combination, Workshop on
adaptation in case-based reasoning, ECAI 96, Budapest, Hungary,
1996.

[17] L. Purvis, Synergy and commonality in case-based and constraint
based reasoning, Proceedings of the AAAI Spring Symposium on
Multimodal Reasoning, Stanford CA, 1998.

[18] D. Sam, Constraint consistency techniques for continuous domains,
PhD Thesis, Swiss Federal Institute of Technology (EPFL), Lausanne,
1995.

[19] M. H. Sqalli, L. Purvis and E.C. Freuder, Survey of applications
integrating constraint satisfaction and case-based reasoning,
PACLP99: The First International Conference and Exhibition on The
Practical Application of Constraint Technologies and Logic
Programming, London, UK, 1999.

[20] M. H. Sqalli and E.C. Freuder, CBR support for CSP modeling of
InterOperability testing, AAAI-98 Workshop on Case-Based
Reasoning Integrations , Technical Report WS-98-15, pp. 155-160.
July 27, 1998, Madison, Wisconsin, USA, 1998.

[21] R. Weigel, B. Faltings and M. Torrens, Interchangeability for Case
Adaptation in Configuration Problems. Workshop on Case-Based
Reasoning Integrations (AAAI-98), Madison, Wisconsin, USA, 1998.

PM = XC48 (CL=1)

TM = N1 (CL= 0,9)

T = t2 (CL= 0,9)

M = ma3 (CL= 0,9)

TM = N11 (CL= 0,4)

PM = XC48 (CL=1)

TM = N1 (CL= 0,9)

T = t2 (CL= 0,9)

M = ma3 (CL= 0,9)

TM = N11 (CL= 0,4)

76

Distributed generative CSP framework for multi-site
product configuration

Alexander Felfernig
�
, Gerhard Friedrich

�
, Dietmar Jannach

�
, and Markus Zanker

�

Abstract. Today’s configuratorsare centralizedsystemsand do
not allow manufacturersto cooperateon-line for offer-generation
or sales-configuration.However, supplychainintegrationof config-
urableproductsrequiresthecooperationof theconfigurationsystems
from the differentmanufacturersthat jointly offer solutionsto cus-
tomers.As a consequence,thereis a high potentialfor methodsthat
enablethe computationof suchconfigurationsby independentspe-
cializedagents.Severalapproachesto centralized configurationtasks
arebasedon constraintsatisfactionproblem(CSP)solving.Most of
themextendthe traditionalCSPapproachin orderto comply to the
specificexpressivity anddynamismrequirementsfor configuration
andsimilar synthesistasks.
The distributed generative CSP (DisGCSP)framework proposed
herebuilds on a CSPformalism that encompassesthe generative
aspectof variablecreationandextensibledomainsof problemvari-
ables.It alsobuilds on thedistributedCSP(DisCSP)framework, al-
lowing for approachesto configurationtaskswheretheknowledgeis
distributedoverasetof agents.Notably, thenotionsof constraintand
nogoodaregeneralizedto anadditionallevel of abstraction,extend-
ing inferencesto typesof variables.Theusageof thenew framework
is exemplifiedby describingmodificationsto somecompletealgo-
rithmsfor DisCSPwhentargetingDisGCSPs.

1 Introduction/Background

Theparadigmof mass-customizationallowscustomersto tailor (con-
figure)a productor serviceaccordingto their specificneeds,i.e. the
customercanselectbetweenseveralfeaturesandoptionsthatshould
beincludedin theconfiguredproductandcandeterminethephysical
componentstructureof the personalizedproductvariant.Typically,
thereareseveraltechnicalandmarketingrestrictionson thelegalpa-
rameterconstellationsandthephysicallayout.This led manufactur-
ers to develop supportfor checkingthe feasibility of userrequire-
mentsandfor computinga consistentsolution.This functionality is
providedby productconfigurationsystems(configurators),whereby
they have shown to bea successfulapplicationareafor differentAI
techniques[15] suchasdescriptionlogics [8], or rule-based[1] and
constraint-basedsolvingalgorithms.[4] describesthe industrialuse
of constrainttechniquesfor the configurationof large andcomplex
systemssuchastelecommunicationswitchesand[7] is an example
of a powerful tool basedon ConstraintSatisfactionavailableon the
market.
However, companiesfind themselves in dynamically determined
coalitions with other highly specializedsolution providers that
jointly offer customizedsolutions.This high integration aspectof

�
ComputerScienceand Manufacturing, Universiẗat Klagenfurt, Univer-
sitätsstrasse65-67,9020Klagenfurt,Austria.e-mail: � felfernig, friedrich,
jannach,zanker� @ifit.uni-klu.ac.at

todaysdigital marketsimplies that softwaresystemssupportingthe
sellingandconfigurationtaskmustno longerbeconceived asstan-
dalonesystems.A productconfiguratorcanbe thereforeseenasan
agentwith privateknowledgethatactson behalfof its company and
cooperateswith otheragentsto solveaconfigurationtask.Thispaper
abstractsthecentralized definitionof a configurationtaskin [16] to
a moregeneraldefinitionof a generative CSPthat is alsoapplicable
to thewider rangeof synthesisproblems.Furthermore,we propose
aframework thatallows to addressdistributedconfigurationtasksby
extendingDisCSPswith the innovative aspectsof local generative
CSPs:

1. The constraints(and nogoods)are generalizedto a form where
they can dependon typesratherthan on identitiesof variables.
Thisalsoenablesaneleganttreatmentof thenext aspects.

2. Thenumberof variablesof certaintypesthatareactivein thelocal
CSPof an agent,may vary dependingon the stateof the search
process.In the DisCSPframework, the external variablesexist-
ing in thesystemarepredetermined,but herethesetof variables
definingtheproblemis determineddynamically.

3. The domainof the variablesmay vary dynamically. Somevari-
ablesmodel possibleconnectionsand they dependon the exis-
tenceof componentsthatcouldbecomeconnected.

We also describethe interestingimpact of the previously men-
tionedchangesonasynchronousalgorithms.In thefollowing wemo-
tivateour approachwith anexample,Section3 definesa generative
CSPandin Section4 distributedgenerative CSPis formalizedand
extensionsto currentDisCSPframeworksarepresented.

2 Motivating example

For the purposeof illustration of our approachwe choseasexam-
ple domainthe well known N-queensproblem.The characteristics
of a distributedconfigurationproblemor similar distributedsynthe-
sis tasksareintegratedinto our N-queensscenario:(a) partsof the
problem(i.e., variables)aresharedamongagentsand(b) the prob-
lem is dynamicallyextended(i.e.,N is increased),if no solutioncan
be found.Adding additionalproblemvariablesleadsto domainex-
tensionsandthusto a largersearch-andsolutionspace.Thegoal is
to place � queenson distinct squaresin an ����� chessboard,
where no two queensthreateneachother [17]. We formalize the
problemby making eachrow of the boarda problemvariable �
	 ,
wherethesubscript� ensuresuniquevariablenames.In a distributed
settingwe employ threeagents,eachowning a fraction of the con-
straintsnecessaryto solve the N-queensproblem.Furthermore,we
want to show thegenerative aspectof problemsolving in theexam-
ple, whereagentsstartwith a representationof a 0-queensproblem
andspecificrequirementson thefinal solutioncomingfrom outside.

77

Oncetheagentsdeterminethata solutioncannotbefound,they ex-
tendtheproblemspaceby addinganadditionalrow which in conse-
quenceenlargesthe domainof row variablesby one.Sincethe ex-
act numberof problemvariablesis not known from the beginning,
constraintscannotbe directly formulatedon concretevariables.In-
stead,comparableto programminglanguages,variable typesexist
that allow to associatea newly createdvariablewith a domainand
we can specify relationshipsin termsof generic constraints. [16]
definea genericconstraint � as a constraintschema,wheremeta-
variables
�� actasplaceholdersfor concretevariablesof a specific
type � 2. In ourexamplethreetypesof problemvariablesexist, repre-
sentingtheeven(���) andtheunevenrows (���) aswell asa type(���)
of countervariables(� ����� �) for thenumberof instantiationsof each
type,which allows us to distribute theN-queensconstraintsamong
the agents.Therefore,eachagent ��	 posessesa setof privatecon-
straints���! , i.e., �"�$#&%('!� �!) �+*) ��,) ��-) ��.0/ , �"�!12%('!��3) �+4) ��-) ��.0/
and ���!52%6'7��8) �+9) � -) � . / , thataredefinedasfollows:� �;:=< ��>�?@� �BA C % < �+>D?@� �@E C0F < ��>�?@� ��A C % < ��>�?@� �@E C0GIH , where< ��>�?@� C
is a predicatethatgivestheassignedvalueof variable� .
Informally, the number of uneven rows may exceed the number of
even rows by one.� * :=< ��>�?J
 � A CLK% < ��>�?J
 � E C
No two queens on an even and an uneven row are allowed to take the
same column value.� , : �NM!OP?JQR�S?@�JTVUNW!�X?J
 ��A C+Y �JTVUNW!�X?J
 �@E C�C+YZH0C[K%\�NM!OP? < ��>�?J
 ��A C+Y< ��>�?J
]� E C�C , where �^TVUNW0�_?@� C returnsa number � indicatingthat � is
the � �@` variableof its typeand �NM!OP?@T C is a predicatethat returnsthe
absolutevalueof T .
No two queens on an even and an uneven row are allowed to be on
the same diagonal.��3 :
 ��A� K%a
 ��A*cb < ��>�?J
 ��A� CLK% < ��>�?J
 ��A* C .
No two queens on uneven rows are allowed to take the same column
value.� 4 :
 ��A� K%d
 ��A*eb �NM7Of?JQI�g?@�^T�UNW!�X?J
 ��A� C;Y �JTVUNW!�X?J
 ��A* C�C�ChK%�NM!OP? < ��>�?J
 � A� CXY < ��>�?J
 � A* C�C .
No two queens on uneven rows are allowed to be on the same diago-
nal.� 8 :
 �@E� K%a
 �@E* b < ��>�?J
 �@E� C[K% < ��>�?J
 �@E* C .
No two queens on even rows are allowed to take the same column
value.�+9 :
 �@E� K%i
 �@E* b �NM!OP?JQj�a?@�^TVUNW!�X?J
 �@E� CLY �JTVUNW!�X?J
 �@E* C�CaK%�NM!OP? < ��>�?J
 �@E� CkY < ��>�?J
 �@E* C�C .
No two queens on even rows are allowed to be on the same diagonal.� - :=< ��>�?J
l��A Cnm � �@E G � ��AVo � . :=< �+>D?J
l��E Cpm � �@E G � ��A�o
The latter two constraints delimit the domain of row variables to the
total number of rows.
Figure1 depictsthe initial situation,with a 0-queensproblem.The
customerrequestsagent� � to satisfytherequirementof findingaso-
lution containingat leasttwo unevenrows:�N���$q � : � � Asr Q o
Having added� ���$q � to thesetof privateconstraintsof agent� � , the
searchprocessstartsandthesolutionspaceis continuouslyextended
by the instantiationof additionalproblemvariables,until a solution
is found for a 4-queensproblemthat satisfiesall local constraints
of theagents.Thelinks betweentwo agentsindicatethat they share
variables,which is describedin moredetail later on. Thus,a solu-
tion to a generative constraintsatisfactionproblemrequiresnotonly
finding valid assignmentsto variables,but alsodeterminingthe ex-
actsizeof theproblemitself. In thesequelof thepaperwe definea
* Theexactsemanticsof genericconstraintsis given in Definition 2 in Sec-

tion 3.

modelfor thelocalconfiguratorsandwedetailextensionsto DisCSP
algorithms.

Agent a
1

Agent a
1

x
t
u
x
t
t e
x
t
t c

x
1

x
2

x
3

x
4

Agent a
2

x
1

x
3

Agent a
3

x
2

x
4

link(x

u

2

v ,x
w 4
)
x

link(x
t
c
,x
y t
e
,x
y t
u
)

z

lin
k(

x
 1

,x

{ 3

)
|

Agent a
2

x
t
t u
x
t
e
x
t
t c

Agent a
3

x
t
t u
x
t
t e
x
t
c

link(x
t
c
,x

} t
e
,x

} t
u
)

~

lin
k(

x
 t
c

,x

� t
e

,x

� t
u

)

� link(x

�

t
� c
� ,x
� t
� e
� ,x
� t
� u
�)

�

x
t
t c
 x
t
t e
 x
t
u
 x
t
c
 x
t
e
 x
t
t u

x
t
c
x
t
e
x
t
t u

Figure 1. Motivatingexample

3 Generative Constraint Satisfaction

In many applications,solvingis agenerative process,wherethenum-
ber of involved components(i.e., variables)is not known from the
beginning.To representtheseproblemswe employ anextendedfor-
malismthatcompliesto thespecificsof configurationandothersyn-
thesistaskswhereproblemvariablesrepresentingcomponentsof the
final systemaregenerated dynamicallyaspart of the solutionpro-
cessbecausetheir total numbercannotbe determinedbeforehand.
The framework is calledgenerative CSP(GCSP)[5, 16]. This kind
of dynamicity extendsthe approachof dynamicCSP(DCSP)for-
malizedby Mittal andFalkenhainer[9], whereall possiblyinvolved
variablesareknown from thebeginning.This is neededbecausethe
activationconstraintsreasononthevariable’sactivity state.[10] pro-
posea conditionalCSPto modela configurationtask,wherestruc-
tural dependenciesin the configurationmodelareexploited to trig-
ger the activation of subproblems.Anotherclassof DCSPwasfirst
introducedby [3] whereconstraintscanbe addedor removed inde-
pendentlyof theinitial problemstatement.Thedynamicityoccuring
in a GCSPdifferentiatesfrom the onedescribedin [3] in the sense
thataGCSPis extendedin orderto find aconsistentsolutionandthe
latterhasalreadyasolutionandis extendeddueto influencefrom the
outsideworld (e.g.,additionalconstraints)thatnecessitatesfindinga
new solution.Herewegiveadefinitionof aGCSPthatabstractsfrom
theconfigurationtaskspecificformulationin [16] andappliesto the
wider rangeof synthesisproblems.

Definition 1 (Generative constraint satisfaction problem (GCSP))
A generative constraint satisfaction problem is a tuple GCSP(� , � ,�

, �), where:

� � is the set of problem variables of the GCSP and ���[��� is the
set of initially given variables.� � is the set of generic constraints.� � %�'!� �) o7o7o) ����/ is the set of variable types ��	 , where Uf����?���	 C
associates the same domain to each variable of type ��	 , where the
domain is a set of atomic values.

78

� For every type � 	�� � exists a counter variable � �� � � � that
holds the number of variable instantiations for type ��	 . Thus, ex-
plicit constraints involving the total number of variables of spe-
cific types and reasoning on the size of the CSP becomes possible.� � is a total relation on ���S? �) � C , where � is the set of positive
integer numbers. Each tuple ?@�) ?��) � C�C associates a variable � �� with a unique type � � � and an index � , that indicates � is
the � �@` variable of type � . The function ���0�
Wf?@� C accesses � and
returns the type � � � for � and the function �^T�UNW!�X?@� C returns
the index of � .

By generatingadditionalvariables,a previously unsolvableCSPcan
becomesolvable,which is explainedby the existenceof variables
thathold thenumberof variables.
When modeling a configuration problem, variables representing
namedconnectionpointsbetweencomponents,i.e., ports, will have
referencesto other ports as their domain.Consequently, we need
variableswhosedomainvariesdependingon thesizeof a setof spe-
cific variables[16].

Example Given ���n��� asthe type of variablesrepresentingports
of modules and � � �� � as the type of port variables that are al-
lowed to connectto modules, thenthedomainof the port variablesUf����?�� � �� � C mustcontainreferencesto modules. This is specifiedby
defining Uf����?�� � �� � C %¡' H) o7o¢o)�£ M!/ , where £ M is anupperboundon
thenumberof variablesof type � �n��� , andformulatinganadditional
genericconstraintthat restrictsall variablesof type � � �� � usingthe
countervariablefor the total numberof variableshaving type � �n��� ,
i.e., < �+>D?J
 �¥¤7¦D§�¨ Csm � ��© ¦�ª . With the help of the �JTVUNW!�X? C function
concretevariablescanthenbereferenced.
Referring to our introductory example we can formalize the lo-
cal GCSPof agent � � (initially consistingonly of countervari-
ables � � , their type ��� , andthe typesof row variables)as �«�$#Z%'0� ��¬) � �@E) � �BA / , �"�$#[%­'!� �) � *) � ,) � -) � . / , � �$#L%­'!� �) � �) � � / and�®�$#!%¯'f?@� �@¬) ?�� �) H!C�C) ?@� �@E) ?�� �) Q C�C) ?@� ��A) ?�� �)�° C�C / . The domainfor
evenandunevenrow variablesisconsequentlydefinedasUf����?�� � C %Uf����?���� C %\Uf����?���� C %6' H) o7o¢o)�£ M!/ , wherethedomainsfor therow
variablesarelimited by thedomainconstraints(i.e., � -) � .).
Definition 2 (Generic constraint) A generic constraint � � � for-
mulates a restriction on the meta-variables ± �) o7o7o) ±³² . A meta-
variable ± 	 is associated a variable type ���0�
Wf?J± 	 C � � and must
be interpreted as a placeholder for all concrete variables �f´ , where���0�
Wf?@�N´ C %µ���0�
Wf?J±h	 C .
Note,thatgenericconstraintscanalsoformulaterestrictionson spe-
cific initial variablesfrom � � by employing the �^TVUNW0�_? C function.
Considerthe GCSP(� , � ,

�
, �) and let � � � restrict the meta-

variables± �) o¢o7o) ± ² , where���$�¶WN?J±�	 C � � is thedefinedvariable
typeof themetavariable ± 	 .
Definition 3 (Consistency of generic constraints) Given an as-
signment tuple · for the variables � , then � is said to be satisfied
under · , iff¸ � �) o7o¢o) �V² � � : ���0�
Wf?@� � C %¹���0�
Wf?J± � C»º o7o7o º ���0�
Wf?@�V² C %���0�
Wf?J± ² C b �k¼ ± � ½ ¾0¿) o¢o7o) ± ² ½ ¾0À=Á is satisfied unter · , where±h	 ½ ¾ indicates that the meta-variable ±h	 is substituted by the con-
crete variable �
	 .
Thusa generic constraintmustbeseenasaconstraintschemethatis
expandedinto a setof constraintsafter a preprocessingstep,where
meta-variablesare replacedby all possiblecombinationsof con-
cretevariableshaving the sametype, e.g.,given a GCSPof agent� � (excludingcountervariables)with � �$# %Â'0� �7) �V*) �¶,0/ , � �$# %

'7���) ���!/ and � �0# %Ã'N?@� �7) ?����) H!C�C) ?@�V*) ?����) H!C�C) ?@�
,) ?����) Q C�C / , the
satisfiability of the genericconstraint� * is checked by testingthe
following conditions:< ��>�?@� � CLK% < ��>�?@� * C o < ��>�?@� , C]K% < ��>�?@� * C o
Definition 4 (Solution for a generative CSP) Given a generative
constraint satisfaction problem GCSP(��� , � ,

�
, ���), then its solu-

tion encompasses the finding of a set of variables � , type and index
assignments � and an assignment tuple · for the variables in � , s.t.

1. for every variable � � � an assignment �I% < is contained in · ,
s.t. < � Uf�$�h?����0�
Wf?@� C�C and

2. every constraint � � � is satisfied under · and
3. � � ��� º � � �µ� .

Note, that we do not imposea minimality criterium on the number
of variablesin our solution,becausein practicalapplicationsdiffer-
entoptimizationcriteriaexist, suchastotal costor flexibility of the
solution,thusnon-minimalsolutionscanbepreferredover minimal
ones.
The calculatedsolution (excluding counter variables)for the lo-
cal GCSP of agent � � consists of � �$# % '0� �) � *) � ,) � 3 / ,� �$# %Ä'f?@� �!) ?����) H0C�C) ?@�V*) ?����) H!C�C) ?@�
,) ?����) Q C�C) ?@�
3) ?����) Q C�C / and
theassignmenttuple � � %ÅQ , �
*Æ%�Ç , �
,Æ% H

and �¶3S% ° . Thus,� �) o7o7o) � 3 arethenamesof generated variables.
Note,thatnamesfor generatedvariablesareuniqueandcanberan-
domlychosenby theGCSPsolverimplementationandthereforecon-
straintsmustnot formulaterestrictionsonthevariablenamesof gen-
eratedvariables.Consequently, substitutionof any generatedvariable
(i.e., � � �­È_���) by anewly generatedvariablewith equaltype,in-
dex andvalueassignmenthasnoeffecton theconsistency of generic
constraints.Our GCSPdefinitionextendsthedefinitionfrom [16] in
the sensethat a finite set of variable types

�
is given and during

problemsolving variableshaving any of thesetypescanbe gener-
ated,whereasin [16] only variablesof a singletype,i.e.,component
variables,canbecreated.CurrentCSPimplementationsof configu-
rationsystems(e.g.,[7] [4]) useatypesystemfor problemvariables,
wherenew variableinstances,having oneof thepredefinedtypes,are
dynamicallycreated.This is only indirectlyreflectedin thedefinition
of [16] by thedomaindefinitionof componentvariables,which we
explicity representasa setof types.Furthermore,the definition of
generic constraints doesnot enforcetheuseof a specificconstraint
languagefor theformulationof restrictions.ExamplesaretheLCON
languageusedin theCOCOSproject[16], or theconfigurationlan-
guageof theILOG Configurator[7].
Note, that the setof variables� canbe theoreticallyinfinite, lead-
ing to aninfinite solutionspace.For practicalreasons,solver imple-
mentationsfor a GCSPput a limit on the total numberof problem
variablesto ensuredecidabilityand finitenessof the searchspace.
ThiswayaGCSPis reducedto adynamicCSPandin furtherconse-
quenceto a CSP. A DCSPmodelseachsearchstateasa staticCSP,
wherecomplex activationconstraintsarerequiredto ensurethealter-
nateactivationof variablesdependingonthesearchstate.Thesecon-
straintsneedto be formulatedfor every possiblestateof theGCSP,
which leadsto combinatorialexplosionof concreteconstraints.Fur-
thermore,theformulationof largeconfigurationproblemsasaDCSP
is merelyimpracticalfrom theperspective of knowledgerepresenta-
tion, which is crucialfor knowledge-basedapplicationssuchascon-
figurationsystems.

4 DisCSP Framework

In ourframework, weareinterestedonly in algorithmsthatguarantee
a good/optimalsolution.Thefirst asynchronouscompletesearchal-
gorithm is AsynchronousBacktracking(ABT) [18]. [2] shows how

79

ABT canbe adaptedto networks wherenot all agentscandirectly
communicateto one another. [6] makes the observation that ver-
sionsof ABT with polynomial spacecomplexity can be designed.
Theextensionof ABT with asynchronousmaintenanceof consisten-
cies,andasynchronousdynamicreorderingis describedin [12, 14].
[11] achievesanincreasedlevel of abstractionin DisCSPsby letting
nogoods(i.e. certainconstraints)consistof aggregates(i.e. setsof
variableassignments),insteadof simpleassignments.
We show how the basicDisCSPframework for ABT with exten-
sions for private constraints[11] can be applied to a scenarioof
distributedproductconfiguration.Therefore,improving the perfor-
manceof ABT with extensionsas referencedabove is straightfor-
ward.We summarizein the following thepropertiesof theABT al-
gorithm that guaranteeits correctnessandcompleteness[18]. Then
we applythis DisCSPframework to a scenariowhereeachagentlo-
cally solves a generative constraintsatisfaction task.Eachtime an
agentextendsthe solutionspaceof his local GCSPby creatingan
additionalvariable, the DisCSPsetting is transformedinto a new
DisCSPsetting,which againhas all propertiesrequiredby asyn-
chronoussearchto correctlyfunction.

4.1 Asynchronous Search

Wesummarizethecharacteristicsof asynchronoussearchalgorithms
like ABT [18] andits extensions[11] for privateconstraints:

1. ÉÃ%Ê'!� �) o7o7o ���¶/ is a setof T totally orderedagents,where ��	
haspriority over ��´ if �»ËhÌ .

2. Eachagent� ownsasetof localconstraints� � and � is interested
in thosevariablesthatarecontainedin its local constraints,called
local variables. A link exists betweentwo agentsif they sharea
variable,that is directedfrom the agentwith higher priority to
theagentwith lower priority. A link from agent� � to agent��* is
referedto asanoutgoing link of � � andanincoming link of �+* .

3. An aggregate is a triplet ?@�N´) O!W7�^´)�Í ´ C , where �N´ is a variable,O!W7�^´ asetof valuesfor �f´ and Í ´ is ahistory of thepair ?@�f´) O!W7�^´ C ,
wherethe history marksthe aggregatewith the information re-
quiredfor a correctmessageordering(a counterin ABT).

4. Theview of anagent� is asetof theaggregatesfor thosevariables
agent� is interestedin.

5. Theagentscommunicateusingthe following typesof messages,
wherechannelswithout communicationlossareassumed:

� ok? message.Agentswith higherpriorities communicatevia
ok? messagesa proposalfor asetof variablesto lower priority
agents.Eachproposalis associatedwith a history, thatallows
therecipientto identify themostrecentmessage.� nogood message.In casean agentcannotfind a proposalthat
doesnot violate its own constraintsandits storednogoods,it
generatesanexplanationundertheform of anexplicit nogoodÎ � . A nogoodcanbe interpretedasa constraintthat forbids
a combinationof valueassignmentsto a setof variables.It is
announcedvia a nogood messageto the lowestpriority agent
thathasproposedanassignment3 in � .� addlink message.It transportsa setof variables< �NÏPO , where
the receiver agentis informedthat the senderis interestedin
thevariables< ��Ï=O andfor every variablein < ��Ï=O a link is es-
tablishedfrom thehigherpriority agentto theagentwith lower
priority.

, aggregatein theAsynchronousAggregationSearch(AAS) algorithm[11]

6. A system agent is a specialagentthat receivesthe subscriptions
of the agentsfor thesearch.Its taskis to decidetheorderof the
agents,initialize the links and announcethe terminationof the
search.

4.2 Framework for DisGCSP

A distributedconfigurationproblemis amulti-agentscenario,where
eachagentwants to satisfy a local GCSPand agentskeep their
constraintsprivate for security and privacy reasons,but shareall
variableswhich they areinterestedin. As constraintsemploy meta-
variables,the interest of anagentin variablesneedsto beredefined:

Definition 5 (Interest in variables) An agent �=´ owning a localÐ]Ñ]ÒkÓ �7Ô (�I�7Ô , �"�¢Ô , � �7Ô , ���7Ô) is said to be interested in a variable� � �«�0Õ of an agent � ` , if there exists a generic constraint � � ��� Ô
formulating a restriction on the meta-variables ± �) o¢o!o) ± ² , where���0�
Wf?J±h	 C � � �7Ô is the defined variable type of the meta variable±�	 , and Ö�±h	 � ± �) o7o7o) ± ² : ���0�
Wf?@� C %µ���0�
Wf?J±h	 C .
Definition 6 (Distributed generative CSP) A distributed genera-
tive constraint satisfaction problem has the following characteris-
tics:

� É×%d'!� �) o!o7o) �+��/ is a set of T agents, whereby each agent ��	
owns a local

Ð]Ñ]ÒØÓ �7 (�«�! , �"�7 , � �! , �®�7).� All variables in Ù �	BÚ � �«� and all type denominators in Ù �	ÛÚ � � �
share a common namespace, ensuring that a symbol denotes the
same variable, resp. the same type, with every agent.� For every pair of agents �) � ´Z� É and for every variable � ��«�7Ô , where agent ��	 is interested in � , must hold � � �«� .� For every pair of agents ��) ��´ � É and for every shared variable� � � � _Ü � �7Ô the same type and index must be associated to �
in the local GCSPs of the agents, i.e., ���$�¶W �7 ?@� C %6���0�
W � Ô=?@� C_º�^T�UNW!� � ¢?@� C %\�JTVUNW!� �7Ô ?@� C .

For everypairof agents�) � ´]� É andfor everysharedvariable� �� � Ü � �7Ô a link mustexist thatindicatesthatthey sharevariable� .
The link mustbedirectedfrom theagentwith higherpriority to the
agentwith lower priority.

Definition 7 Given a distributed generative constraint satisfaction
problem among a set of T agents then its solution encompasses the
finding of a set of variables �Ê%­Ù �	BÚ � �«� , type and index assign-
ments �Ý%�Ù �	ÛÚ � � � and an assignment tuple ·«%�Ù �	BÚ � · � for
every variable in � , s.t. for all agents � 	 : � �) � � and · � are a
solution for the local

Ð]Ñ]ÒkÓ �! of agent � 	 .
Remark A solution to a distributed generative CSP is also a
solution to a centralizedGCSP(Ù �	ÛÚ � �«� , Ù �	BÚ � ��� , Ù �	BÚ � � � ,Ù �	BÚ � ���).
Definition 8 (Generic aggregate) A generic aggregate is a unary
generic constraint. It takes the form: ÞJ±) �) O)�Í
ß , where ± is a meta-
variable, � is a set of index values for which the constraint applies, O
is a set of values and Í is a history of the aggregate.

Definition 9 (Generic nogood) A generic nogood takes the formÎ � , where � is a set of generic aggregates for distinct meta-
variables.

Given the characteristicsof a DisGCSP(seeDefinition 6) the links
canbeinitializedbeforethestartof thealgorithm,dueto thecommon
namingspacefor type denominatorsandthe conditionof a unique
typeandindex assignmentto variablesover all agents.

80

Value assignmentsto variablesare communicatedto agentsvia
ok? messagesthat transportgeneric aggregates in our DisGCSP
framework, which representdomain restrictionson variablesby
unaryconstraints.Eachof theseunaryconstraintsin our DisGCSP
hasattachedanuniqueidentifiercalledconstraintreference(à¢Ï) [13].
Any inferencehasto attachthe àáÏ s associatedto argumentsinto the
obtainednogood.We treattheextensionof thedomainsof thevari-
ablesasaconstraintrelaxation[13]. For this reasonweintroducethe
next featuresfor algorithmextensions:

� announce messagebroadcastsatuple ?@�) �) � C , where� is anewly
createdvariableof type � andwith index � to all otheragents.The
receiving agentsdeterminetheir interestin variable � and react
dependingon their interestand priority in one of the following
ways (a) sendan addlink messagetransportingthe variableset'!��/ (b) addthesendingagentto its outgoinglinks or (c) discard
themessage.� domain messagebroadcastsa set

Ñ[â
of obsoleteconstraintref-

erences.Any receiving agentremovesall thenogoodshaving at-
tachedto thema constraintreferenceà¢Ï � Ñ[â . The receiver of
the messagecalls then the function check agent view() detailed
in [18], makingsurethatit hasaconsistentproposalor thatit gen-
eratesnogoods.� nogood messagestransportgeneric nogoods Î � thatcontainas-
signmentsfor meta-variableinstances.Thesemessagesaremul-
ticastedto all agentsinterestedin Î � . An agentÉL	 is interested
in a genericnogoodÎ � if it hasinterest in any meta-variableinÎ � .� When an agentneedsto revoke the creationof a new variable
due to backtrackingin his local solving algorithm,he assignsit
a specificvaluefrom its domainindicatingthedeactivationof the
variableandcommunicatesit via anok? messageto all interested
agents.

In order to avoid too many messagesa broker agentcan be in-
troducedthat maintainsa static list of agentsand their interestin
variablesof specifictypescomparableto a yellow pages service.In
this casetheagentthatcreatedanew variablesonly needsto request
thebroker agentfor a list of interestedagentsanddoesnot needto
broadcastanannounce messageto all agents.

Theorem 1 Whenever an existing extension of ABT is extended with
the previous messages and is applied to DisGCSPs, the obtained pro-
tocols are correct, complete and terminate.

Proof: Let usconsiderthatweextenda protocolcalled
Ó

.
Completeness: All the generatedinformation resultsby inference.
If failure is inferred (when no new componentis available), then
indeednosolutionexists.
Termination: Without introducing new variables, the algorithm
terminates.Sincethe numberof variablesthat canbe generatedis
finite, terminationis ensured.
Correctness: The resulting overall protocol is an instanceof

Ó
,

wherethe delaysof the systemagentinitializing the searchequals
the time neededto insertall thevariablesgeneratedbeforetermina-
tion. Thereforethe resultsatisfiesall the agentsandthe solutionis
correct ã

5 Conclusions

Building on the definition of a centralizedconfigurationtask from
[16], weformally definedanew classof CSP, termedgenerativeCSP
(GCSP),thatgeneralizestheapproachesof constraint-basedconfigu-
ratorapplicationsin use[4, 7]. Theinnovative aspectsincludeanad-
ditional level of abstractionfor constraintsandnogoods.Constraints
and nogoodscan refer to typesof variables.Furthermore,we ex-
tendedGCSPto a distributedscenario,wherethisabstractionadapts
well DisCSPframeworksfor dynamicconfigurationproblems(but it
canbe usedin staticmodelsaswell). We have describedhow this
enhancementcanbenaturallyintegratedin a largefamily of existing
asynchronousalgorithmsfor DisCSPs.

REFERENCES
[1] V.E. Barker, D.E. O’Connor, J.D. Bachant,and E. Soloway, ‘Expert

systemsfor configurationatDigital: XCON andbeyond’, Communica-
tions of the ACM, 32(3), 298–318,(1989).

[2] C. Bessìere,A. Maestre,andP. Meseguer, ‘Distributeddynamicback-
tracking’, in Proc. of 7th Int. Conf. on Principles and Practice of Con-
straint Programming (CP), p. 772,Paphos,Cyprus,(2001).

[3] R. Dechterand A. Dechter, ‘Belief Maintenancein Dynamic Con-
straintNetworks’, in Proc. 7th National Conf. on Artificial Intelligence
(AAAI), pp.37–42,St.Paul,MN, (1988).

[4] G. Fleischanderl,G. Friedrich, A. Haselb̈ock, H. Schreiner, and
M. Stumptner, ‘Configuring Large SystemsUsing Generative Con-
straintSatisfaction’, in IEEE Intelligent Systems, Special Issue on Con-
figuration, ed.,E. FreuderB. Faltings,volume13(4),59–68,(1998).

[5] A. Haselb̈ock, Knowledge-based configuration and advanced con-
straint technologies, Ph.D.dissertation,TechnischeUniversiẗat Wien,
1993.

[6] W. Havens,‘Nogoodcachingfor multiagentbacktracksearch’,in Proc.
of 14th National Conf. on Artificial Intelligence (AAAI), Agents Work-
shop, Providence,RhodeIsland,(1997).

[7] D. Mailharro,‘A classificationandconstraint-basedframework for con-
figuration’,Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 12(4), 383–397,(1998).

[8] D.L. McGuinessandJ.R.Wright, ‘ConceptualModeling for Config-
uration:A DescriptionLogic-basedApproach.’,Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, 12(4), 333–344,
(1998).

[9] S. Mittal andB. Falkenhainer, ‘Dynamic ConstraintSatisfactionProb-
lems’, in Proc. of 8th National Conf. on Artificial Intelligence (AAAI),
pp.25–32,Boston,MA, (1990).

[10] D. Sabinand E.C. Freuder, ‘Configurationas CompositeConstraint
Satisfaction’, in Proc. of AAAI Fall Symposium on Configuration, Cam-
bridge,MA, (1996).AAAI Press.

[11] M.-C. Silaghi,D. Sam-Haroud,andB. Faltings,‘Asynchronoussearch
with aggregations’,in Proc. of 17th National Conf. on Artificial Intelli-
gence (AAAI), pp.917–922,Austin,TX, (2000).

[12] M.-C. Silaghi, D. Sam-Haroud,and B. Faltings, ‘ABT with asyn-
chronousreordering’,in Proc. of Intelligent Agent Technology (IAT),
pp.54–63,Maebashi,Japan,(October2001).

[13] M.-C. Silaghi,D. Sam-Haroud,andB.V. Faltings,‘Maintaininghierar-
chicallydistributedconsistency’, in Proc. of 7th Int. Conf. on Principles
and Practice of Constraint Programming (CP), DCS Workshop, pp.15–
24,Singapore,(2000).

[14] M.-C. Silaghi,D. Sam-Haroud,andB.V. Faltings,‘Consistency mainte-
nancefor ABT’, in Proc. of 7th Int. Conf. on Principles and Practice of
Constraint Programming (CP), pp.271–285,Paphos,Cyprus,(2001).

[15] M. Stumptner, ‘An overview of knowledge-basedconfiguration’,AI
Communications, 10(2), (June,1997).

[16] M. Stumptner, G. Friedrich,andA. Haselb̈ock, ‘Generative constraint-
basedconfiguration.’,Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 12(4), 307–320,(1998).

[17] E. Tsang,Foundations of Constraint Satisfaction, Academic Press,
1993.

[18] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara,‘Distributed
constraintsatisfactionfor formalizingdistributedproblemsolving’, in
Proc. of 12th Int. Conf. on Distributed Computing Systems (ICDCS),
pp.614–621,Yokohama,Japan,(1992).

81

Semantic Configuration Web Services in the
CAWICOMS Project

Alexander Felfernig
�
, Gerhard Friedrich

�
, Dietmar Jannach

�
, and Markus Zanker

�

Abstract. Product configuration is a key technology in today’s
highly specialized economy. Within the scope of state-of-the-art B2B
frameworks and eProcurement solutions, various initiatives take into
account the provision of configuration services. However, they all are
based on the idea of defining quasi-standards2 for many-to-many re-
lationships between customers and vendors. When moving towards
networked markets, where suppliers dynamically form supply-side
consortia, more flexible approaches to B2B integration become nec-
essary. The emerging paradigm of Web services has therefore a huge
potential in business application integration. This paper presents
an application scenario for configuration Web services, that is cur-
rently under development in the research project CAWICOMS3. An
ontology-based approach allows the advertisement of services and
a configuration specific protocol defines the operational processes.
However, the lack of widely adopted standards for the semantic an-
notation of Web services is still a major shortcoming of current Web
technology.

1 Introduction

The easy access to vast information resources offered by the World
Wide Web (WWW) opens new perspectives for conducting business.
State-of-the-art electronic marketplaces enable many-to-many rela-
tionships between customers and suppliers, thus replacing inflexible
one-to-one relations dating to the pre-internet era of EDI (electronic
data interchange). The problem of heterogeneity of product and cat-
alogue descriptions as well as inter-company process definitions is
potentially resolved by imposing a common standard on all market
participants, although this can be costly to achieve. In this regard,
the non-existence of a single standard for conducting B2B electronic
commerce constitutes a major obstacle towards innovation. Exam-
ples for competing and partly incompatible B2B frameworks are
OBI, RosettaNet, cXML or BizTalk [25]. They all employ XML4 as a
flexible data format definition language, that allows to communicate
tree structures with a linear syntax; however, content transformation
between those catalog and document standards is far from being a
trivial task [8]. The issue of marketplace integration mechanisms for
customizable products is far more complex, because products have

�
Computer Science and Manufacturing, Universität Klagenfurt, Univer-
sitätsstrasse 65-67, 9020 Klagenfurt, Austria. e-mail: � felfernig, friedrich,
jannach, zanker � @ifit.uni-klu.ac.at�
Due to a high number of competing standardization efforts, none of them
appears to be a de-facto industry standard.�
CAWICOMS is the acronym for ”Customer-Adaptive Web Interface for
the Configuration of Products and Services with Multiple Suppliers”. This
work was partly funded by the EC through the IST Programme under con-
tract IST-1999-10688 (http://www.cawicoms.org).�
See http://www.w3c.org/xml for reference.

characterizing attributes that offer a range of different choices. Cus-
tomers are enabled to configure goods and services according to their
individual needs at no extra cost following the paradigm of mass cus-
tomization [23]. Product configuration systems (configurators) sup-
port sales engineers and customers in coping with the large number
of possible product variants.
The goal of the research project CAWICOMS is to enable configu-
ration systems to deal simultaneously with configurators of multiple
suppliers over the Web. This allows for end-to-end selection, order-
ing and provisioning of complex products and services supplied by
an extended value chain. We employ an ontology-based approach
that builds on the flexible integration of these configuration Web ser-
vices. Furthermore, it can be shown how the capability of each con-
figuration system can be described on the semantic level using an
application scenario from the telecommunication domain. For repre-
sentation of the semantic descriptions the evolving language standard
of the ’Semantic Web’ initiative [3], [12], OIL resp. DAML+OIL [9]
is employed.
In Section 2 we start by giving an overview on the application do-
main. In Section 3 we describe the Web service architecture and in
Section 4 a multi-layer ontology definition for our application do-
main is given. The interaction processes between the Web service
providers and requestors are discussed in Section 5.

2 Application scenario

Easy access to the corporate network and secure connections to busi-
ness partners is crucial in today’s economy. Virtual Private Networks
(VPN) extend the intranet of a possibly multi-national company and
are capable of meeting the access requirements at reduced cost using
the worldwide IP network services and dedicated service provider IP
backbones. VPN infrastructures are designed to be flexible and con-
figurable in order to be able to cope with a rich variety of possible
customer requirements. Therefore, the establishment of some con-
crete VPN involves different steps after determination of customer
requirements like locations to be connected or specification of re-
quired bandwidth: selection of adequate access facilities from the
customer site to some entry point to the VPN backbone, reservation
of bandwidth within the backbone, as well as configuration of rout-
ing hardware and additional services like installation support.
Note, that it is very unlikely that all these products and services
needed for the provision of such a VPN can be supplied by one sin-
gle organization, but are in general made available by different spe-
cialized solution providers, e.g., Internet Service Providers, telecom-
munication companies or hardware manufacturers (see Figure 1).
Therefore, VPNs are typically marketed by specialized resellers (or
telecommunication companies like two of our application partners)

82

that integrate the services of individual suppliers and offer complete
VPN solutions to their customers.

IP LAN

CE

PE

P

M

G

Internet

AG

PI

Provider Interconnect

AG
 Access Gateway

PE
 Provider Edge Router

P
 Provider Core Router

M
 Modem Rack

G
 Internet Gateway

PI

CE
 Customer Edge Router

Figure 1. IP-VPN sketch

The integrator/reseller company contracts with the customer and
determines - according to the geographic location of the different
sites and the qualitative requirements with regards to bandwidth,
quality of service or cost limits - the layout of the network service.
This configuration task includes the selection of adequate access fa-
cilities from the customer site to some entry point of a VPN back-
bone, reservation of bandwidth within the backbone, as well as pa-
rameter setting for routing hardware and configuration of additional
services like installation support. Considerable parts of this service
package will then be sourced from the specialized solution providers
[7].

3 CAWICOMS environment

In the given application scenario, problem solving capabilities are
distributed over several business entities that need to cooperate on a
customer request for joint service provision. This Peer-to-Peer (P2P)
interaction approach among a dynamic set of participants without
a clear assignment of client and server roles asks for applying the
paradigm of Web services [17]. It stands for encapsulated application
logic that is open to accept requests from any peer over the Web.

3.1 Web services

Basically, a Web Service can be defined as an interface that describes
a collection of provided operations. In the following we interpret the
application logic that configures a product as a standardized Web
service. It can be utilized by interface agents interacting with human
users in a Web shop as well as by agents that outsource configuration
services as part of their problem solving capabilities. When imple-
menting a Web Service the following issues need to be addressed
[17]:

� Service publishing - the provider of a service publishes the de-
scription of the service to a service registry which in our case are
configuration agents with mediating capabilities. Within this reg-
istry the basic properties of the offered configuration service have

to be defined in such a way that automated identification of this
service is possible.

� Service identification - the requestor of a service imposes a set of
requirements which serve as the basis for identifying a suitable
service. In our case, we have to identify those suppliers, that are
capable of supplying goods or services that match the specific cus-
tomer requirements.

� Service execution - once a suitable service has been identified
the requirements need to be communicated to the service agent
that can be correctly interpreted and executed. UDDI, WSDL, and
SOAP are the evolving technological standards that allow the in-
vocation of remote application logic based on XML syntax.

Following the vision behind the Semantic Web effort [3, 12], the
sharing of semantics is crucial to enable the WWW for applications.
In order to have agents automatically searching, selecting and exe-
cuting remote services, representation standards are needed that al-
low the annotation of meaning of a Web service which can then be
interpreted by agents with the help of ontologies.

3.2 Ontologies

In order to define a common language for representing capabilities of
configurable products and services we use a hierarchical approach of
related ontologies [11, 4]. Ontologies are employed to set a seman-
tic framework that enables the semantic description of Web services
in the domain of product configuration. Furthermore, we follow the
proposal of [10] to structure the ontological commitments into three
hierarchy levels (see Figure 2), namely the generic ontology level,
the intermediate level and the domain level.

� Generic ontology level - Most modeling languages include some
kind of meta-model for representing classes and their relationships
(e.g. the frame ontology of Ontolingua [11], the UML meta-model
[24] or the representation elements of ontology languages such as
OIL or DAML+OIL). Such a meta-model can be interpreted as
a generic level ontology. Example modeling concepts included in
those ontologies are frame, class, relation, association, generaliza-
tion, etc.

� Intermediate ontology level - the basic modeling concepts formu-
lated on the generic ontology level can be refined and used in or-
der to construct an intermediate ontology which includes wide-
spread modeling concepts used in the domain. Such an ontology
for the configuration domain is discussed in [26] who introduce
component types, function types, port types, resources and dif-
ferent kinds of constraints as basic configuration domain specific
modeling concepts.

� Domain ontology level - finally, using the modeling concepts of
the intermediate level, we are able to construct application do-
main specific ontologies (e.g. network services), which can also
be denoted as a configuration models.

Note, that similar approaches to structure ontologies are already im-
plemented in a set of ontology construction environments (e.g. [11]).
Our contribution in this context is to illustrate their application for
integrating configuration systems.

3.3 Interaction scenario

In the following we sketch our Web service scenario that focuses on
enabling automated procurement processes for customisable items
(see Figure 2). Basically there exist two different types of agents,

83

those that only offer configuration services (L) and those that act
as suppliers as well as requestors for these services (I). The deno-
tation of agent types derives from viewing the informational supply
chain of product configuration as a tree5, where a configuration sys-
tem constitutes either an inner node (I) or a leaf node (L). Agents of
type I have therefore the mediating functionality incorporated, that
allows the offering agents to advertise their configuration services.
Matchmaking for service identification is performed by the mediat-
ing capability that is internal to each configurator at an inner node.
It is done on the semantic level that is eased by multi-layered on-
tological commitments (as discussed in the preceding subsection)
among participants. It is assumed that suppliers share application
domain ontologies that allow them to describe the capabilities of
their offered products and services on the semantic level. An ap-
proach that abstracts from syntactical specifics and proposes a rea-
soning on the semantic level also exists for transforming standard-
ized catalog representations in [8]. Abstract service descriptions can
be interpreted as physical sub-structures of the product or as a kind
of standardized functional description of the product6 . Furthermore,
agents in the role of customers (service requestors) can impose re-
quirements on a desired product; these requirements can be matched
against the functional product description provided by the suppliers
(service providers). If one or more supplier descriptions match with
the imposed requirements, the corresponding configuration service
providers can be contacted in order to finally check the feasibility of
the requirements and generate a customized product/service solution.

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean

voiceMail : Boolean

whiteboard : Boolean

protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean

gatewayH320toH323 : Boolean

pc2PhoneConn : Boolean

startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean

xPressions : Boolean

monitoringSW : Boolean

support : Boolean

additionalServerPC : Boolean

manual : Boolean

ioInterface : Boolean

switchingSW : Boolean

rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000

version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..1
1..1

0..1
0..1

TeCOM

analog_subscribers : 1..1000

digital_subscribers : 1..1000

ISDN_subscribers : 1..1000

trunk_lines : 1..10

max_load_peaks : 1..1000

end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}

currency : enum{"EURO","USD"}

<<ComponentType>>

1..1
1..1

0..1
0..1

0..1
0..1

0..1
0..1

XPFeatures

smsPackage : Boolean

smsBox : Boolean

faxOnDemand : Boolean

text2Speech : Boolean

faxMail : Boolean

isdnServices : Boolean

unifiedMessaging : Boolean

voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}

manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..1
0..1

1..1
1..1

XPServerPC

performanceLevel : 1..3

winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

0..1
0..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean

voiceMail : Boolean

whiteboard : Boolean

protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean

gatewayH320toH323 : Boolean

pc2PhoneConn : Boolean

startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean

xPressions : Boolean

monitoringSW : Boolean

support : Boolean

additionalServerPC : Boolean

manual : Boolean

ioInterface : Boolean

switchingSW : Boolean

rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000

version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..1
1..1

0..1
0..1

TeCOM

analog_subscribers : 1..1000

digital_subscribers : 1..1000

ISDN_subscribers : 1..1000

trunk_lines : 1..10

max_load_peaks : 1..1000

end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}

currency : enum{"EURO","USD"}

<<ComponentType>>

1..1
1..1

0..1
0..1

0..1
0..1

0..1
0..1

XPFeatures

smsPackage : Boolean

smsBox : Boolean

faxOnDemand : Boolean

text2Speech : Boolean

faxMail : Boolean

isdnServices : Boolean

unifiedMessaging : Boolean

voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}

manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..1
0..1

1..1
1..1

XPServerPC

performanceLevel : 1..3

winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

0..1
0..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean

voiceMail : Boolean

whiteboard : Boolean

protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean

gatewayH320toH323 : Boolean

pc2PhoneConn : Boolean

startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean

xPressions : Boolean

monitoringSW : Boolean

support : Boolean

additionalServerPC : Boolean

manual : Boolean

ioInterface : Boolean

switchingSW : Boolean

rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000

version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..1
1..1

0..1
0..1

TeCOM

analog_subscribers : 1..1000

digital_subscribers : 1..1000

ISDN_subscribers : 1..1000

trunk_lines : 1..10

max_load_peaks : 1..1000

end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}

currency : enum{"EURO","USD"}

<<ComponentType>>

1..1
1..1

0..1
0..1

0..1
0..1

0..1
0..1

XPFeatures

smsPackage : Boolean

smsBox : Boolean

faxOnDemand : Boolean

text2Speech : Boolean

faxMail : Boolean

isdnServices : Boolean

unifiedMessaging : Boolean

voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}

manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..1
0..1

1..1
1..1

XPServerPC

performanceLevel : 1..3

winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

0..1
0..1

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean

voiceMail : Boolean

whiteboard : Boolean

protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean

gatewayH320toH323 : Boolean

pc2PhoneConn : Boolean

startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean

xPressions : Boolean

monitoringSW : Boolean

support : Boolean

additionalServerPC : Boolean

manual : Boolean

ioInterface : Boolean

switchingSW : Boolean

rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000

version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..1
1..1

0..1
0..1

TeCOM

analog_subscribers : 1..1000

digital_subscribers : 1..1000

ISDN_subscribers : 1..1000

trunk_lines : 1..10

max_load_peaks : 1..1000

end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}

currency : enum{"EURO","USD"}

<<ComponentType>>

1..1
1..1

0..1
0..1

0..1
0..1

0..1
0..1

XPFeatures

smsPackage : Boolean

smsBox : Boolean

faxOnDemand : Boolean

text2Speech : Boolean

faxMail : Boolean

isdnServices : Boolean

unifiedMessaging : Boolean

voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}

manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..1
0..1

1..1
1..1

XPServerPC

performanceLevel : 1..3

winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

0..1
0..1

Generic ontology level

I

Intermediate ontology level

Domain

ontology level

semantic

service

descriptions

L

I

L

Configuration Web

service, including

mediating capability

Basic configuration

Web service

L
I

L

GermanManual

version : enum{"3.0"}

<<ComponentType>>

EnglishManual

version : enum{"2.0"}

<<ComponentType>>

IPVFeatures

LDAPConnector : Boolean

voiceMail : Boolean

whiteboard : Boolean

protocol : enum{"T.120","H.320","H.323"}

conferenceFunction : Boolean

gatewayH320toH323 : Boolean

pc2PhoneConn : Boolean

startPackage : enum{"standard","deluxe","comfort"}

manual : Boolean

<<ComponentType>>

IPVServerPC

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

Features

basicSystem : enum{"G9","G19","G29"}

ipVoice : Boolean

xPressions : Boolean

monitoringSW : Boolean

support : Boolean

additionalServerPC : Boolean

manual : Boolean

ioInterface : Boolean

switchingSW : Boolean

rackCapacity : 1..5

<<ComponentType>>

Support

service : enum{"phone","remote","local","premium"}

<<ComponentType>>

Manual

numberOfManuals : 0..1000

version : enum{"2.0","3.0"}

<<ComponentType>>

IPVoice

version : enum{"1.0","2.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

1..1
1..1

0..1
0..1

TeCOM

analog_subscribers : 1..1000

digital_subscribers : 1..1000

ISDN_subscribers : 1..1000

trunk_lines : 1..10

max_load_peaks : 1..1000

end_user_devices : 1..3000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

version : enum{"2.0","3.0"}

currency : enum{"EURO","USD"}

<<ComponentType>>

1..1
1..1

0..1
0..1

0..1
0..1

0..1
0..1

XPFeatures

smsPackage : Boolean

smsBox : Boolean

faxOnDemand : Boolean

text2Speech : Boolean

faxMail : Boolean

isdnServices : Boolean

unifiedMessaging : Boolean

voiceMail : Boolean

startPackage : enum{"XPStartUp1","XPStartUp2","XPStartUp3"}

manual : Boolean

<<ComponentType>>

XPressions

version : enum{"2.0","3.0"}

max_users : 10..1000

country : enum{"AUT","GB","FRA","USA","GER","ITA"}

<<ComponentType>>

0..1
0..1

1..1
1..1

XPServerPC

performanceLevel : 1..3

winNtServer : enum{"NT4.0","NT5.0"}

keyboard : Boolean

monitor : Boolean

<<ComponentType>>

0..1
0..1

advertises

advertises

advertises

advertises

advertises

semantic

service

descriptions

Legend:

u
se

Figure 2. Web service scenario

�

Note, that only the required configuration services are organized in a tree
structure, which must not hold for the involved companies in the value chain
of a product.

�

In [18] this kind of description is denoted as a functional architecture of the
configured product.

4 Multi-layer Ontology Definition

As sketched in Figure 2 the semantic descriptions of the offered con-
figuration services are based on the three layer approach of [10]. The
creation of service profiles for each involved configuration system
is supported by a set of knowledge acquisition tools, that allow the
definition of the product structure with a graphical UML-based no-
tation with precise semantics [5]. Using translators these implemen-
tation independent models are translated into proprietary knowledge
bases of problem solving engines such as the Java-based JConfigu-
rator from ILOG7 [14].
However, in the following we will describe our approach employ-
ing DAML+OIL as a language for the Semantic Web with precise
model theoretic semantics. The correspondence between represen-
tation concepts needed for modeling configuration knowledge bases
and DAML+OIL is shown in [6]. The uppermost layer of our ontol-
ogy is the generic ontology level. At this level the basic represen-
tation concepts and ontological modeling primitives are introduced.
These are inherent to the concepts of the modeling language such
as class and slot definitions in OIL. Therefore, it meets the expec-
tations towards the uppermost layer and in the following subsection
we move on to show which configuration domain specific modeling
primitives are to be provided on the intermediate ontology level. For
reasons of readability OIL text [1] is used for representation, i.e. no
RDFS-based representation of DAML+OIL is used.

4.1 Basic Configuration Ontology

A general ontology for the configuration domain is important in or-
der to allow easy configuration knowledge reuse and the integration
of complex configurable products within marketplace environments.
The ontologies proposed by [26] and [5] serve as a basis for the con-
struction of application domain specific ontologies which allow the
description of configuration services on a semantic level. Refined
concepts of classes such as component types, resource types, port
types, or function types are the basic modeling concepts useful for
building the basic product structure. The ontology defined in [26]
is based on the frame ontology of Ontolingua [11] and represents a
synthesis of resource-based, function- based, connection-based, and
structure-based approaches for representing configuration problems.
A similar set of concepts is discussed in [5], where the configuration
ontology is represented as a UML profile with additional first or-
der formalizations guaranteeing a precise semantics for the provided
modeling concepts.

4.2 Product Domain Ontology for Network
Services

While the intermediate configuration ontology contains only the ba-
sic concepts for modeling product structures, it allows the construc-
tion of more specialized ontologies for specific application domains.
Furthermore, axioms and slot constraints provided in OIL can be
employed to formulate constraints on the configuration model. Ex-
actly these concepts will be refined in the following for representing
(application) domain specific ontologies that can be interpreted as
a kind of physical or functional product description [18], which is
used as a basic framework for formulating capabilities of suppliers
and requirements of customers. Figure 3 represents fragments of an

�

See http://www.ilog.com for reference.

84

ontology for defining configuration services for IP-based Virtual Pri-
vate Networks (IP-VPN)8. For our example we will concentrate on

begin
-
ontology

ontology
-
container

title
Product Domain Ontology

description
 IP
-
based Virtual Private Networks

�

language
"OIL"

ontology
-
definitions

slot
-
def
protocol

subslot
-
of

HasPart
//defined in Configuration Ontology

class
-
def
AccessProtocol

sub
class
-
of

Function
//defined in Configuration Ontology

�

class
-
def
RouterAccess

subclass
-
of

AccessProtocol

class
-
def
ModemAccess

subclass
-
of

AccessProtocol

class
-
def
InternetAccess

subclass
-
of

AccessProtocol

class
-
def defined
 Country

�

cla
ss
-
def defined
 Town

 slot
-
constraint
 town_of
 cardinality
 1

Country

class
-
def
LineService

subclass
-
of

Function
//defined in Configuration Ontology

 slot
-
constraint
 bandwidth
 cardinality
 1 integer

 slot
-
constraint
 latency
 cardinality
 1 integer

 slot
-
constraint
 identifier
 has
-
value
integer

class
-
def
BackBoneSection

subclass
-
of

LineService

 slot
-
constraint
 access_from
 has
-
value
AccessLine

�

class
-
def defined
 AccessLine

subclass
-
of

LineService

 slot
-
constraint
 protocol
 cardinality
 1 AccessProt
 ocol

 slot
-
constraint
 access_to
 cardinality
 1 BackBoneSection

 slot
-
constraint
 pop
 cardinality
 1 Town

instance
-
of
UK Country

�

instance
-
of
Manchester

Town

related town_of
 Manchester UK

end
-
ontology

Figure 3. Domain ontology for IP-VPN services

the provision of AccessLines that connect a customer location (slot
pop - ’point of presence’) to a BackBoneSection. The chosen pro-
tocol (a refinement of the HasPart decomposition relationship in the
configuration domain) can be either performed via a router, via a mo-
dem or via an internet connection to some access gateway (Router-
Access, ModemAccess and InternetAccess are therefore specialized
AccessProtocols). In addition, an AccessLine is characterized by a
bandwidth and latency property that it inherits from its superclass
LineService, which is in turn a refinement of the Function concept
(abstract characteristic of a product or service) from the basic con-
figuration ontology (intermediate ontology level). The instances con-
tained in the ontology shown in Figure 3 can be interpreted as basic
catalog entries representing common knowledge (e.g., British towns
or zip codes), which are assigned to base classes of the application
domain ontology (in this case Manchester is provided as basic in-
stance of the class Town).

�

The complete example ontology in DAML+OIL can be downloaded from
http://www.cawicoms.org/ontology/ipvpn.rdfs.

5 Web service scenario

The interaction between service providing agents can be differenti-
ated into the three areas service publishing, identification and exe-
cution. As depicted in the scenario in Figure 2, only those agents
can request a service that have the mediating capabilities to receive
service advertisements and perform service identification.

5.1 Service publishing

Now we will show how the ontologies defined in Section 4 are used
to semantically describe the offered configuration services. Semantic
description of the demanded services allows us to implement efficient
matchmaking between supply and demand. Within these semantic
annotations, restrictions on the domain and cardinality of slots, con-
straints on connections and structure, as well as the possible types
of classes are possible. Furthermore, offered component instances
can be represented as subconcepts (e.g. read from a catalog) of the
classes of the service domain-specific configuration ontology. Addi-
tional supplier-specific constraints are introduced. Consequently, for
the semantic description of the capability of a configuration service
of a specific supplier the product domain ontology level provides the
necessary base concepts that can be further refined. Figure 4 contains
the semantic definition of the AccessLine services that are offered by
the fictitious telecommunication service providers BTT and Luton.
BTT serves customers located in the UK and Ireland (constraint on
the slot pop) and can provide access to BackBoneSections 1 through
10 with a maximum bandwidth of 2000. In contrast Luton offers con-
nections from towns in France and the UK. Only modem or inter-
net are offered protocol choices, a lower bandwidth is supported and
fewer BackBoneSections are accessible. For tailoring the application

class
-
def defined
BTT_AccessLine

subclass
-
of

AccessLine

 slot
-
constraint
access_to
 value
-
type

 ((slot
-
constraint
identifier
 value
-
type (min
1
)) and

 (slot
-
constraint
identifier
 value
-
type (max
10
)))

 slot
-
constraint
pop
 value
-
type ((slot
-
const
raint
town_of
 value
-
type (one
-
of
UK
))

 or (slot
-
constraint
town_of
 value
-
type (one
-
of
Ireland
)))

 slot
-
constraint
bandwidth
 value
-
type (max
2000
)

class
-
def defined
Luton_AccessLine

subclass
-
of

AccessLine

 slot
-
constraint
pop
 value
-
type ((slot
-
con
straint
town_of
 value
-
type (one
-
of
France
))

 or (slot
-
constraint
town_of
 value
-
type (one
-
of
UK
)))

 slot
-
constraint
access_to
 value
-
type

 ((slot
-
constraint
identifier
 value
-
type (min
5
)) and

 (slot
-
constraint
identifier
 value
-
type (max
8
)))

 sl
ot
-
constraint
bandwidth
 value
-
type (max
1200
)

 slot
-
constraint
protocol
 has
-
value (
ModemAccess
 or
InternetAccess
)

Figure 4. Semantic description of offered services

domain specific configuration ontology to supplier-specific circum-
stances tool support for acquisition and maintenance of configuration
models is needed. Within the CAWICOMS project a Knowledge Ac-
quisition Workbench is developed that provides the required tools for
designing the service descriptions with a graphical UML-based nota-
tion. The generic and the intermediate ontology level as described in
Section 4 are inherent to the modeling primitives offered by the tool
suite and therefore static in our approach. The tool environment sup-
ports human experts in defining and maintaining the application do-
main specific ontological descriptions as well as in integrating them.
The advertisement of the offered configuration services of different
suppliers is therefore part of an offline setup process. The functional

85

descriptions of the configurable products and services are commu-
nicated to all Web configurators that may act as customers for their
configuration service and integrated into their domain ontologies by
the human experts.

5.2 Service Identification

Having described service publication, we will now focus on the
identification of relevant Web service providers for a concrete
demand. This task has similarities with the surgical or parametric
search problem [16], e.g. ”a laptop with at least 20GB hard-disk,
800MHz Pentium III processor or better, manufactured either by
Dell or Compaq and costing less than 2000 USD”. However, for
the configuration domain we require even more enhanced search
capabilities for identifying the appropriate supply. The reason is,
that requirements cannot only be expressed as simple restrictions
on product attributes, but also as constraints on the structure. The
following example is based on the product domain ontology (Figure
3), requestors are enabled to semantically describe the requested
service as can be seen in Figure 5. Let us assume that we search
for an AccessLine provider that connects us from Manchester via
InternetAccess protocol to BackBoneSection ’3’ with a bandwidth
of 1200. Here the bandwidth slot-constraint is a simple attribute
restriction, but the constraint on the slot access to navigates to the
related class BackBoneSection and restricts the structure. For this

class
-
def defined
Required_AccessLine

subclass
-
of

AccessLine

 slot
-
constraint
bandwidth
 value
-
type (equal
1200
)

 slot
-
constraint
pop
 value
-
type (one
-
of
Manchester
)

 slot
-
constraint
protocol
 value
-
type
InternetAccess

 slot
-
constraint
access_to
 has
-
va
lue

 (slot
-
constraint
identifier
 has
-
value (equal
3
))

Figure 5. Semantic description of required service

example we can intuitively determine that BTT is an appropriate
supplier for the requested service, as the Required AccessLine
qualifies as a subclass to BTT AccessLine. However, for the general
case identification of subsumption relationships between offered
and required concepts is too restrictive. Consider the case where we
would need this AccessLine either from Manchester or from Munich.
Assuming all other restrictions remain unchanged, the modified
constraint on the slot pop is given in Figure 69. Although BTT still
provides an appropriate service, the constraint relaxation makes the
subsumption of Required AccessLine by BTT AccessLine impossi-
ble. So formally a description logic definition of the matchmaking
task for identification of an appropriate configuration service can be
defined as follows.

Given: A consistent description logic theory
�

that represents
the three ontological layers of our marketplace, a set of concepts������� ���
	�	
	
� �
��� that describe supply from � different suppliers
(i.e., service providers), and a set of concepts � representing the
requested service.

Task: Identify the set of concepts � , that contains all con-
cepts

���
with

�
��� � , where
���

is an appropriate service for �
�

Note, that the inherited cardinality constraint restricts slot pop to exactly
one Town, which gives this constraint an exclusive or semantics.

class
-
def defined
Required_AccessLine_1

subclass
-
of

AccessLine

�

 slot
-
constraint
pop
 value
-
type ((one
-
of
 Manchester
) or (one
-
of
 Munich
))

�

Figure 6. Modified service requirement

and ��� � .

Definition (appropriate service): A service
���

is an appro-
priate service for � , iff

�
��� � are consistent.

Note, that this definition diverges from the approaches taken
for matchmaking among heterogenous agents [27] or for Web
service identification [17]. For a detailed elaboration on the rela-
tionship between description logic and configuration knowledge
representation see [6].
As already mentioned in the previous subsection, the configuration
service models are defined within a knowledge acquisition environ-
ment and automatically translated into the proprietary knowledge
representation formalism of a configuration agent. In our imple-
mentation this matchmaking task is therefore performed as part of
the search process for a configuration solution of a constraint-based
configurator engine. For the internal representation of the advertised
service models as well as the service requests an object-oriented
framework for constraint variables is employed [14]. Reasoning
on service requirements as well as on service decomposition is
performed by the underlying Java-based constraint solver. The
formulation of service requests and their replies is enabled by a
WebConnector component that owns an object model layer that
accesses the internal constraint representation of the constraint en-
gine. This object model layer represents the advertised configuration
service descriptions. A service requestor agent imposes its service
request via an edit-query onto the object-model layer and retrieves
the configuration service result via a publish-query.
As will be also pointed out in the next subsection, the creation
of standards for the definition of semantics of Web services will
allow application independent mediating agents to accept service
advertisements and to perform the service identification task, which
is not the case in the current situation.

5.3 Service Execution

Requests for service execution must conform to an XML-based com-
munication protocol (WebConnector protocol) developed for the con-
figuration domain in accordance with the SOAP messaging standard.
This protocol defines

� a fixed set of methods with defined semantics for the configuration
domain, like creating components, setting values for parameters,
initiation of the search process, or retrieving results,

� a mechanism to exchange complex data structures like configu-
ration results and a language for expressing navigation expres-
sions within these data structures (compare to XML-Schema and
XPath), and

� extensibility mechanisms for special domains and support for a
session concept in HTTP-based transactions.

86

This way the semantics of the process model of the configuration
Web service is defined by a proprietary protocol. This assumption
works for our specific requirement of realizing collaborative config-
uration systems, but is only half way towards the vision of Web ser-
vices in the Semantic Web. Therefore, markup languages are required
that enable a standardized representation of service profiles for adver-
tisement of services as well as definitions of the process model. This
way, the task of identifying appropriate services and the decompo-
sition of a service request into several separate requests can be per-
formed by domain independent mediators. Due to the lack of these
standards, this mediating functionality is in our case performed by
application logic integrated into the configuration systems. DAML-
S10 is an example for an effort underway that aims at providing such
a standardized semantic markup for Web services that builds on top
of DAML+OIL.

6 Related Work

Beside standards for representing product catalogs [8], there exists a
number of approaches for standardizing electronic commerce com-
munication (e.g. Commerce XML - cXML or Common Business Li-
brary - CBL) - these are XML-based communication standards for
B2B applications11, which also include basic mechanisms for prod-
uct data interchange and can be interpreted as ontologies supporting
standardized communication between e-Business applications. How-
ever, these standards are restricted to the representation of standard-
ized products, i.e. the basic properties of complex products, espe-
cially configurable products are not considered. Basic mechanisms
for product data integration are already supported by a number of
state-of-the-art B2B applications. However, the integration of con-
figuration systems into electronic marketplace environments is still
an open issue, i.e. not supported by todays systems. Problem Solving
Methods (PSMs) [2] support the decomposition of reasoning tasks of
knowledge-based systems into sets of subtasks and inference actions
that are interconnected by knowledge roles. The goal of the IBROW
project [20] is the semiautomatic reuse of available problem solving
methods, where a software broker supports the knowledge engineer
in configuring a reasoning system by combining different PSMs. A
similarity to the work of [20] exists in the sense that the selection of
suppliers (and corresponding configuration systems) is a basic con-
figuration task, where configurators must be selected which are ca-
pable of cooperatively solving a distributed configuration task. The
approach is different in the sense that the major focus is on providing
an environment which generally supports a semi-automated reuse of
problem solving methods, whereas our approach concentrates on the
automated integration of configuration services in an e-business en-
vironment. The Infomaster system [15] provides basic mechanisms
for integrating heterogeneous information sources in order to provide
a unique entry point for the users of the system. Compared to our ap-
proach there is no support for the integration of configurable products
and the underlying configuration systems. The design of large scale
products requires the cooperation of a number of different experts. In
the SHADE (Shared Dependency Engineering) project [22] a KIF-
based representation [21] was used for representing engineering on-
tologies. This approach differs from the approach presented in this
paper in the sense that the provided ontology is majorly employed as
a basis for the communication between the different engaged agents,
but is not used as a means for describing the capabilities of agents.

���
See http://www.daml.org/services for reference.� �
An overview on existing e-Commerce frameworks for business to business
communication can be found in [25].

The STEP standard [13] takes into account all aspects of a product
including geometry and organisational data [19]. The idea of STEP is
to provide means for defining application specific concepts for mod-
eling products in a particular application domain. These application
specific concepts are standardised into parts of STEP called Applica-
tion Protocols which are defined using the EXPRESS data definition
language (Application Protocols are EXPRESS schemas). EXPRESS
itself includes a set of modeling concepts useful for representing con-
figurable products, however the language can not be used to define
an enterprise specific configuration model without leaving the STEP
standard. Similarities to our approach can be seen in the role of ap-
plication protocols in STEP which are very similar to the domain
ontology level discussed in this paper.

7 Conclusions

The Semantic Web [3] is the vision of developing enabling technolo-
gies for the Web which supports access to its resources not only to
humans but as well to applications often denoted as agent-based sys-
tems providing services such as information brokering, information
filtering, intelligent search or synthesis of services [20]. This paper
describes an application scenario for semantic Web services in the
domain of configuring telecommunication services. It demonstrates
how to apply Semantic Web technologies in order to support the inte-
gration of configurable products and services in an environment for
distributed problem solving. DAML+OIL-based configuration ser-
vice descriptions can be used in order to match them with given cus-
tomer requirements and the matchmaking task to determine the ade-
quacy of a service is defined. DAML+OIL formalisms are well suited
for representing the component structure of configurable products,
i.e. part-of associations and simple associations between component
types and corresponding basic constraints. However, technologies
supporting the vision of the Semantic Web are still under develop-
ment. In order to support a full scenario of distributed configuration
Web services, languages like DAML+OIL have to be extended with
language elements supporting the formulation of service advertise-
ments as well as process definitions for the interaction.

REFERENCES

[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, ‘OilEd: A Reason-
able Ontology Editor for the Semantic Web’, in Proceedings of Joint
Austrian/German Conference on Artificial Intelligence (KI), pp. 396–
408, Vienna, Austria, (2001).

[2] R. Benjamins and D. Fensel, ‘’, Special issue on problem-solving meth-
ods of the International Journal of Human-Computer Studies, 49(4),
(1998).

[3] T. Berners-Lee, Weaving the Web, Harper Business, 2000.
[4] B. Chandrasekaran, J. Josephson, and R. Benjamins, ‘What Are On-

tologies, and Why do we Need Them?’, IEEE Intelligent Systems, 14,1,
20–26, (1999).

[5] A. Felfernig, G. Friedrich, and D. Jannach, ‘UML as domain specific
language for the construction of knowledge-based configuration sys-
tems’, International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), 10(4), 449–469, (2000).

[6] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker,
‘A Joint Foundation for Configuration in the Semantic Web’, In Pro-
ceedings of the Workshop on Configuration, in conjunction with the�������

European Conference on Artificial Intelligence (ECAI-2002),
(2002).

[7] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘Web-based con-
figuration of Virtual Private Networks with Multiple Suppliers’, in Pro-
ceedings of the � �	� International Conference on Artificial Intelligence
in Design (AID), Cambridge, UK, (2002).

87

[8] D. Fensel, Y. Ding, B. Omelayenko, E. Schulten, G. Botquin,
M. Brown, and A. Flett, ‘Product Data Integration in B2B E-
Commerce’, IEEE Intelligent Systems, 16(4), 54–59, (2001).

[9] D. Fensel, F. vanHarmelen, I. Horrocks, D. McGuinness, and P.F. Patel-
Schneider, ‘OIL: An Ontology Infrastructure for the Semantic Web’,
IEEE Intelligent Systems, 16(2), 38–45, (2001).

[10] A. Gangemi, D. M. Pisanelli, and G. Steve, ‘An Overview of the
ONIONS Project: Applying Ontologies to the Integration of Medical
Terminologies’, Data and Knowledge Engineering, 31(2), 183–220,
(1999).

[11] T. Gruber, ‘A translation approach to portable ontology specifications’,
Knowledge Acquisition, 5, 199–220, (1993).

[12] J. Hendler, ‘Agents and the Semantic Web’, IEEE Intelligent Systems,
16(2), 30–37, (2001).

[13] ISO, ‘ISO Standard 10303-1: Industrial automation systems and inte-
gration - Product data representation and exchange - Part 1: Overview
and fundamental principles’, (1994).

[14] U. Junker, ‘Preference-programming for Configuration’, in Proceed-
ings of IJCAI, Configuration Workshop, Seattle, (2001).

[15] A. M. Keller and M. R. Genesereth, ‘Multivendor Catalogs: Smart Cat-
alogs and Virtual Catalogs’, The Journal of Electronic Commerce, 9(3),
(1996).

[16] D.L. McGuinness, ‘Ontologies and Online Commerce’, IEEE Intelli-
gent Systems, 16(2), 9–10, (2001).

[17] Sh. McIlraith, T.C. Son, and H. Zeng, ‘Mobilizing the Semantic Web
with DAML-Enabled Web Services’, in Proceedings of the IJCAI 2001
Workshop on E-Business and the Intelligent Web, pp. 29–39, Seattle,
WA, (2001).

[18] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in Proceedings

� � ���
International Joint Conf. on Artificial In-

telligence, pp. 1395–1401, Detroit, MI, (1989).
[19] T. Mnnist, A. Martio, and R. Sulonen, ‘Modelling generic prod-

uct structures in STEP’, Computer-Aided Design, 30,14, 1111–1118,
(1999).

[20] E. Motta, D. Fensel, M. Gaspari, and V.R. Benjamins, ‘Specifications
of Knowledge Components for Reuse’, in Proceedings of

� � �	�
Interna-

tional Conference on Software Engineering and Knowledge Engineer-
ing, pp. 36–43, Kaiserslautern, Germany, (1999).

[21] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and
W. Swartout, ‘Enabling technology for knowledge sharing’, AI Mag-
azine, 12,3, 36–56, (1991).

[22] G.R. Olsen, M. Cutkosky, J.M. Tenenbaum, and T.R. Gruber, ‘Collabo-
rative Engineering based on Knowledge Sharing Agreements’, in Pro-
ceedings of the ACME Database Symposium, pp. 11–14, Minneapolis,
MN, USA, (1994).

[23] B.J. PineII, B. Victor, and A.C. Boynton, ‘Making Mass Customization
Work’, Harvard Business Review, Sep./Oct. 1993, 109–119, (1993).

[24] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manual, Addison-Wesley, 1998.

[25] S.S.Y. Shim, V.S. Pendyala, M. Sundaram, and J.Z. Gao, ‘E-Commerce
Frameworks’, IEEE Computer, Oct. 2000, 40–47, (2000).

[26] T. Soininen, J. Tiihonen, T. Mnnist, and R. Sulonen, ‘Towards a General
Ontology of Configuration’, AI Engineering Design Analysis and Man-
ufacturing Journal, Special Issue: Configuration Design, 12(4), 357–
372, (1998).

[27] K. Sycara, M. Klusch, and S. Widoff, ‘Dynamic Service Matchmak-
ing among Agents in Open Information Environments’, ACM SIGMOD
Record, Special Issue on Semantic Interoperability in Global Informa-
tion Systems, (1999).

88

A Joint Foundation for Configuration
in the Semantic Web

Alexander Felfernig
�
, Gerhard Friedrich

�
, Dietmar Jannach

�
, Markus Stumptner

�
, and Markus Zanker

�

Abstract. Productconfigurationis a major commercialapplica-
tion of knowledge-basedsystems,andjoint configurationby multiple
businesspartnersis becomingakey applicationin today’shighly spe-
cializedeconomy. The requiredintegrationof configurationknowl-
edgeis a challengingtaskdueto thevarietyof knowledgerepresen-
tation formalismsusedin commercialconfigurators.Ontologylan-
guagessuchasDAML+OIL provideaninfrastructurefor theSeman-
tic Webwith thegoalof intelligentinformationintegration.Theaim
of thispaperis to show theapplicabilityof suchlanguagesfor build-
ing configurationknowledgebases.Wejoin thetwo majorstreamsin
knowledge-basedconfiguration(descriptionlogicson onehandand
predicatelogic, including constraint-basedand resource-balancing
techniqueson the other)by giving a descriptionlogic baseddefini-
tion of aconfigurationtaskandshowing its equivalencewith existing
consistency-baseddefinitions.Weshow thatSemanticWebontology
languagescanbe appliedto configurationby formalizing language
elementsrelevant for building configurationknowledgebasesand
discussextensionsneededin orderto provide full fledgedconfigu-
ration knowledgerepresentation.The result is a commonbasisfor
currentconfigurationapproacheson theSemanticWebthatis neces-
saryfor theprovision of joint configurationservices.

1 Introduction

Knowledge-basedconfigurationhasa long history as a successful
AI applicationarea(e.g.,[3, 10,12,13,15,19]). Startingwith rule-
basedsystemssuchasR1/XCON[3], varioushigherlevel represen-
tationformalismsweredevelopedto exploit theadvantagesof more
conciserepresentation,fasterapplicationdevelopment,highermain-
tainability andmoreflexible reasoning.Although theserepresenta-
tions have proven their applicability in variousreal world applica-
tions, the heterogeneityof configurationknowledgerepresentation
is the major obstacleto incorporatingconfigurationtechnologyin
eCommerceenvironments.Thetrendtowardshighly specializedso-
lution providersresultsin asituationwheredifferentconfiguratorsof
complex productsandservicesmustbe integratedin orderto trans-
parentlysupportdistributedconfigurationproblemsolving.

For this integration,configuratorsmusthave a clearcommonun-
derstandingof the problemdefinition and the semanticsof the ex-
changedknowledge.Consequently, it is necessaryto agreeon the
definition of a configurationproblemand its solution. Of the two
currentmainstreamsin representingandsolvingconfigurationprob-�

Institut für Wirtschaftsinformatikund Anwendungssysteme,Produktion-
sinformatik,Universitätsstrasse65-67,A-9020Klagenfurt,Austria,email:
{ felfernig,friedrich,jannach,zanker}@ifit.uni-klu.ac.at.�
Universityof SouthAustralia,AdvancedComputingResearchCentre,5095
MawsonLakes(Adelaide),SA, Australia,email: mst@cs.unisa.edu.au.

lems,thefirst approachis basedonpredicatelogic or varioussimpli-
fiedvariantsthereof,specificallyconstraint-basedsystems(including
theirdynamicandgenerativevariants,e.g.,[10, 13,14]) andresource
balancingmethods(e.g.,[12]). Thesecondapproachusesdescription
logicsasknowledgerepresentationandreasoningmechanism(e.g.,
[19]). Clearly, anintegrationof theseapproachesisamajormilestone
for configuratorintegration.

A solution for the exchangeof knowledge is the provision of
a standardizedconfiguration knowledge representationlanguage
which is basedon state-of-the-artWeb technologiesallowing easy
integrationof existing proprietaryconfigurationenvironments.On-
tologyrepresentationlanguagessuchasOIL [9] or DAML+OIL [18]
developedin thecontext of theSemanticWeb[4] arewell suitedfor
designingandsharingontologies.Theselanguagesarestrongly in-
fluencedby descriptionlogicsandthereforepossesscleardeclarative
semantics,providing oneimportantpreconditionfor theexchangeof
knowledge.Nonetheless,their rootsin descriptionlogics reinforces
theneedfor thedefinitionof acommonview of aconfigurationtask,
sothatpredicatelogic basedrepresentationscanbemappedto them.

Thepracticalconsequenceof a commonlyacceptedproblemdef-
inition andknowledgesemanticsin joint provisioningof configura-
tion servicesis a well definedinterfacebetweenconfiguratorimple-
mentations.Proprietaryconfigurationsystemscanbe independently
implementedfollowing differentapproachesandarestill ableto in-
teroperate.We only require that cooperatingconfiguratorsdeliver
valid solutionsw.r.t. thecommondefinitionof theproblem,thesolu-
tion, andthesemanticsof theexchangedknowledge.

In this paperwe give a descriptionlogics baseddefinition of a
configurationtaskandshow the equivalenceof this definition with
a consistency-baseddefinitiongiven in [8] - themajor resultof this
equivalenceis that configurationtasksdefinedin termsof descrip-
tion logics andpredicatelogic caneasilybe transformedinto each
other and consequentlybe representedin ontology representation
languagessuchasDAML+OIL. Usingconceptsof OIL3, wepresent
the constitutingelementsof a configurationknowledgerepresenta-
tion languageby formalizing modelingconceptsof de facto stan-
dardconfigurationontologies[7, 17] employed in industrial appli-
cations4. In addition,we point out extensionsneededto apply OIL
andDAML+OIL for full fledgedconfigurationknowledgerepresen-
tation.As a result,we provide a commonbasisfor knowledgerep-
resentationin configurationproblemsolving,thusenhancingtheap-
plicability of configurationtechnologyto Web-basedenvironments.

Therestof thepaperis organizedasfollows.In Section2 weintro-

�
For presentationpurposeswe employ OIL text - this representationcan
easilybetransformedinto acorrespondingDAML+OIL representation.�
Note that thesediffer somewhat from the configurationontologythatwas
describedfor demonstrationpurposesin [11].

89

duceanexamplethatprovidesanoverview of themodelingconcepts
requiredfor building configurationknowledgebases.In Section3 we
give a descriptionlogicsbaseddefinitionof a configurationtaskand
show its equivalenceto theconsistency-baseddefinitiongivenin [8].
In Section4 wedescribeanOIL-basedformalizationof themodeling
conceptspresentedin Section2 andsummarizetheresults.Section5
closeswith conclusions.

2 Configuration domain specific modeling concepts

In the following we discussa set of relevant modeling concepts
for building configurationknowledgebases.Theseconceptsareex-
tractedfrom the configurationontologiesdefinedin [7, 17]. Figure
1 shows thesimplifiedstructureof a configurableComputer system
which is composedof thefollowing representationconcepts.

Component types representthe parts,a final productis built of -
they arecharacterizedby attributes(e.g.,the componenttype CPU
is characterizedby theattributeclockrate). Componenttypeswith a
similar structurearearrangedin a generalization hierarchyandrep-
resentchoicesfor the configurableproduct (e.g., in the final con-
figuration an instanceof CPU can be either a CPU1 or a CPU2).
Part-whole relationshipscanbeconsideredasbill-of-materialrepre-
sentationssemanticallyenrichedwith multiplicities, statinga range
of how many subpartsanaggregatecanconsistof (e.g.,a MB must
containat leastoneCPU andat mosttwo CPUs). In additionto the
numberandtypesof differentcomponents,theproducttopologymay
beimportantin afinal configurationaswell, i.e.,how thecomponents
areinterconnectedto eachother(e.g.,which videoport is usedin the
configurationto connecttheVideocard with theScreen).

Additionally, a setof constraintsspecifiesallowed combinations
of component-andattributesettingsin thefinal configuration.Some
componenttypescannotbeusedin thesamefinal configuration(they
areincompatible). E.g.,we canimposetheconstrainton theproduct
structureof Figure 1 that a CPU1 is incompatiblewith a mother-
boardMB2. In somecases,theexistenceof acomponentof acertain
type requires the existenceof an instanceof anotherspecifictype.
Regardingtheproductstructureof Figure1, we canimposethecon-
straintthattheexistenceof a CPU2 requirestheexistenceof a MB2.
Finally, partsof a configurationproblemcanbe interpretedasa re-
sourcebalancingtask,wheresomeof thecomponentsareproducers
andothersareconsumers. In thefinal configuration,consumersand
producersmustbebalancedw.r.t. someresourcebalancingcriteria-
e.g.,the amountof installedhard-diskcapacityis the upperbound
for thecapacityrequirementsof the installedsoftware.In Section4
we will show how to representtheseconceptsin extendedOIL [9].

3 Defining configuration tasks

For the descriptionof a configurationtask we employ a descrip-
tion logic language(e.g., OIL) starting from a schema ���	�

���������������

of disjoint setsof namesfor concepts,roles,and
individuals [5]. Conceptscan be seenasunarypredicatesdefining
classes(componenttypes).Rolesare usedto expressrelationships
betweendifferentelementsof a domain.Finally, individualsarespe-
cific namedelementsof thedomain5.

Definition 1 (Configuration problem in description logic): In
general we assume a configuration problem is described by a triple	���������� �! "� �����$#&%�')(+*"���,� . ������� represents the domain-

In thefollowing we assumethatthereaderis familiar with theconceptsof
OIL. See[9] for anintroductorytext.

CPU1

clockrate : 300

<<Component>>

CPU2

clockrate : 500

<<Component>>

IDEUnit

hdcapacity : 25000

<<Component>>

SCSIUnit

hdcapacity : 30000

<<Component>>

MB1

<<Component>>

MB2

<<Component>>

videoport

<<Port>>

CPU

clockrate : 300..500

<<Component>>

Videocard

<<Component>>

2
2

screenport

<<Port>>

1
 0..1
1
 0..1

conn

HDUnit

hdcapacity : 25000..30000

<<Component>>

MB

<<Component>>

1..2
1..2

1
1

Screen

<<Component>>

2
2

Computer

<<Component>>

1..6
1..6
 1..2
1..2

0..1
0..1

Software

swcapacity : 1..100

<<Component>>
 0..100
0..100

Figure 1. Exampleconfigurationmodel

description of the configurable product and �! "� ��� specifies the
particular system requirements defining an individual configura-
tion problem instance.

#&%�')(+* ���
comprises a set of concepts#/.1032547698;:<

�

and a set of roles .10=2>47698�:?��� which serve as a
configuration language for the description of actual configurations
(solutions). A configuration knowledge base @+A ��� � ��������B
�! "� ��� is constituted of sentences in a description language. C

In thefollowing we will definea solutionof a configurationprob-
lem basedon the interpretationof conceptsand roles. In addition
we requirethat roles in

#&%�')(+*"���
aredefinedover the domains

given in
#/.D0325476E8

, i.e., we add for each 6<F .10=2>47698 the role
descriptionsGIHKJML
N 	 6 � � #&��OQP

and R OQPS	 6 � � #&��OQP
for#&��OQP�T�VUXWZY�[5W]\1^1_5` Yba # 6 to the knowledgebase@+A �c� if such

descriptionsare not subsumedby other descriptionsalreadycon-
tainedin theknowledgebase.

Example 1: In this examplewe usea part of our Computer on-
tology (seeFigure1) that comprisesCPUs andMBs. On eachMB
at leastonebut at mosttwo CPUs arepluggedin (constraintd �). A
CPU mustalwaysbe mountedon a MB (constraintd �). A CPU of
typeCPU2 mustbemountedon a MB of typeMB2 (constraintd �).
Thedomaindescription

�������
={

class-defefA subclass-of(egA�h or efA;i)
slot-constraintcpu-of-mb min-cardinality1

#&jlk
slot-constraintcpu-of-mb max-cardinality2

#&jlk
. [d �]

class-defefAmh subclass-ofefA .
class-defefAni subclass-ofefA .
disjoint egA�h$efAni .
class-def

#&jlk
subclass-of(

#&jlk h or
#&jlk i)

slot-constraintmb-of-cpu cardinality1 egA . [d �]
class-def

#&jlk h subclass-of
#&jlk

.
class-def

#&jlk i subclass-of
#&jlk

slot-constraintmb-of-cpu cardinality1 egA;i . [d �]
disjoint

#&jlk h #&jlk i .
disjoint

#&jlk egA .
slot-defmb-of-cpu

inversecpu-of-mb domain
#&jlk

rangeegA .
slot-defcpu-of-mb

inversemb-of-cpu domain efA range
#&jlk

.} C
Thecustomerrequirement“two CPUsof typeCPU1 andoneCPU

of typeCPU2” is expressedby �! "� ��� ��o (instance-of c1 CPU1),
(instance-of c2 CPU1), (instance-of c3 CPU2) p . Theconfiguration
language

#&%c'q(+* �c�
is definedby

#/.10=2>47698 �ro #&jlk h �Z#&jlk i �efA�h � efAni>p and .10=2>47698 ��o mb-of-cpu p .
In ourexamplewedonotincludetheconcepts

#&jlk
and efA and

therolecpu-of-mb in
#&%c'q(+* ���

sinceweareonly interestedin the

90

leaf conceptsof a generalizationhierarchyandspecificrelationships
(e.g.,to manufacturethefinal systemweonly needto know themost
specifictypefor eachcomponentandits connections).

Thesemanticsof descriptiontermsareusuallygiven denotation-
ally usingan interpretation

� �tsvulw �x	zy � w]{ , where ulw is a domain
(non-emptyuniverse)of values,and

	zy � w amappingfrom conceptde-
scriptionsto subsetsof thedomain,andfrom roledescriptionsto sets
of 2-tuplesover thedomain.Themappingalsoassociateswith every
individual namein

�|�
somedistinct value in u�w . The reasonfor

this distinctnessis the uniquenameassumption(UNA) we employ
in our formalism.We requiretheUNA for conceptsandroleswhich
describeconfigurationsin orderto makesurethatdifferentidentifiers
for individuals(e.g.,modulesof asystem)referto differentindividu-
als.ThisUNA canbelifted if necessaryfor conceptsandroleswhich
arenotusedto describeconfigurations.In thefollowingwegiveade-
scriptionlogic baseddefinitionof a configurationproblemandshow
its equivalencewith consistency-baseddefinitionsgivenin thelitera-
ture[8]. This definitionservesasa joint foundationof configuration
knowledgerepresentationin theSemanticWeb.

Definition 2 (Valid configuration in description logic): Let
� �svu w �7	zy � w { be a model of a configuration knowledge base @+A �c� ,#&%c'q(+* ��� � #/.1032547698qB .10=2>47698 a configuration language, and#&}"(�~ ��� �����c�X��� Bn� ������� a description of a configuration.���c�X��� is a set of tuples s # 6 �=�����)�
� �/�I�v{ for every

6 F #/.10=2>47698
,

where
���q�q�
� � �Q� ��oxd=� � � T7T�T � d=� 2 Y p�� # w6 is the set of individu-

als of concept
6

. These individuals identify components in an ac-
tual configuration.

� ������� is a set of tuples s� �� ���&� �c�����!�>��{
for every /� F .D0325476E8 where

�&� ���������I����o�s�G� � �3¡ � { � T�T�T �s�G� 7¢/£ �3¡ 7¢/£I{¤p?�¥ w� is the set of tuples of role � defining the
relation of components in an actual configuration. C

Example 2: A valid configuration for our example knowl-
edge base is

#&}"(�~!���
= oKs #&jlk h � oxdIh � d7i>pI{ � s #&jlk i � o7d�¦�pQ{ �svegA�h � o P hxpI{ � svefAni � o P i5pI{ � s mb-of-cpu

� o�s�dIh �¤P hx{ � s�d7i �zP hx{s�d�¦ �¤P i>{¤pQ{¤p . C
We alsohave to describecomponentparametersettingsin addi-

tion to componentsandtheir connections.Usingdescriptionlogics,
parametersettingsof componentsaremodeledby specialfunctional
roles(alsocalledfeatures) expressingtherelationbetweenthecom-
ponentandthe datavalueassignedto a particularattribute.There-
fore, componentstructureandparametersettingscanbetreatedin a
uniform mannerexcept that the parametervaluescomefrom some
datavalue domain R OIP§	��m� [16] disjunct from the individuals in#&} e j � .

In additionto thedefinitionof a valid configurationgivenabove,
wecanprovideanequivalentcharacterizationbasedoncheckingthe
consistency of a setof axioms.

Remark 1: Let @+A ��� be a configuration knowledge base,#&%c'q(+* ��� � #/.D032>4x6E8"B .10=2>47698 a configurationlanguage,and#&}"(�~ ��� �����c�X��� BX� ������� a descriptionof aconfiguration.
The concepts

6
are defined by the component axioms'q¨ W�©«ª;¬�­ �

o # 6 T� one-of® d�� � � T�T�T � d=� 2 Yz¯1° s # 6 �=�����)�
� �/�I�v{ F ���c�±��� where���q�q�
� � �Q� �go
²�³�´ � T�T�T � ²�³¶µ � pIp T
Theroles � aredefinedby therole axioms

'q¨�· © �
¸ ­ �
ox � T� ¹º9» �=¼ ½��=¾ [,¿ZÀQÁ>ÂIÃ5Ä5Å � product® one-of® G� ¯ � one-of® ¡ ¯E¯D°

s� � ���&� �c����� �I� { F � ������� with

�&� ���������I����o�szÆbÇ ´ ��È Ç ´ { � T�T�T � szÆ¶Ç3ÉZ� ��È Ç3É]�3{¤p>p T
#&}"(�~ ���

is a valid configurationiff @+A ��� BÊ'q¨ W�©�ªn¬|­ B'�¨�· © �
¸ ­ is satisfiable.C
Notethatwe usetheabove notationfor definingthecompleteex-

tensionof roles in order to apply the translationfunction from de-
scriptionlogicsto predicatelogic definedin [5]. An alternativeto the
product constructorwould bea constructorthat(in a similar manner
to the one-of constructorfor concepts)permitsthe enumerationof
permissibleentriesfor a role. However, the usualcomplexity prob-
lemswith theproduct constructordonotactuallyarisesinceweonly
applyproduct to singletonarguments.

Example 3: In order to verify that a given configura-
tion is valid w.r.t. our example @+A ��� , we need to add the
axioms

#&jlk h T� one-of® dIh � d�i ¯ , #&jlk i T� one-of® d�¦ ¯ ,efA�h T� one-of® P h ¯ , efAni T� one-of ® P i ¯ , mb-of-cpu
T�

product ® one-of ® dIh ¯ � one-of ® P h ¯E¯,Ë product ® one-of ® d7i ¯ � one-of ® P h ¯E¯�Ë
product ® one-of ® d�¦ ¯ � one-of ® P i ¯E¯ T C

We now give a consistency-baseddefinition of a configuration
problemusingpredicatelogic (thisdefinitioncorrespondsto thedef-
inition given in [8]) andshow the equivalencewith the description
logic baseddefinitiongivenbefore.

Definition 3 (Configuration problem in predicate logic): In
general we assume a configuration problem is described by a
triple

	����n� ©«Ì � �! "� � ©�Ì �¤#&%c'q(+*"� ©�Ì � where
���n� ©�Ì and�! "� � ©«Ì are logical sentences and

#&%�')(+* � ©«Ì is a set of
predicate symbols.

��� � ©�Ì represents the domain description and�! "� � ©«Ì specifies the particular system requirements. A configu-
ration

#&}"(X~!� ©�Ì is described by a set of positive ground literals
whose predicate symbols are in the set of

#&%c'q(+* � ©�Ì . C
Example 4: For ourexample,

��� � ©�Ì canbeexpressedby using
monadicanddyadicpredicatesandnumericalquantifiers,i.e.,����� ©«Ì ��oÍ ¨ÏÎ egA 	�¨Ð��Ñ efAmh 	�¨Ð��Ò egA;i 	�¨+� TÍ ¨ÏÎ5Ó egA�h 	�¨Ð��Ò�Ó egA;i 	�¨+� TÍ ¨ÏÎ egA 	�¨Ð��ÔÖÕ � ��× Î mb-of-cpu

	�¨�� × � TÍ ¨ÏÎ5#&jlk;	�¨Ð��ÑÖ#&jlk h 	�¨+��ÒX#&jlk i 	�¨Ð� TÍ ¨ÏÎ5Ó�#&jlk h 	�¨Ð��Ò�Ó�#&jlk i 	�¨Ð� TÍ ¨ÏÎ5#&jlk;	�¨Ð��ÔÖÕ �� × Î mb-of-cpu
	 × ��¨Ð� TÍ ¨ÏÎ5#&jlk i 	�¨Ð��ÔÖÕ �� × Î mb-of-cpu
	 × �D¨Ð��Ø egA;i 	 × � TÍ ¨ÏÎIÓ efA 	�¨Ð��Ò+Ó�#&jlk;	�¨+� .Í ¨�� × Î mb-of-cpu

	�¨�� × ��Ñ cpu-of-mb
	 × ��¨Ð� .Í ¨�� × Î mb-of-cpu

	�¨�� × ��ÔÙPXÚI	�¨Ð�|Ø dDÛZÜ 	 × � p .�! "� � ©«Ì �go #&jlk h 	 dQh � T #&jlk h 	 d�i � T #&jlk i 	 d�¦ � T p .#&%c'q(+* � ©«Ì �go #&jlk h �=#&jlk i � efA�h �efA;i � mb-of-cpu p T C
Definition 4 (Consistent configuration in predicate

logic): Given a configuration problem
	������ ©«Ì , �! "� � ©«Ì ,#&%�')(�* � ©«Ì � , a configuration

#&}"(X~ � ©�Ì is consistent iff��� � ©�Ì B �! "� � ©�Ì B�#&}"(X~ � ©�Ì is satisfiable. C
This definitionallows determiningtheconsistency of partialcon-

figurations,but doesnot guaranteethe completenessof configu-
rations [8]. It is necessarythat a configurationexplicitly includes
all neededcomponents(and their connectionsand attribute val-
ues), in order to assemblea correctly functioning system. We
needto introducean explicit formula for eachpredicatesymbol in#&%�')(�* � ©«Ì to enforceits completenessproperty. In orderto stay
within first order logic, we model the propertyby first order for-
mulae.For our examplewe have to add the completenessaxiomÍ ¨ÝÎ)#&jlk h 	�¨Ð��Þß	1àXá [5W�©�â/ã5ä�å]æ #&jlk h 	�¨Ð� �èç � for the
predicate

#&jlk h and similar axioms for
#&jlk i and mb-of-cpu.

91

Notethat
àXá [5W�©«âcã ä�å]æ #&jlk h 	�¨+� �gç servesasa macrowhich

is expandedbasedon the elementsin
#&}"(�~!� ©«Ì . We refer to#&}"(�~ � ©«Ì extendedby completenessaxiomsas é#&}"(X~ LOG.

Example 5:
#&}"(�~!� ©«Ì � o #&jlk h 	 dQh � T #&jlk h 	 d7i � T#&jlk i 	 d�¦ � T egA�h 	�P h � T egA;i 	�P i � T mb-of-cpu

	 dIh �¤P h � T
mb-of-cpu

	 d7i �zP h � T mb-of-cpu
	 d�¦ �¤P i � T p

The completenessaxiom for
#&jlk h is

Í ¨�ÎX#&jlk h 	�¨+�<Þ#&jlk h 	�¨Ð� � #&jlk h 	 dIh �!Ò�#&jlk h 	�¨+� � #&jlk h 	 d7i � , whereun-
satisfiableliteralsaredeleted.C

Definition 5 (Valid configuration in predicate logic): Let	���� � ©«Ì , �� &� � ©«Ì ,
#&%c'q(+* � ©«Ì � be a configuration problem.

A configuration
#&}"(�~!� ©«Ì is valid iff

����� ©«Ì B �� &� � ©«Ì Bé#&}"(�~ LOG is satisfiable. C
Notethat

#&}"(�~ � ©«Ì in Example5 is a valid configuration.
In order to show the equivalenceof valid configurationsfor de-

scription logic and predicatelogic we apply a translationfunctionê s y { thatmapsdescriptionlogics to predicatelogic, i.e., axiomsto
formulaswith no freevariables,conceptsto formulaswith onefree
variableë , androlesto formulaswith two freevariablesë and ì .

Borgida [5] provides sucha translationfunction
ê s y { suchthat

concepts,roles,terms,andaxiomsaretranslatedinto equivalentfor-
mulasin predicatelogic. @+A � ©�Ì � ê s�@+A ��� { where @+A � ©�Ì is
satisfiableiff @+A �c� is satisfiable.

Remark 2 (Equivalence of configuration problems):
Let

#&%�')(+* � ©«Ì � #&%�')(�* �c�
where eachconceptis in-

terpretedas monadicand eachrole is interpretedas dyadic predi-
cate.

#&}"(�~«� ©«Ì describesthe actualconfigurationby two setsof
facts

#&}"(�~!� ©«Ì � COMP-facts
B

ROLE-facts. Theconstruction
of
#&}"(�~ � ©«Ì is basedon

#&}"(X~ �c� �í���c�X��� B<� �������
where COMP-facts �îo # 6 	 d�� � ° d�� F ���q�q�
� � �Q� � ��ï F �!ðbñ µ1ò5ó p
and ROLE-facts �ôox �� 	 G� �3¡ � ° s�G� �=¡ �{ F �&� �c�����!�>� �3��õ F� ð�ñ µ1ò5ó p . ���n� ©«Ì � ê s ���n�c� { , and �! "� � ©�Ì � ê sv�! "� ��� { .#&}"(X~ � ©�Ì is a valid configuration for	���� � ©«Ì � �! "� � ©«Ì �3#&%�')(�* � ©«Ì � iff

#&}"(�~ ���
is a valid

configurationfor
	����n�c��� �! "� �c���3#&%�')(�*"�c�,� . C

Remark2 follows from Remark1 and the equivalenceproperty
of the translationfunction.Note that the completenessaxiomscor-
respondexactly to the translationof the axioms

'�¨ W|©«ªn¬|­ and'q¨ · © �ö¸ ­ by applyingthetranslationfunctionproposedin [5].
Fromtheequivalenceof configurationproblemsfollow two impor-

tantconsequences.First, thetwo mainstreamsin solvingconfigura-
tion problemsbasedon descriptionlogics on theonehandandfirst
orderpredicateor propositionallogic on theotherhandcanbeeas-
ily transformedto eachother. Second,sincedescriptionlogicswith-
out transitiveclosureareequallyexpressive to dyadicpredicatelogic
with atmostthree(counting)quantifiers[5] it follows thatthepredi-
catelogicbasedapproachisstrictly moreexpressivethanthedescrip-
tion logicsbasedapproach,implying thatcertainlogic constructions
have to be simulatedby morecomplex descriptionlogic construc-
tions,andalsothatcertaincomplex structuralrestrictions[6] will not
be expressiblein the languagedirectly but will have to be incorpo-
ratedusingamoreexpressive assertionallanguage.

4 Building configuration knowledge bases for the
Semantic Web

In thefollowing weshow how to representtheconfigurationdomain
specificmodelingconceptsdiscussedin Section2 usingOIL.

Component types. The representationof componenttypes is
straightforward andhasalreadybeenshown in Section3. Compo-

nent typesare transformedinto correspondingconcepts,attributes
into role definitionsconstrainingdatatypeandcardinality(thecardi-
nality of attributerolesis setto 1).Attributesaswell asabstractroles
areinheritedby thedefinedsubconcepts.In mostconfigurationenvi-
ronmentsthesemanticsof a generalizationhierarchyaredisjunctive
(disjoint concept)andcompleteby default (eachinstanceof a super-
typeis alsoaninstanceof exactly oneof its subtypes).

Part-whole relationships. Part-wholerelationshipsplay an im-
portantrole in many applicationdomainshaving quite differentse-
mantics(see[1], [16]). Basically, a part-wholerelationshipcan be
expressedusing the two roles PartOf and HasPart, wherePartOf
is the inverserole of HasPart. In OIL or DAML+OIL we can de-
fine - dependingon theapplicationdomain- differentsemanticsfor
part-wholerelationshipsby imposingrestrictionson theusageof the
correspondingroles.Sattler[16] presentsan extensionof the basic
descriptionlogic ÷lø
 with conceptsfor adequaterepresentationof
part-wholerelationships- in thiscontext acategorizationof different
facetsof part-wholerelationshipsis given. In our working example
(Figure1) we only allow part-wholerelationshipswherea compo-
nent is part-of exactly one other component(this is also denoted
as exclusive part-wholerelationship).Suchexclusivity restrictions
canbeintroducedby restrictingthecardinalityof thecorresponding
role to 1, e.g.,slot-constraint mb-of-cpu cardinality 1 MB, wherethe
role mb-of-cpu mustbe interpretedasa subslotof the role PartOf.
Furthermore,restrictionsconcerningthecardinalityof partsmustbe
addedto theconceptdefinitionof thewhole,e.g.,slot-constraint cpu-
of-mb min-cardinality 1 CPU (max-cardinality 2 CPU).

Port connections. As mentionedabove, certainpredicatelogic
constructsmustbesimulatedby morecomplex descriptionlogic ar-
rangements[5]. In termsof predicatelogic, port connectionscanbe
representedusinga predicateconn(

� �¤j � �3# � �¤j �), i.e., component# � is connectedvia port
j � with component

� via port
j � - e.g.,

conn(ù��vRKN O d�HKGQR]h � ù���RKN O Û O Gxú¤i �¤¡ d=G>NxN7J!h �3¡ d=G>NxN7JKÛ O Gxú�h) describesa
connectionbetweenù���RKN O Û O Gxú¤i of ù���RKN O d�HKGQR]h and

¡ d=G>NxN7JKÛ O Gxú�h
of
¡ d�GINQN7J!h . In order to representport-basedconnections,we have

to introducea Port concept,which is characterizedby a role indi-
catingtherelatedcomponentconcept(rolecompnt) andarolewhich
indicatestheusedportnameof theconnection(roleportname) - addi-
tionally, a role conn indicatestheconnectionto thesecondinvolved
Port concept.Althougha representationof port connectionsis pos-
sible with OIL or DAML+OIL, the original knowledgeof domain
expertsis split into multiple piecesof knowledgewhich arehardfor
thesedomainexpertsto understand.Also, notethat theconnections
via sucha connectionobjectmustbeuniqueandthereforetheroles
must be bidirectionally definedusing the inverse role constructor.
The constraintthat a Videocard mustbe connectedvia ù��vRKN O Û O GQú�i
with a Screen via

¡ d�GINxNxJKÛ O Gxú�h canbeformulatedas
Example 6: Videocard:(slot-constraint videoport has-value((slot-

constraint portname has-value (one-of videoport2)) and (slot-
constraint conn has-value ((slot-constraint compnt has-value
Screen) and (slot-constraint portname has-value (one-of screen-
port1)))))). C

Theconstitutingelementsof suchportconstraintsarenavigations
representingrole compositionsbetweenconnectedconcepts.

Navigation in product structure. In the following we discussa
setof representative constraintconceptswhich are frequentlyused
in theconfigurationdomain[7, 17]. Theconstraintsconsistof navi-
gationexpressionsover conceptswhich arerepresentedby complex
pathsover abstractroles.

Definition 6 (Navigation expression): Given two concepts
�

and
� , a navigation expression from

� to
� is formulated as a

92

sequence of existential role quantifications
(slot-constraint G � has-value(slot-constraint G � has-value ... (slot-

constraint G 2 has-value
�))),

where < G � , G � , ..., G 2 > denotes a sequence of roles along the nav-
igation path from

� to
� (G � is a role of

� and
� is in the range

of G 2). In the following we use the expression navpath(
� , # �) as

short hand notation for a navigation path concept from
� to

� . C
Definition 7 (Common root): A concept

·
is denoted as com-

mon root of a set of concepts
�ûo # � � TETET �=# 2 p , if there exists a

navigation path from CR to each concept of C. C
Incompatibilities. An incompatibility constraintbetweencon-

cepts
� , # � , ...,

2
canbeexpressedas

·
: not(navpath(

·
,
�)

and navpath(
·

,
�) ... and navpath (

·
,
2

)), where
·

is the
commonrootof

� , # � , ...,
2

in
��� ���

.
Example 7 (IDEUnit incompatible with MB2): Computer:

not((slot-constraint hdunit-of-computer has-value IDEUnit) and
(slot-constraint mb-of-computer has-value MB2)) C

Requirements. A requires dependency betweenconcepts
� and# � (

� requires
�) canbeexpressedas

#�·
: not(navpath(

#�·
,
�))

or navpath(
·

,
�) with thecommonroot

·
of
� , # � in

���n�c�
.

Similar to incompatibilities,requirementscanbeextendedby intro-
ducingfurther navigation pathson the LHS andRHS of a requires
dependency, e.g.

� Ø+# � requires
� Ò+# � .

Example 8 (SCSIUnit requires MB1): Computer:((not(slot-
constraint hdunit-of-computer has-value SCSIUnit)) or (slot-
constraint mb-of-computer has-value MB1)) C

Resource balancing. Resourceconstraintscanbeformulatedus-
ing aggregation functionsasproposedin [2]. We assumethe exis-
tenceof avaluedomainR OIP§	��m� , asetof predicatesymbols

j 6
asso-

ciatedwith binaryrelations(typically ü , ý , =, þ , ÿ) over R OQPS	��m� ,
and a set of aggregation functions H�L�L 	��m� (typically

¡ Ü P�� HKù5L ,d O Ü]JMú , ��R ; thelastbeingidentity in thecasewherewe want to com-
pareto a singlefixedvalueinsteadof to anaggregate).Concerning
thepathleadingto theconceptwhosefeaturevaluesareaggregated,
the definition of [2] requiresthat all but the last oneof the rolesin
this pathmustbefeatures.

Let < G . � , G .� , ..., G .2�� � , G .2 > and< G � � , G � � , ..., G � ¢ � � , G �¢ > benavi-
gationexpressionswith

#�·
ascommonroot leadingto theconsumer

(producer)concepts
.

(
�). Furthermore,let

� .
,
� � befeaturesof# .

and
# � and � F H�L�L 	��m� be an aggregation function. We can

expressaresourceconstraintas
#�·

:
j�	 G . � G .� ... G .2�� � � 	 G .2�� � . �=� G � �G � � ... G �¢ � � � 	 G � ¢ � � � ��� accordingto [2].

Generally, if two aggregatesarecompared,oneinterpretsthe set
thathasto producea smallervalueasthesetof consumers, andthe
setthathasto producea largervalueasthesetof producers.

Now wecandefineaconceptComputer thatcomesequippedwith
asetof HDUnits thatprovideacorrespondinghard-diskcapacityand
a setof softwarecomponentsthat needhard-diskcapacity. We ex-
presstherequirementthat the total hard-diskcapacityconsumedby
softwarecannotexceedthe installedhard-diskcapacity. In this case
navigation expressionsonly consistof two elements,consequently
hdcapacity mustbea feature,while hdunit-of-computer is a general
role.Thelastline is theactualresourceconstraint.

Example 9 (� swcapacity ý�� hdcapacity):
Software: slot-def swcapacity range (min 0) properties functional
HDUnit: slot-def hdcapacity range (min 0) properties functional
Computer: slot-def hdunit-of-computer range HDUnit

slot-def sw-of-computer range Software
lesseq (sum(sw-of-computer

�
swcapacity),

sum(hdunit-of-computer
�
hdcapacity)) C

Analysis. While the basic frame structureand formal basisof

descriptionlogics basedlanguagesmakes them one of the natural
choicefor configurationrepresentation,certaindemandson expres-
sivenessmustbemet.Thecurrentversionsof OIL andDAML+OIL
do not supportaggregationfunctionswhich arefundamentalrepre-
sentationconceptsfrequentlyusedin theconfigurationdomain.Sat-
tler andBaader[2] providedconcretedomainsandaggregationfunc-
tions over them as extensionsto the basicdescriptionlogic ÷lø
 .
In additionto aggregationfunctions,built-in predicatesmustbe al-
lowed in orderto supportcomparisonson theresultsof aggregation
functionsaswell ason local features.Sincetrivial structuralcondi-
tions lead to definitionaloverhead(e.g.,whendefiningrestrictions
on port connections),additionalconceptsmust be provided allow-
ing thedefinitionof roleswith arity greaterthantwo; thedescription
of morecomplex structuralproperties(see[6]) would besupported
by permittingtheusageof variables.As far asthedefinitionof rule
languagesfor expressingdetailedconfigurationknowledgeon top
of DAML+OIL is concerned,we must stressthat sucha language
mustallow disjunctsof positive literalswhenwriting theconstraint
in clausalform, e.g.,to expressalternative port connections.

Happily, most of the requiredmeansof expressionare already
availablein the DescriptionLogic designer’s toolbox; however, the
degreeof expressivity requiredalsoleadsto problemsw.r.t. to decid-
ability of basicpropertiessuchassatisfiabilityor subsumption[2].
State-of-the-artconfiguratorsachieve decidabilityby putting a pre-
definedlimit on the numberof individualsandallowing only finite
domainsof valuesfor features(constraintvariables).Furthermore,
only fixed concepthierarchiesare allowed (as part cataloguesare
typically consideredunchangeable),which reducesthe importance
of subsumptionversusthatof A-Box reasoning.

5 Conclusions

In this paperwe have shown how to applySemanticWebontology
representationlanguagesfor configurationknowledgerepresentation
andintegration.Wegaveadescriptionlogicbaseddefinitionof acon-
figurationproblemandshowed its equivalencewith corresponding
consistency-baseddefinitions.A consequenceof this equivalenceis
thatconfigurationproblemsrepresentedin descriptionlogicscaneas-
ily be transformedinto configurationproblemsrepresentedin pred-
icate logic or simplified variantsthereof (and vice-versa).Conse-
quently, weprovideacommonfoundationthatenablesjoint research
activities andexplorationof results.With respectto ongoingefforts
to extendDAML+OIL our papercontributesa setof criteria which
mustbefulfilled in orderto usesucha languagefor full-fledgedcon-
figurationknowledgerepresentation.ThusDAML+OIL hastheop-
portunityfor beingastandardknowledgerepresentationlanguagefor
theconfigurationdomain.

References

[1] A. Artale, E. Franconi,N. Guarino,andL. Pazzi. Part-WholeRela-
tions in Object-CenteredSystems:An Overview. Data & Knowledge
Engineering, 20(3):347–383,1996.

[2] F. BaaderandU. Sattler. DescriptionLogics with ConcreteDomains
andAggregation. In Proceedings of the

�
	���

European Conference on

Artificial Intelligence (ECAI ’98), pages336–340,Brighton,UK, 1998.
[3] V.E.Barker, D.E.O’Connor, J.D.Bachant,andE. Soloway. Expertsys-

temsfor configurationatDigital: XCON andbeyond.Communications
of the ACM, 32(3):298–318,1989.

[4] T. Berners-Lee.Weaving the Web. HarperBusiness,2000.
[5] A. Borgida. On therelative expressive power of descriptionlogicsand

predicatecalculus.Artificial Intelligence, 82:353–367,1996.

93

[6] J. Cai,� M. Furer, andN. Immerman. An optimal lower boundon the
numberof variablesfor graphidentification. In Proceedings of

	�� ��

IEEE Symposium on FOCS, pages612–617,1989.

[7] A. Felfernig,G. Friedrich,andD. Jannach.UML asdomainspecific
languagefor the constructionof knowledge-basedconfigurationsys-
tems. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), 10(4):449–469,2000.

[8] A. Felfernig,G.Friedrich,D. Jannach,andM. Stumptner. Consistency-
BasedDiagnosisof ConfigurationKnowledgeBases.In Proceedings of
the
������

European Conference on Artificial Intelligence (ECAI 2000),
pages146–150,Berlin, Germany, 2000.

[9] D. Fensel,F. vanHarmelen,I. Horrocks,D. McGuinness,andP.F. Patel-
Schneider. OIL: An Ontology Infrastructurefor the SemanticWeb.
IEEE Intelligent Systems, 16(2):38–45,2001.

[10] G. Fleischanderl,G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner. ConfiguringLargeSystemsUsingGenerativeConstraint
Satisfaction. IEEE Intelligent Systems, 13(4):59–68,1998.

[11] T. Gruber, R.Olsen,andJ.Runkel. Theconfigurationdesignontologies
andthe VT elevator domaintheory. International Journal of Human-
Computer Studies, 44(3/4):569–598,1996.

[12] E.W. JüngstM. Heinrich. A resource-basedparadigmfor theconfigur-
ing of technicalsystemsfrom modularcomponents.In Proceedings of
the � ��
 IEEE Conference on AI applciations (CAIA), pages257–264,
Miami, FL, USA, 1991.

[13] D. Mailharro.A classificationandconstraint-basedframework for con-
figuration. AI Engineering Design Analysis and Manufacturing Jour-
nal, Special Issue: Configuration Design, 12(4):383–397,1998.

[14] S. Mittal andB. Falkenhainer. DynamicConstraintSatisfactionProb-
lems. In Proceedings of the National Conference on Artificial Intelli-
gence (AAAI 90), pages25–32,Boston,MA, 1990.

[15] S. Mittal andF. Frayman.Towardsa GenericModel of Configuration
Tasks. In Proceedings

�7�
��

International Joint Conf. on Artificial In-

telligence, pages1395–1401,Detroit,MI, 1989.
[16] U. Sattler. DescriptionLogics for the Representationof Aggregated

Objects.In Proceedings of the
������

European Conference on Artificial
Intelligence (ECAI 2000), pages239–243,Berlin, Germany, 2000.

[17] T. Soininen,J. Tiihonen, T. Männistö,and R. Sulonen. Towards a
GeneralOntology of Configuration. AI Engineering Design Analy-
sis and Manufacturing Journal, Special Issue: Configuration Design,
12(4):357–372,1998.

[18] F. vanHarmelen,P.F. Patel-Schneider, and I. Horrocks. A Model-
TheoreticSemanticsfor DAML+OIL. www.daml.org, March2001.

[19] J.R.Wright, E. Weixelbaum,G.T. Vesonder, K.E. Brown, S.R.Palmer,
J.I. Berman,andH.H. Moore. A Knowledge-BasedConfiguratorthat
supportsSales,Engineering,and Manufacturing at AT&T Network
Systems.AI Magazine, 14(3):69–80,1993.

94

A Subsumption-Based Configuration Tool for
Architectural Design

Dan Corbett1

Abstract. This paper discusses research in bringing formal
structured knowledge representation to computational design in
building architecture. Specifically, we demonstrate that the
techniques of type subsumption, join and unification can be used as
tools to turn a general design into a complete design. We have
developed a software tool which uses these techniques to assist in
the exploration of designs. The significance of this work is that we
demonstrate that the merging of designs represented as Conceptual
Graphs is efficient and useful to the designer.

1 SEARCH AND DESIGN

Designers have borrowed Artificial Intelligence techniques to
explore design possibilities and models. While AI researchers may
know these techniques as state space search, designers see them as
discovery, or as guided movement through design possibilities
[Woodbury et al. 2000] . The point of automated search for the
designer is to use computer media that engage designers in
exploring design modifications. The design user may want to
create new designs, or index, compare or adapt existing designs.
This type of user requires efficient representations for the designs
and states (of designs) in a symbol system. The designer needs to
be able to represent spaces of possibilities which are both relevant
to the discovery process and lend themselves to tractable
computations. It is necessary for the design process that the
information in the system can be ordered by specificity, since
design exploration usually means starting from an under-specified
design and proceeding to a more specialized state.

This constraint has led us to consider state spaces structured by
information specificity. Type hierarchies, subsumption and
conceptual relations are used to realize these concepts. Using
techniques and theory that we developed as part of a knowledge
representation project, we developed software which will allow the
design user to construct specific designs from generic designs (or
new designs from old) while preserving all constraints on the
process. We employ the techniques of Conceptual Graphs to
represent and manipulate the design.

2 CONCEPTUAL GRAPHS

It has been demonstrated many times that graphs are a powerful
and efficient knowledge representation technique. Mugnier and
Chein [Mugnier and Chein 1996] illustrate quite effectively why
labeled graphs are useful for knowledge representation in general.
Among the main advantages that they list are a solid grounding

when it comes to combinatorial algorithms, and that a graph (as a
mathematical object) allows a natural representation (and therefore
permits the construction of effective algorithms). There have been
many attempts to formalize and standardize these graphical
knowledge representation schemes, but probably none has been as
extensive and comprehensive in recent times as Conceptual
Structures.

Conceptual Structures (or Conceptual Graphs, or “CGs”) are a
knowledge representation scheme, inspired by the existential
graphs of Charles Sanders Peirce and further extended and defined
by John Sowa [Sowa 1984]. Informally, CGs can be thought of as
a formalization and extension of Semantic Networks, although the
origins are different. They are labeled graphs with two types of
nodes: concepts (which represent objects, entities or ideas) and
relation nodes, which represent relations between the concepts.

Every concept or relation has an associated type. A concept
may also have a specific referent or individual. A concept in a CG
may represent a specific instance of that type (eg, Felix is a specific
instance, or individual, of type “cat”) or we may choose only to
specify the type of the concept. In the standard canonical
formation rules for Conceptual Graphs, unbound concepts are
existentially quantified. A relation may have zero or one incoming
arcs, and any number of outgoing arcs. The type of the relation
determines the number of arcs allowed on the relation. The arcs
always connect a concept to a relation. Arcs cannot exist between
concepts, or between relations.

A canon in the sense discussed here is the set of all CGs which
are well-formed, and meaningful in their domain. Canonical
formation rules specify how CGs can be legally built and guarantee
that resulting CGs satisfy “sensibility constraints.” The sensibility
constraints are rules in the domain which specify how a CG can be
built, for example that the concept eats must have a theme which is
food. Note that canonicity does not guarantee validity. A CG may
be well-formed in the canonical formation rules for the domain, but
still be false.

A type hierarchy is established for both the concepts and the
relations within a canon. A type hierarchy is based on the intuition
that some types subsume other types, for example, every instance
of “cat” would also have all the properties of “mammal.” This
hierarchy is expressed by a subsumption or generalization-order on
types.

Formally, we define Conceptual Graphs as follows:

Definition 1. Conceptual Graph. A Conceptual Graph with
respect to a canon is a tuple G = (C, q, R, type, referent, arg1, . . .,

argm) where

C is the set of concepts, type : C → T indicates the type of a

concept, and referent : C → I indicates the referent marker of a

__
�

Advanced Computing Research Centre, School of Computer and
Information Science, University of South Australia, Adelaide, South
Australia 5095, email: corbett@cs.UniSA.edu.au

95

concept. The referent marker is either a pointer to an individual or
a generic marker, which indicates that the individual is of the type
indicated, but is existentially quantified.

T is the set of types. We will further assume that T contains two
disjunctive subsets TC and TR containing types for concepts and

relations.
I is the set of individuals.
q is a distinguished member of C, the head or root node of the

graph.
R is the set of conceptual relations, type : R → T indicates the

type of a relation, and each argi : R → C is a partial function where

argi (r) indicates the i -th argument of the relation r . The argument

functions are partial as they are undefined for arguments higher
than the relation's arity.

The set of types discussed in Definition 1 is arranged into a type
hierarchy, ordered according to the specificity of each type. A type
hierarchy is established for both the concepts and the relations
within a canon. A type hierarchy is based on the intuition that
some types subsume other types, for example, every instance of cat
would also have all the properties of mammal. This hierarchy is
expressed by a subsumption or generalization order on types. A
type t is said to be more specific than a type s if t specializes some
of the concepts from s.

An example of a relation type hierarchy is shown in Figure 1.
In our domain of building architecture, we may wish to represent
that one structure supports another structure. We may further want
to represent that any type of support structure which supports a
heavy load will also support a light load. This relationship is
expressed in the hierarchy. In this manner, some constraints on the
relations between concepts can be represented.

Similarly, an example type hierarchy for concepts is shown in
Figure 2. The universal type is shown at the top of the hierarchy,
and is represented by T. The absurd type is shown at the bottom of
the graph, and is represented by ⊥. Here we see that a support
structure is a specialization of a structure, and that a bay structure
specializes support structure. Using these type hierarchies, it is
possible to show, for example, that the multiple-bay structure will
support a heavy load, by using concepts for multiple-bay structure,
and a relation of the type supports-heavy.

Figure 1. A relation type hierarchy.

Müller demonstrates in his work [Müller 1997] that it is not
always possible to find a common specialization for two arbitrary
graphs in the same canon, and therefore it is not possible to
guarantee that two graphs can be unified. If a subset of CGs is
defined which is all graphs that have a designated head node, and
the head nodes are of compatible types, then unification of these
graphs will at least be tractable. We define q, the head node of a
graph, in order to be able to guarantee unification of the graphs
under Müller’s algorithms. This method allows us to combine the
graphs while preserving the knowledge in both graphs, and still be
able to use efficient unification methods as defined by Willems,
Müller, and others [Willems 1995; Müller 1997].

The definitions of unification, consistency and type
subsumption in this paper are based on formal concepts of
projection and lower bounds. Carpenter [Carpenter 1992] defines
each of these operators as a morphism. We have modified
Carpenter’s definitions to work with the properties of Conceptual
Graphs. A morphism is then a mapping from the set of nodes of
one Conceptual Graph to the set of nodes of another that preserves
the order of relation arguments and the values of those arguments.
In a morphism, all of the connections and arguments are preserved.
The following definition of projection is the standard definition
used in recent Conceptual Graph literature [Willems 1995;
Mugnier and Chein 1996; Leclère 1997; Müller 1997; Corbett
2001].

Definition 2. Projection.
G = (C, R, type, referent, arg1, . . . , argm) subsumes G´ = (C´,

R´, type´, referent´, arg1́, . . . , arg´m) , G ≥ G ,́ if and only if there

is a pair of functions hC : C → C ́ and hR : R → R ,́ called

morphisms, such that:

Figure 2. A concept type hierarchy.

support s

support s-heavy

support s-light

T

T

struct ure

support st ruct ure

single mult iple

T

bay s t ruct ure

T

......

96

∀c ∈ C and ∀c ́∈ C ,́ hC(c) = c ́only if type(c) ≥ type (́c)́, and

referent(c) = * or referent(c) = referent(c)́

∀r ∈ R and ∀r´ ∈ R ,́ hR(r) = r´ only if type(r) ≥ type (́r´)

∀r ∈ R , arg í(hR(r)) = hC(argi (r)),

Willems also includes the following non-emptiness condition in
his definition of projection in [Willems 1995]:

∀c ∈ C there is a concept c ́∈ C ,́ such that hC(c) = c´

This non-emptiness condition guarantees that all the concepts
present in the more general graph are also present in the more
specific graph, although they may be in a more specific state.
Willems’ definition allows for the more specific graph to have
concepts of a more specific type, or for a generic referent to be
replaced by a specific individual. The definition used here also
allows admits the non-emptiness condition.

Conceptual Graphs were chosen for this research because they
can represent partial knowledge in a domain. It is possible for a
designer to specify an object (or design) at some intermediate
stage, with only very general types for the concepts and relations.
When more specific knowledge becomes available, or when the
designer chooses to fill in the details of a design, the operators of
specialization, unification and join are employed.

In our work, partialness means that a structure need not contain
all information that is implied about it by its structure and types. A
partial representation is used here as a generalized, or higher-level
description of an object in the domain. Whether a structure is
partial or not depends on the context of the knowledge, and the
domain. In domain terms, a model might be partial against one set
of knowledge but complete with respect to a subset of the
knowledge. For example, if our current domain knowledge of a
building is limited to its spatial organization, a complete model of
it would assign functions to physical spaces. Such a model would
be partial with respect to a larger set of knowledge, containing for
example, knowledge of how to construct the building.

The main thrust of the research described in this paper is the
unification of Conceptual Graphs in terms of conjoining the
knowledge contained in two different graphs. While this may
involve term substitution (or the Conceptual Graphs equivalent -
instantiation, subsumption, variable binding, etc.) and constraint
solving, our work is more concerned with knowledge conjunction
as discussed in [Carpenter 1992]. Carpenter defines unification as
a system in which two pieces of partial information can be
combined into a single unified whole. In our case, these pieces of
partial information are represented by Conceptual Graphs.
Carpenter refers to this idea as information conjunction, but in our
work, it is knowledge conjunction that is more important. We want
to be able to combine the expert knowledge of a system, not merely
gather additional information. Unification here is the combining of
pieces of knowledge in a domain, represented as Conceptual
Graphs. We want to define unification as an operation that
simultaneously determines the consistency of two pieces of partial
or incomplete knowledge, and if they are consistent, combines
them into a single result.

3 SPECIALIZATION OF DESIGNS

The standard techniques for creating more specialized concepts
from general concepts are collectively known as the Canonical
Formation Rules. The following definitions are standard, classical
definitions of CG formation, which date back to Sowa’s original
1984 work on Conceptual Graphs [Sowa 1984], but which were

formalized much more recently [Wermelinger and Lopes 1994;
Müller 1997]. We present here rules based on the work of Müller
[Müller 1997].

1. Join. Given two CGs G = (C, R, type, referent, arg1, .

. . , argm) and G´ = (C´, R´, type´, referent´, arg´1, . . . ,

arg´m) (without loss of generality we assume C and C ́to be

disjoint) ∀c ∈ C , and ∀c ́∈ C ́ where c = c´ (that is, they
have identical types and referents) or c ≥ c´ (ie, the type of c
subsumes the type of c´) the external join of C and C ́ is the

CG G´´ = (C ∪ (C´ - {c´}), R ∪ (R ć´:=c), type´´, referent´´).

The subscript c´:=c denotes the replacement of every
occurrence of c´ by c.

2. Restrict. Given a CG G = (C, R, type, referent, arg1, .

. . , argm) and a node c ∈ C with type t which has a

subtype s ≠ ⊥ the restrict type is the CG G´ = (C, R, type´,

referent) such that type´(c) = s, ∀d ≠ c: type´(d) = type(d).

Sowa [Sowa 1984] (and others) also define a copy rule, which
allows a new graph G´ to be created as an exact duplicate of a
graph G, and a simplify rule which allows the deletion of duplicate
(and presumably redundant) relations.

We are able, then, to represent architectural designs as
Conceptual Graphs. The architect can start with a general
description of a design, and work through successive
specializations to explore the design. Each specialization is
subsumed by more general designs, and it is therefore guaranteed
that each specialization conforms to all the constraints of the
original, generic specification.

We now show that subsumption is just another form of the
projection operator on Conceptual Graphs, defined previously.

Definition 3. Subsumption. We say that a Conceptual Graph G

subsumes another Conceptual Graph G´, or G ≥CG G´, iff G´ can
be obtained by applying a finite number of canonical formation
rules to G.

Since any application of the canonical formation rules to a graph
s will always produce a graph t which is more specific than the
original, s will necessarily have a projection into the new graph t.
Chein and Mugnier formalize this idea, and demonstrate that s ≥ t
iff there exists a projection from s to t [Chein and Mugnier 1992].

The unification of two conceptual graphs with constraints now
becomes the combination of two graphs which are compatible in
corresponding concepts and relations, as defined by our definition
of the projection operator and join. Any constraints on the values
in the concepts of the graph are preserved through the unification
process by the projection operator.

Mugnier and Chein convincingly demonstrate that any
Constraint Satisfaction problem (CSP) can be represented as a
mathematical morphism [Mugnier and Chein 1996]. Their proof of
the strong correspondence between CSP and the general problem
of morphism (or projection) also demonstrates that a type
hierarchy, such as used in Conceptual Graphs, can be effective in
representing and solving a CSP problem. They develop, and prove
the soundness of, algorithms for transferring CSP problems to a
projection problem, and for transferring projections back to a CSP
representation.

Mugnier and Chein demonstrate that the algorithmic techniques
that they develop for resolving the problem of the existence of a
solution to a Constraint Satisfaction Problem also can enumerate

97

the solutions. Further, these are transferable from one
domain to another [Mugnier and Chein 1996].

Formal definitions and algorithms for unification are
discussed in detail in [Willems 1995; Corbett and
Woodbury 1999; Corbett 2001]. A complete discussion
and formal treatment of our unification algorithm is
presented in [Corbett 2001]. Rather than repeat these
here, we proceed to the discussion of the use of the
configuration tool in the Architecture domain.

4 DESIGN EXAMPLES

For our example domain, we detail the SEED project. The intent
of the SEED project is to create software which will support
preliminary design of buildings [Heisserman 1991; Heisserman
1995; Chang and Woodbury 1996; Corbett and Burrow 1996;
Woodbury et al. 1999; Woodbury et al. 2000] . This includes using
the computer as an active tool which helps to generate designs
[Flemming and Woodbury 1995] . The SEED project architects
were willing to test the software that was produced from our work.

SEED is an acronym for Software Environment to support the
Early phases in building Design. Specifically, SEED will help
with recurring building types (designs which are used again
frequently). The SEED system is intended to be an aid to
architects in creating building designs by reusing design
knowledge. In order to store and reuse the design cases in an
efficient manner, it is necessary to use a representation scheme
which can handle real-value constraints and unification.

The SEED system is built around the idea of a design space.
The design space is a set of partial or complete solutions to an
architectural design problem. In this sense, it is roughly equivalent
to the AI term "search space", in that the design space is defined by
starting states and operators which allow the derivation of one state
from another, including some acceptable goal states.

SEED works by exploring the design space during the
elaboration of a design. To achieve the goal of design experience
reuse, SEED allows for the storage of “interesting” design states,
where “interesting” is decided either by the user, or by the
interaction of the user's search path and heuristics in SEED. The
difficulty, then, is in identifying and retrieving stored design states
containing design decisions most applicable to the current state,
that is, retrieving useful information corresponding to design

experience captured in the historical pattern of explored and stored
design states.

As SEED explores the design space, each of the retrieved
designs must be compared to the requirements to find whether the
design meets each of the specifications and constraints. The
problem then, is to find a previous design which will unify with the
specification currently being worked on. This unification process
must attempt to identify each attribute of the specification with the
same attribute in the retrieved design. If all the attributes can be
unified while satisfying all of the constraints, then the two
structures are said to unify, producing a new structure which is a
combination of the knowledge in the two previous structures. The
new structure is a new design, which can be used to satisfy the
current design requirements.

Appealing to our example domain, Figure 3 shows the basic
floor plan of a single-fronted cottage, a design which is very
common in many parts of Australia. Figure 4 shows the
corresponding Conceptual Graph. The graph represents the general
structure of the cottage (and some adjacency relations) but with
none of the details that will make this design into a realized
cottage. (The ellipses indicate further parts of the graph which we
do not have space to elaborate here.) A designer may retrieve a
previous design from a library of designs to provide some of the
details. An example of such a previous design is shown in Figure
5. Here, a design for a dining room adjacent to a living room is
selected as a partial match for the general design. Many of the
details of the rooms have already been specified. This partial
design can be unified with the graph in Figure 4, using the methods
described in this paper. There are four possible locations for
attaching the partial design to the general design. Our intent is that
the system will not make the choice of which nodes to unify,
leaving the choice to the designer.

Since SEED works on the principle of constructive design, it is
important to be able to create small units in the design, and then
link them together. The mechanism we use to link these units is
unification. For example, the partial design illustrated in Figure 6
contains the concept kitchen. This may initially be used as a single
concept, or as a link to the standard or template attributes of a
kitchen. These generic concepts would be specialized later. Figure
7 shows a design for a kitchen, with some of the usual relations.

The area relation indicates that the value of the area is anskil lion: *porch: * rm-row: * hall : *

contains

house: *

contains

rm: * rm: * rm: *

adj adj

Figure 5. A specialization of two rooms.Figure 4. Conceptual Graph representation of Figure 3.

rm: dining adj rm: living

access

door: door1 door: door2

Room 2

Hallway

Skillion

P
o

rc
h

Dining RoomRoom 1

Figure 3. Basic floor plan of a single-fronted cottage.

98

interval, which constrains the values that the area may have. Other
attributes may include insulation, illumination, support structure
and other factors which concern the design of a building structure.
We assume that these types and their respective type hierarchies
have already been defined, with their obvious meanings.

The unification of two design Conceptual Graphs is another
graph representing neither more nor less information than is
contained in the two graphs being unified. Unification only fails
when it is applied to designs that, when taken together, provide
inconsistent information. In the case of the design domain,
inconsistency can only arise from attempting to unify two
structures that assign incompatible values (in either literal
information, or in the lattices defined for that type of information)
to the same attribute.

Figure 7 is an example of a kitchen SU specified by the user to
have one adjacent room and a floor area constrained to be between
fifteen and twenty square meters, represented by the interval [15,
20]. When we try to find a match for the specified partial design
among the previous designs, we retrieve the Conceptual Graph
shown in Figure 6 as a previously-designed kitchen from the
knowledge base. This is unified with the graph shown in Figure 7,
and the result is as shown in Figure 8.

The adjacent relations unify by taking on the values of both
"dining-rm" and "laundry", since these two values are compatible
(ie there is nothing to exclude the kitchen from being adjacent to
both the laundry and the dining room). The area relation unifies,
because the intervals specified in the two original graphs have a
join on the interval lattice. The join becomes the value of the
unified area relation. The color relation unifies trivially, as there is

nothing specified which could be incompatible with it.

5 DISCUSSION

In discussions with the architects who helped to test the system,
several issues of unification, constraints and matching were
identified. The three main areas where the architectural designer
needs the contribution of Conceptual Graph unification are in type
subsumption, knowledge-level reasoning, and pattern matching.
Each of these three areas is discussed below, along with a
qualitative judgment of how well Conceptual Graphs and
unification deal with these concerns.

The architects want to be able to use type subsumption to make
statements such as, “An office (or kitchen, or corridor) is a kind of
room. All the properties which apply to one should apply to its
specializations.” This is distinct from the object-oriented objective
of objects inheriting all the properties of a class of objects. The
essential difference is in treating a kitchen as you would any
generic room. A generic room can be placed, occupy space, and
have attributes such as insulation and number of doors. A class of
rooms will have attributes, but cannot be said to occupy a space or
have specific dimensions, or have a specific count or placement of
doors. The generic room can have constraints placed on its
attributes, and finally can be specialized into a kitchen.

Fundamentally, a generic room can take the place of a
specialized room, unlike a class of objects. The room can stay
generic for as long as the user needs it to be generic, and then
specialized. Further, the room could be specialized wholly or in
part. If partly specified, it can be matched against other
specifications to find appropriate matches.

Conceptual Graphs and the unification algorithm give this
ability to the architects. The software allows the user to specialize
designs by matching (unifying) previous designs with the current
design problem. Since all characteristics, attributes and constraints
are carried along in the unification, the specialization represents all
of the design concepts included in the more generic design.
Further, and more importantly, there is no real separation between
generic and specific, since all points in between can be represented.
Conceptual Graphs combined with the ability to specialize using
unification are the ideal tool for the knowledge combination
approach and the constructive nature of architectural design.

The second major concern of the architectural designers was the
ability to have knowledge-level reasoning. That is, they want to be
able to speak in the language of the architect, not the language of
the computer (or CAD system). The user wants to be able to refer

rm: kitc hen adjacent

rm: dining-rm

rm: laundry

area

[1 5, 17] : *

color

hue: blue47

rm: kitc hen adjacent

r m: dining-rm

rm: laundry

area

[13, 17] : *

color

hue: blue47

rm: kit chen adjacent

rm: dining-rm

area

[1 5, 20] : *

rm: *

Figure 6. A Conceptual Graph representation of a kitchen.

Figure 7. Another kitchen Conceptual Graph.

Figure 8. The unified design.

99

to the “north wall” or “door” without resorting to discussing
geometric coordinates in space. The user wants to depart from
previous CAD-based data-level processing, and work at the
knowledge level in the architecture domain.

This is certainly another area where Conceptual Graphs and
unification combine to bring a solution to this domain. While
spatial coordinates (and their constraints) can be stored in a
graphical representation of a room, there is no need for the user to
bother with using them. The graph can be manipulated as a whole,
and treated as a room, rather than a square in a diagram. The
software system does not deal with lines and boxes, but rather with
specializing entire designs for rooms (or houses, or office
buildings). This approach frees the architect from dealing with
data-level concerns of numbers and coordinates, and allows the
architect instead to deal with the architectural design.

The third major concern of the architectural testing team is in
the area of pattern matching. The users want to be able to start
with a high-level, generic description of a building, perhaps
represented as a hierarchy of design units. Then they want to be
able to make queries such as, “Can this bay structure be used in the
support structure?” or, “Do the constraints match up adequately for
a particular technology to be used? If yes, tell me the constraints
under which it is usable.”

Once again, the work presented here meets the requirements of
the architects. A query can be represented as a Conceptual Graph.
The user can specify a type of structure for support, and make the
query by attempting to unify the structure with the more generic
design. If the unification fails, then the user knows that the
proposed structure does not meet the constraints of the design
problem. If the graphs unify, then the resulting graph will contain
the constraints which must be met in order to make the design
work.

Overall, the system of unification over constraints on
Conceptual Graphs presented here gives a set of tools to the
designer. The ability to use knowledge combination with
constraints to handle objects at the knowledge level greatly
leverages the ability of the designer to work efficiently.

The software which implements this system is far from being
complete, but the results are consistently as good as those
presented in this paper. Several constraints on real values,
structure and type can be resolved simultaneously in a system. The
software will also allow variables in the place of constraints (such
as [10, n]) and will allow a relaxation of constraints (for example,
if the interval is only out by 10%). We have not examined the
issue of the compounding of problems caused by relaxing multiple
constraints simultaneously.

The software currently has a rough user interface, accepting and
displaying Lisp lists. However, note our work with a new CG
language which has a very friendly user interface in [Benn and
Corbett 2001]. The pCG system, used as a front-end to the tools
described in this paper, will provide an easy user access.

6 CONCLUSIONS

We have demonstrated a method for the formal representation of
general architectural designs. The use of Conceptual Graphs is an
efficient method for representing not only the designs, but also
constraints on the designs and knowledge conjunction of designs.
Type hierarchies and the canonical formation rules efficiently
specialize the graphs into concrete designs.

The system described in this paper allows general designs to be
represented as concepts, and also allows those values to be
constrained by specifying valid intervals and type hierarchies. In
our software, we also use inequality relations and allow variables
in the constraint specifications. The experiments with this software
have shown these techniques to be useful and efficient.

The significance of our work is that a simple unification
operation, using join and type subsumption (implemented as
projection on Conceptual Graphs), is defined which can be used to
validate the constraints over an entire unified graph. Such a graph
can be used to efficiently represent building designs.

7 ACKNOWLEDGEMENT

The author expresses his sincere gratitude to the architects in the
SEED project who participated in discussions on, and assisted in
the testing of the Conceptual Graph unification software: Rob
Woodbury, Andrew Burrow, Sambit Datta and Teng-Wen Chang.

REFERENCES

Benn, D. and D. Corbett (2001). "An Implementation of the Process
Mechanism and an Extensible CG Programming Language". In
Proc. Workshop on Conceptual Graph Tools, International
Conference on Conceptual Structures, Palo Alto, California,
USA, August, 2001.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge,
Cambridge University Press, 1992.

Chang, T.-W. and R. F. Woodbury (1996). "Sufficiency of the SEED
Knowledge-Level Representation for Grammatical Design". In
Proc. Australian New Zealand Conference on Intelligent
Information Systems, Adelaide, Australia, IEEE Press,
November, 1996.

Chein, M. and M.-L. Mugnier (1992). "Conceptual Graphs: Fundamental
Notions." Revue d'Intelligence Artificielle 6(4): 365-406.

Corbett, D. R. (2001). "Conceptual Graphs with Constrained Reasoning."
Revue d'Intelligence Artificielle 15(1): 87-116.

Corbett, D. R. and A. L. Burrow (1996). "Knowledge Reuse in SEED
Exploiting Conceptual Graphs". In Proc. Supplemental
Proceedings of the Fourth International Conference on
Conceptual Structures, Sydney, NSW, Australia, UNSW Press,
August, 1996.

Corbett, D. R. and R. F. Woodbury (1999). "Unification over Constraints in
Conceptual Graphs". In Proc. Seventh International Conference
on Conceptual Structures, Blacksburg, Virginia, USA, Springer-
Verlag, July, 1999.

Flemming, U. and R. F. Woodbury (1995). "Software Environment to
Support Early Phases in Building Design (SEED) Overview."
Architectural Engineering 1(1).

Heisserman, J. A. (1991). Generative Geometric Design and Boundary
Solid Grammars. PhD Thesis, Department of Architecture,
Carnegie Mellon University, Pittsburgh, Penn, USA, 1991.

Heisserman, J. A. (1995). "Generative Geometric Design." IEEE Computer
Graphics and Applications 14(2): 37-45.

Leclère, M. (1997). "Reasoning with Type Definitions". In Proc. Fifth
International Conference on Conceptual Structures, Seattle,
Washington, USA, Springer-Verlag, August, 1997.

Mugnier, M.-L. and M. Chein (1996). "Représenter des Connaissances et
Raisonner avec des Graphes." Revue d'Intelligence Artificielle
10(6): 7-56.

Müller, T. (1997). Conceptual Graphs as Terms: Prospects for Resolution
Theorem Proving. Masters Thesis, Department of Computer
Science, Vrije Universiteit Amsterdam, Amsterdam,
Netherlands, 1997.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind
and Machine. Reading, Mass, Addison-Wesley, 1984.

Wermelinger, M. and J. G. Lopes (1994). "Basic Conceptual Structures
Theory". In Proc. Second International Conference on
Conceptual Structures, Maryland, Springer-Verlag, August,
1994.

Willems, M. (1995). "Projection and Unification for Conceptual Graphs".
In Proc. Third International Conference on Conceptual
Structures, Santa Cruz, California, USA, Springer-Verlag,
August, 1995.

Woodbury, R., S. Datta and A. L. Burrow (2000). "Erasure in Design Space
Exploration". In Proc. Artificial Intelligence in Design,
Worcester, Massachusetts, USA, June, 2000.

Woodbury, R. F., A. L. Burrow, S. Datta and T. W. Chang (1999). "Typed
Feature Structures in Design Space Exploration." Journal of
Artificial Intelligence in Engineering, Design and
Manufacturing 13(4): 287-302.

100

TCP-Nets for Preference-based Product Configuration
Ronen I. Brafman and Carmel Domshlak

�

Abstract. A good configuration not only satisfies all imposed con-
straints, but does so in the manner most desirable by the user. Thus,
to make good configuration choices, we must have some information
about the potential user’s preferences on alternative designs. In many
applications, preference elicitation is a serious bottleneck. The user
either does not have the time, the knowledge, or the expert support
required to specify complex multi-attribute utility functions. In such
cases, a method that is based on intuitive, yet expressive, preference
statements is required. In this paper we suggest the use of TCP-nets,
an enhancement of CP-nets, as a tool for representing, structuring,
and reasoning about qualitative preference statements. We present
and motivate this framework, define its semantics, and show why it
is particularly suitable for the task of configuration.

1 INTRODUCTION

The ability to make decisions and to assess potential courses of ac-
tion is a corner-stone of many AI applications in general, and of
configuration problems in particular. To make good decisions, we
must be able to assess and compare different alternatives. Some-
times, this comparison is performed implicitly, as in many recom-
mender systems. However, in many cases explicit information about
the decision-maker’s preferences is required.

In classical decision theory and decision analysis a utility func-
tion is used to represent the decision-maker’s preferences. Utility
functions are a powerful form of knowledge representation. They
provide a quantitative measure of the desirability of different out-
comes, capture attitude toward risk, and support decision making un-
der uncertainty. However, the process of obtaining the type of infor-
mation required to generate a good utility function is involved and
time-consuming and requires non-negligible effort on the part of the
user. In some application, this effort is necessary and/or possible,
e.g., when either uncertainty plays a key role, or the stakes involved
are high, and when the decision-maker and the decision analyst are
able and willing to engage in the required preference elicitation pro-
cess. One would expect to see such effort invested when, for exam-
ple, medical decisions are involved. However, there are many appli-
cations where either uncertainty is not a crucial factor, or the user
cannot be engaged for a lengthy period of time (e.g., in on-line prod-
uct recommendation systems), or the preference elicitation process
cannot be supported by a human decision analyst and must be per-
formed by a software system (e.g., because of replicability or mass
marketing aims). In such cases, elicitation of a good utility function
is not a realistic option.

When a utility function cannot be or need not be obtained, one
should resort to other, more qualitative forms of preference repre-
sentation. Ideally, this qualitative information should be easily ob-
�

Both authors are from Computer Science Dept., Ben-Gurion
University,Beer-Sheva, Israel, email: � brafman,dcarmel � @cs.bgu.ac.il

tainable from the user by non-intrusive means. That is, we should
be able to generate it from natural and relatively simple statements
about preferences obtained from the user, and this elicitation process
should be amenable to automation. In addition, automated reasoning
with this representation should be feasible and efficient.

One relatively recent framework for preference representation that
addresses these concerns is that of Conditional Preference Networks
(CP-nets) [4]. In CP-nets, the decision maker is asked to describe
how her preference over the values of one variable depends on the
value of other variables. For example, she may state that her prefer-
ence for a dessert depends on the value of the main-course as well
as whether or not she had an alcoholic beverage. Her choice of an
alcoholic beverage depends on the main course and the time of day.
This information is described by a graphical structure in which the
nodes represent variables of interest and the edges represent depen-
dence relations between the variables. Each node is annotated with a
conditional preference table (CPT) describing the user’s preference
over alternative values of this node given different values of the par-
ent nodes.

CP-nets capture a class of intuitive and useful natural language
statements of the form “I prefer the value ��� for variable � given
that �
	�� � and
�	�� � ”. Such statements do not require com-
plex introspection nor a quantitative assessment. However, there is
another class of statements that is no less intuitive or important. They
have the following form: “It is more important to me that the value
of � be high than that the value of � be high.” We call these relative
importance statements. For instance, one might say “The length of
the journey is more important to me than the choice of airline”. A
more refined notion, though still intuitive and easy to communicate,
is that of conditional relative importance: “The length of the journey
is more important to me than the choice of airline provided that I am
lecturing the following day. Otherwise, the choice of airline is more
important.” This latter statement is of the form: “A better assignment
for � is more important than a better assignment for � given that

�	���� .” Notice that information about relative importance is dif-
ferent from information about independence. In the example above,
my preference for an airline does not depend on the duration of the
journey because, e.g., I compare airlines based on their service and
security levels and the quality of their frequent flyer program.

In this paper we present an extension of CP-nets, which we call
TCP-nets (for tradeoffs-enhanced CP-nets), show how they can be
used to compute optimal outcomes given constraints, and discuss
their applicability to the process of product configuration. TCP-nets
capture both information about conditional independence and about
conditional relative importance. Thus, they provide a richer frame-
work for representing user preferences, allowing stronger conclu-
sions to be drawn, yet remain committed to the use of intuitive, quali-
tative information as their source. Naturally, one can consider relative
importance assessments among more than two variables. However,

101

we feel that such statements are somewhat artificial and less natural
to articulate.

This paper is organized as follows. Section 2 describes the no-
tions underlying TCP-nets: preference relations, preferential inde-
pendence, and relative importance. In Section 3 we define TCP-nets,
and provide a number of examples. Section 4 shows how TCP-nets
can be used to perform constrained optimization. Section 5 provides
a discussion of using TCP-nets in product configuration. In this short
version, we emphasize intuitions and motivation. The technically full
version of this paper [5] contains the formal semantics of TCP-nets,
discussion of consistency analysis for various TCP-nets, and a fuller
discussion of the optimization problem.

2 PREFERENCE ORDERS, INDEPENDENCE,
AND RELATIVE IMPORTANCE

In this section we describe the ideas underlying TCP-nets: prefer-
ence orders, preferential independence and conditional preferential
independence, as well as relative importance and conditional relative
importance.

2.1 Preferences and Independence

A preference relation is a total pre-order (a ranking) over some set
of outcomes. Given two outcomes ����� � , we write � � � � to denote
that � is at least as preferred as � � and we write ����� � to denote that
� is strictly more preferred than � � . Finally, if � and � � are equally
preferred, we write �
	�� � .

The types of outcomes we are concerned with consist of possi-
ble assignments to some set of variables. More formally, we assume
some given set ��	�
 � � ��������� ����� of variables with corresponding
domains ��� � ��� ������������� � � � . The set of possible outcomes is then
��� � �����! � � "� ��� � � � . For example, in the context of the prob-
lem of configuring a personal computer (PC), the variables may be
processor type, screen size, operating system etc., where screen size
has the domain
 17in, 19in, 21in � , operating system has the domain

 LINUX, Windows98, WindowsXP � , etc. Each assignment to the set
of variables specifies an outcome – a particular PC configuration.
Thus, an ordering over these outcomes specifies a ranking over pos-
sible PC configurations.

The number of possible outcomes is exponential in # , while the
set of possible total orders on them is doubly exponential in # .
Therefore, an explicit representation and an explicit specification of
a ranking are not realistic. We must find implicit means of describ-
ing this preference relation. Often, the notion of preferential inde-
pendence plays a key role in such representations. Intuitively, $ and% 	&�('�$ are preferentially independent if for all assignments
to
%

, our preference over $ values are identical. More formally, let) � �)+*-, ���.$ � for some $0/1� (where we use ��� � to denote the
domain of a set of variables as well), and let 2 � �32 *-, ��� % � , where% 	4�5'6$. We say that $ is preferentially independent of

%
iff,

for all) � ,) * , 2 � , 2 * we have that

) � 2 � �)7* 2 �78:9) � 2 * �)+* 2 *

For example, in our PC configuration example, the user may assess
screen size to be preferentially independent of processor type and
operating system. This could be the case if, for instance, the user
always prefers a larger screen to a smaller screen, no matter what the
processor or the OS are.

Preferential independence is a strong property, and therefore, less
common. A more refined notion is that of conditional preferential

independence. Intuitively, $ and
%

are conditionally preferentially
independent given ; if for every fixed assignment to ; , the ranking
of $ elements is independent of the value of the

%
elements. For-

mally, let $<� % and ; be a partition of � and let = , ���>; � . $ and%
are conditionally preferentially independent given = iff, for all) � ,)7* , 2 � , 2 * we have that

) � 2 � = �) * 2 � = 8:9) � 2 * = �) * 2 * =
$ and

%
are conditionally preferentially independent given ; if they

are conditionally preferentially independent given any assignment
= , ���>; � . Returning to our PC example, the user may assess op-
erating system to be independent of all other features given proces-
sor type. That is, it always prefers LINUX given an AMD processor
and Windows98 given an Intel processor (e.g., because he might be-
lieve that Windows98 is optimized for the Intel processor, whereas
LINUX is otherwise better).

2.2 Relative Importance

Although statements of preferential independence are natural and
useful, the orderings obtained by relying on them alone are relatively
weak. To understand this, consider two preferentially independent
boolean attributes ? and @ with values A � �3A * and B � �3B * , respec-
tively. If ? and @ are preferentially independent, then we can specify
a preference order over ? values, say A � �!A * , independently of the
value of @ . Similarly, our preference over @ values, say B � �CB * , is
independent of the value of ? . From this we can deduce that A � B � is
the most preferred outcome and A * B * is the least preferred outcome.
However, we do not know the relative order of A � B * and A * B � . This is
typically the case when we consider independent variables. We can
rank each one given a fixed value of the other, but often, we cannot
compare outcomes in which both values are different. One type of
information that can address some (though not necessarily all) such
comparisons is information about relative importance. For instance,
if we say that ? is more important than @ then this means that we
prefer to reduce the value of @ rather than reduce the value of ? . In
that case, we know that A � B * ��A * B � , and we can (totally) order the
set of outcomes as follows

A � B � ��A � B * ��A * B � ��A * B * �
Returning to our PC configuration example, suppose that operating
system and processor type are independent attributes. We might say
that processor type is more important than operating system, e.g, be-
cause we believe that the effect of the processor’s type on system
performance is much more important than the effect of the operating
system.

Formally, let � and � be preferentially independent given D 	
�E'4
��F� �G� . We say that � is more important than � , denoted
by �IH � , if for every assignment J , ���KD � and for every
��L3� ��MN� �PO�� �RQ such that �SLT� ��M given J and �RQU���PO given J ,
we have that:

� L � O J&� � M �RQ3JF�
Notice that this is a strict notion of importance – any reduction in �
is preferred to any reduction in � .2 When both � and � are binary
variables and � � � � * and � � � � * hold given J then �VH � iff we
have � � � * J&� � * � � J for all J , ���KD � .
*

We note that this idea can be refined by providing an actual ordering over
elements of W
XZY�[]\ . We have decided not to pursue this option farther
because it is less natural to specify. However, our results generalize to such
specifications as well.

102

Relative importance information is a natural enhancement of in-
dependence information. It retains the property we value so much:
it corresponds to statements that a naive user would find simple and
clear to evaluate and articulate. Moreover, it can be generalized nat-
urally to a notion of conditional relative importance. For instance,
suppose that the relative importance of processor type and operating
system depends on the primary usage of the PC. For example, when
the PC is used primarily for graphical applications, then the choice
of an operating system is more important than that of a processor be-
cause certain important software packages for graphic design are not
available on LINUX. However, for other applications, the processor
type is more important because applications for both Windows and
LINUX exist. Thus, we say that � is more important than � given =
if we always prefer to reduce the value of � rather than the value of
� when = holds.

Formally, let �F� � �3D be as above, and let ; / D . We say that
� is more important then � given an assignment = , ���>; � (ceteris
paribus) iff, for any assignment J , D 	��5'��>
 �F� �G� � ; � we
have:

�SL �PO =RJ5� �NM��PQ =RJ
whenever �SL � ��M given =RJ and � Q � �PO given =RJ . We denote this
relation by �&H�� � .

Finally, if for some = , ���>; � we have that either �EH � � , or
� H � � , then we say that the relative importance of � and � is
conditioned on ; , and write ��� � �F� � ��; � .

3 TCP-NETS

TCP-nets (for conditional preference networks with tradeoffs) are a
graph-based representation that encodes statements of (conditional)
preferential independence and (conditional) relative importance. We
use this graph-based representation for two reasons: First, it is an in-
tuitive visual representation of preference independence and relative
importance statements. Second, the structure of the graph has im-
portant consequences to issues such as consistency and complexity
of reasoning. For instance, one of the basic results we present in [5]
shows that when this structure is “acyclic,” (for a suitable definition
of this notion) then the preference statements contained in the graph
are consistent – that is, there is a total pre-order that satisfies them.

TCP-nets are annotated graphs with three types of edges. The
nodes of a TCP-net � correspond to the problem variables � . The
first type of (directed) edges signifies preferential dependence. The
existence of such an edge from � to � implies that the user has
different preferences over values of � given different values of � .
The second type of (directed) edges captures relative importance re-
lations. The existence of such an edge from � to � implies that � is
more important than � . Finally, the third, undirected, edge type sig-
nifies conditional importance relations. Nodes � and � are linked if
there exists some ; for which ��� � �F� � ��; � holds.

Each node � in a TCP-net is annotated with a conditional pref-
erence table (CPT). This table associates a preferences over ��� � �
for every possible value assignment to the parents of � (denoted� A � � �). Each undirected arc is annotated with a conditional impor-
tance table (CIT). The CIT associated with the arc between � and �
describe the relative importance of � and � given the possible value
of the conditioning variables.

Formally, a TCP-net � is a tuple 	K� ��

�N��� ��
�� ��

��� ��
�� ��� , where

1. � is a set of nodes, corresponding to the problem variables.
2.

� is a set of directed
�� -arcs
�� � �������������R� (where

� stands for

conditional preference). A

� -arc 	 ' ' ' '����L�� �-M�� belongs to � iff the

preferences over the values of � M depend on the actual value of
� L .

3. � is a set of directed � -arcs
�� � ����������� �.� (where � stands for impor-

tance). An � -arc � '>' ' '!�� L � � M � belongs to � iff � L H � M .
4.
�� is a set of undirected
�� -arcs
�" � ����������"$# � (where
�� stands for

conditional importance). A
�� -arc � � L � � M � belongs to � iff we
have ��� � � L � � M ��; � for some ;!/�� '
�� L � � M � .

5.

��� associates a CPT with every node � , � . A CPT is from
��� � A � � �3� (i.e., assignment’s to � ’s parent nodes) to total pre-
orders over ��� � � .

6.
�� � associates with every
�� edge (� L � � M) a subset ; of � '

���L�� �-MR� and a mapping from a subset of ���>; � to total orders
over the set
 ��L�� � MR� . We call ; the selector set of � ��L�� �-M � and
denote it by %-� � L � � M � .3

We note that the following holds for every node � in the graph:
� is independent of all other nodes given

� A � � � .
In the rest of this section we provide examples of TCP-net. We

start with an example of a CP-net shown in Figure 1. A CP-net is a
TCP-net in which the sets � and
�� (and therefore
�� �) are empty.

'&%$!"#&
��

22
2

'&%$!"#'
����
�

'&%$!"#(
��'&%$!"#)

��
22

2

����
�

'&%$!"#* '&%$!"#+

, - �/. - *�0, 1 * . 1 � 0, X - �32 1 � \54GX - * 2 1 * \36�7 �/. 7 *
8
X - �32 1 * \54GX - * 2 1 � \36�7 * . 7 � 0, 7 � 6�9 �:. 9 *
8 7 * 6�9 * . 9 � 0, 9 � 6�; �/. ; *�8 9 * 6�; * . ; � 0, 9 � 6�< � . < * . <�= 8 9 * 6
<>= . < � . < * 0

Figure 1. An example CP-net

Example 1 The CP-net in Figure 1 is defined over the variables

 ?���@G��?]��@T��A���B�� ; all variables are binary except for the three-
valued B . The decision maker specifies unconditional preference
over the values of A (denoted in figure by A � � A *). However, if
? 	CA � and @ 	�B * the decision maker prefers C * to C � (denoted by
�KA �ED B * �:F C * �GC �).

Now consider the CP-net above and the following three outcomes:
� 	0A � B � C ��H *>I *KJ * , � 	0A � B � C * H *>I *�J * , and " 	0A � B � C * H � I *�J * .
� and � assign the same values to all variables except ? . � assigns
to ? a value that is preferred to the value � assigns to see given the
assignment to the parents of ? (denoted

� A �!? �). Therefore, �!�L�
is a consequence of this CP-net. The same argument applies to � and
" , with respect to the variable @ , and thus, ���M" is a consequence
of this CP-net as well. � �N" cannot be derived directly from the
CP-net above. However, this relation can be inferred via transitivity
from � �O� and �U�O" .

In the following examples all variables are binary, although the
semantics of both CP-net and TCP-net is defined with respect to ar-
bitrary finite domains.

Example 2 Figure 2(a) illustrates a simple CP-net over three vari-
ables ? , @ , and ? ; A is unconditionally preferred over PA , and B is
unconditional preferred over P B , while the preference relation over the
values of ? is conditioned on both ? and @ . The solid lines in Fig-
ure 2(c) show the preference relation over outcomes that this CP-net
induces. The top element is the worst outcome while the bottom ele-
ment is the best one. Arrows are directed from less preferred to more
preferred outcomes.

= Naturally we expect this set Q to be the minimal context upon which the
relative importance between Y L and Y M depends.

103

������ ��� � �
'&%$!"#&

��
88

88
8

'&%$!"#'
����

��
�

'&%$!"#(
��� �	����� � � ��	�
����� ��	�
��� � � �	����

(a)
'&%$!"#&

��
88

88
8

� // '&%$!"#'
����

��
�

'&%$!"#(
(b)

�
 � � ��

��

��

��

�
 � � �

�� ���
 � �

��

��

 � � �

||

ttiiiiiiiiiiiiiioo_ _ _

 � � ��

%%KKKKKK
//___ �
 � ��

��
 � ��

��
 � �
(c)

Figure 2. Illustrations for Example 2.

Figure 2(b) displays a TCP-net that extends the CP-net above by
adding an � -arc from ? to @ . Thus, ? is absolutely more important
than the @ . This induces additional relations among outcomes, cap-
tured by the dashed lines in Figure 2(c).

������

'&%$!"#&
��'&%$!"#'

��

��
55

55
5

'&%$!"#*

'&%$!"#('&%$!"#)

� ��� ���� � �����
� ������� � ������
������
� ��� ��� � ������

'&%$!"#&
��'&%$!"#'

����
��
�

��
77

77
7

� // '&%$!"#*

'&%$!"#(���� � '&%$!"#)
��� ���! ���� ��!��"�� ��!�

Figure 3. Illustrations for Example 3.

Example 3 Figure 3(a) illustrates a CP-net over five variables ? , @ ,
? , @ , and A . Figure 3(b) presents a TCP-net that extends this CP-net
by adding an � -arc from @ to A and a
�� -arc between ? and @ . The
relative importance of ? and @ depends on the assignment to @ and
A . When @ and A are assigned B I , then ?!H @ . When @ and A are
assigned B PI or PB I , then @ H ? . Finally, when @ and A are assignedPB�PI , the relative importance between ? and @ is unspecified. The CIT
of this
�� -arc is also presented in Figure 3(b).

Depending on the application, a typical process of constructing a
TCP-net would commence by asking the decision maker to identify
the variables of interest, or by presenting them to the user, if they are
fixed. For example, in the application of CP-net to web-page config-
uration presented in [7], the web-page designer chooses a set of con-
tent elements, which correspond to the set of variables. In the case
of an online shopper-assistent agent, the variables (e.g., the possible
components of a PC) are likely to be fixed. Next, the user is asked
to consider for each variable, the value of which other variable influ-
ences her preferences over the values of this variable. At this point
cp-edges and CPTs will be introduced. Next, the user will be asked
to consider relative importance relations, and the � and
�� edges will
be added. For each
�� edge, the corresponding CIT will be filled.

4 PREFERENTIAL CONSTRAINT-BASED
OPTIMIZATION

We now discuss the problem of constraint-based optimization given
a TCP-net and a set of constraints. We restrict ourselves to a class of
conditionally acyclic TCP-nets. This class is formally defined in the
full paper. Inituitively, conditional acyclicity is an extension of the
notion of acyclicity to a graph in which the direction of an edge is
conditional on the value of some of the nodes – as in TCP-nets.

Given a TCP-net � and a partial assignment to its variables, it
is simple to determine an outcome consistent with this assignment
that is preferentially optimal with respect to � , as shown in [4]. We
traverse the variables in some topological order induced by the CP-
net part of � and set each unassigned variable to its most preferred
value given its parents’ values. The relative importance relations do
not play a role in this case.

If some of the TCP-net variables are mutually constrained by a set
of hard constraints,

#
, then determining the set of Pareto-optimal 4

feasible outcomes is not trivial. A branch and bound algorithm for
determining such the set of optimal feasible outcomes with respect
to an acyclic CP-net was introduced in [3]. This algorithm has the
important anytime property – once an outcome is added to the cur-
rent set of non-dominated outcomes, it is never removed. Figure 4
presents a modified version of this algorithm that works with condi-
tionally acyclic TCP-nets and retains the anytime property.

The algorithm in Figure 4 uses the topology of the TCP-net to
order the variables during the search process. More important vari-
ables, i.e., variables that are “higher-up” in the network, are assigned
values first. Each variable is assigned the most preferred value in the
current context that does not violate the constraints. Thus, by care-
ful selection of variables and values, we ensure that new solutions
cannot dominate solutions that were found earlier.

An important element of the algorithm is the test performed in the
line before last in the $&%('*)
,+ routine. There, candidate solutions are
compared against the set of current solutions. In [4], this compari-
son is referred to as dominance testing. We discuss the algorithm in
more detail, and dominance testing in particular, in the full paper.
However, it is important to stress that this element of the algorithm
is where constrained optimization and constraint satisfaction differ.
However, this difference shows up only when (1) more than a sin-
gle optimal solution is required (because dominance testing is not
applied until we generate the first solution), and (2) dominance test-
ing is hard. In CP-nets, [6] shows that when the graph is a polytree,
dominance testing is polynomial. In that case, the complexity of the
$&%('*)
,+ procedure is analogous to that of generating all feasible so-
lutions. However, in more complex networks, dominance testing in
CP-nets, and therefore, in TCP-nets, is NP-hard.

5 TCP-NETS FOR PRODUCT
CONFIGURATION

During the last decade, the configuration problem received consider-
able attention both in academia and industry. Informally, a configu-
ration problem is characterized by two key features [19]:

1. The artifact being configured is assembled from instances of a
fixed set of well-defined component types, and

2. Components interact with each other in predefined ways.

-
An outcome . is said to be Pareto-optimal with respect to some preference
order . and a set of outcomes / if there is no other . � such that . � . . .

104

Search (� , � , �)
Input: Conditionally acyclic TCP-net � , Constraints � ,

Context � (partial assignment on some variables of the original TCP-net)
Output: Set of all solutions for � that are Pareto-optimal w.r.t. �
Choose any variable Y s.t. there is no ��� -arc ���	��
[
�>Y�� ,

no � -arc X��	��
[
�>YG\ , and no X Y�� []\ in � .
Let � �/.������ . � � be the preference ordering of W�X YG\

given the assignment on �]X YG\ in � .
Initialize the set of local results by �����
for X���� � 8 � �"! 8 �$#%# \ do
Y&�'� L
Strengthen the constraints � by Y(�'� L to obtain � L
if � M*) � L for some +-,%� or � L is inconsistent then

continue with the next iteration
else

Let � � be the partial assignment induced by Y(�.� L and � L� L = Reduce (� , � �)
Let � �L � �/��� �0� #L be the components of � L that are connected

either by the edges of � L or by the constraints � L .
for X +1� � 8 +-�%2 8 +3#%# \ do
� M L = Search (� ML �4�"56� � �4� L)

if � M L-7��� for all +*�82 then
foreach .:9;� ��< � �L <>=�=�=?< � #L do

if for each . � 9�� holds � = . � 7. � = . then Add . to �
return �
Reduce (� , � �)
foreach ��Y&�.� L �19�� � do

foreach �@� -arc � �?�A
Y�� [1�B9C� do
Restrict the CPT of [to the rows dictated by Y&�'� L .

foreach �/� -arc DE��XZ[� � [* \B9C� s.t. YF9�G X�D \ do
Restrict the CIT of D to the rows dictated by Y&�.� L .
if, given the restricted CIT of D , relative importance

between [� and [* is independent of G XHD \ , then
if CIT of D is not empty then

Replace D by the corresponding � -arc.
else Remove D .

Remove from � all the edges involving Y . return � .

Figure 4. Search Algorithm for Non-dominated Outcomes

Therefore, selecting and arranging combinations of parts that sat-
isfy given specifications form a core of the configuration task. While
there has been a wide and growing research in modeling configu-
ration problem, and efficient problem solving methods, there is still
a need for more work on modeling and learning user preferences,
and using these to achieve configurations that are not only feasi-
ble, but also satisfactory from the user point of view. The necessity
of these issues is emphasized by almost every paper on configura-
tion, e.g. [10, 11, 13, 15, 21], especially when high-level configura-
tors [11] for particular, real-life domains are discussed. The impor-
tance of seeing user preferences as a part of the configuration prob-
lem mostly entailed from the fact that it is often the case that many
configuration problems, e.g. product configuration, are weakly con-
strained and have numerous solutions. The value of these solutions,
from the subjective point of view of a particular user, may vary sig-
nificantly between the solutions.

Recently, the issue of user preferences as a part of the configura-
tion problem has received considerable attention in the configuration
community. Modeling tradeoffs as additional constraints on the con-
figuration problem was addressed in [10]. Preference-based search
that is guided to preferred solutions was introduced in [14]. A prefer-
ence programming framework which is based on a logical approach
for treating preferences was proposed in [15]. In addition, various ap-
proaches for modeling and dealing with soft constraints as a part of
the constraint satisfaction process have been closely examined in the
CSP community [2]. However, the latter approaches address over-

constrained problems that should be relaxed. They incorporate pref-
erence information by attaching truth values to constraints, not to
the variables or variable values. Therefore, this area is mainly about
optimization of partial constraint satisfaction, and not about solution
optimization in face of constraint satisfaction.

We believe that the TCP-net model provides a good, and in many
respects unique, basis for a preference-based configuration frame-
work because of the following reasons:

1. The development of the CP-net, and subsequently of the TCP-net
models, was guided by the naturalness of the represented state-
ments. Therefore, the preferential statements that are captured by
TCP-nets are likely to be found intuitive for users at all levels. In
particular, we argue that all the preferential statements that were
discussed in [15] can be captured by a TCP-net.

2. The TCP-net model is graphical, and its structure is induced by the
assumptions of preferential independence between the problem
variables. This structure can be utilized in developing specialized
algorithms that exploits various properties of this structure [6].
Note that exploiting advantages of graphical, independence-based
representation models is widely accepted in AI, and in particular
in utility representation [1, 17], constraint satisfaction [22], and
probabilistic reasoning [18].

3. The TCP-net model has a well-defined semantics in terms of qual-
itative decision theory. This allows for a clear and clean analysis
of its expressiveness and its computational properties with respect
to inference, consistency, etc.

4. The branch and bound CSP algorithm that is guided by a TCP-
net has two important properties: First, this algorithm is anytime,
i.e., once a solution is added to the generated set of Pareto-optimal
solutions, it is never removed from this set. Second, if we can be
satisfied by one Pareto-optimal solution, then its generation is not
harder than the generation of a single feasible solution. In general,
these properties are rare in the world of constraint optimization.

In what follows, we address some additional issues that may be found
important in the context of preference-based configuration.

First, in decision theory, the preference order reflects the prefer-
ences of a decision maker. The typical decision maker in preference-
based product configuration is the consumer. However, in some do-
mains, the product vendor may decide that customer’s preference
elicitation is inappropriate, or simply impossible. In this case, the
role of the decision maker may be relegated to a product expert, since
she is likely to have considerable knowledge about appropriate com-
ponent combinations. Given some information about the customer,
such a product expert can argue about the expected preferences of
this customer. Following an example in [15], in case of a car config-
uration, the expert may determine that if the customer is young and
a male then he is likely to prefer white cars on red cars, or that the
fashioned look is a more important parameter than reliability. In this
case, the product expert may specify a TCP-net over the variables
that stand for parameters of both the product and the customer. The
latter variables will serve as network parameters, and will be instan-
tiated at the beginning of each session of personalized configuration,
given some personal information about the customer. Clearly, each
such variable will be a root variable in the TCP-net – it will not par-
ticipate neither in
�� -arcs nor in � -arcs, and it will have only outgoing

�� -arcs. However, it may serve as a selector variable in some
�� -arcs
of the network.

Note that relegation of the role of the decision maker from the
customer may be done because of various reasons. For example, [7]
presents a CP-net based approach for configuration of presentations,

105

which is illustrated on web pages. In this approach, the process of
interactive document presentation is viewed as a configuration prob-
lem whose goal is to determine the optimal document appearance
while taking into account the preferences of the document’s author,
e.g. an editor of an online newspaper, and viewer interaction with the
document.

An additional issue that, at least in some cases, can be addressed
naturally using the TCP-net model, is non-rigidness of the variable
set [16, 19, 20, 23]. As it is argued in [19], different components
for the same functional role may need nonidentical sets of additional
components, or functional roles. In this case, the set of variables in
a solution changes dynamically on the basis of assignments of val-
ues to other variables. Now, consider a variable � that, for instance,
stands for a particular functional role. Observe that nothing in the se-
mantics of the TCP-net prevents one of the values in the domain of
� to stand for the absence of � . This way, the presence/absence of
some variables may condition the presence of some other variables,
their relative importance, and the preference on their values. Note,
that the former conditionings are entailed by the activity constraints
on the variables, which are defined by the core configuration prob-
lem, and not by the preferences of a user. In this case, they can be
added into the TCP-net automatically, after the preference elicitation
stage, by a straightforward extension of the specified TCP-net. Such
an approach of automatic extension of CP-nets was exploited in [8]
for preference-based presentation of tree-structured multimedia doc-
uments. In this domain, (i) the preferences on the value (= option of
content appearance) of a document’s component may be conditioned
by the value of some other components, and (ii) whether it should be
shown or hiden depends directly on which of its ancestors are shown
and which are hidden.

Note that we are not claiming that this approach will be feasible
and/or natural for any dynamic preference-based configuration task.
However, if it will, then one of the benefits seems to be the fact that
this task could be treated exactly as it was static, using the $ % '*)
 +
algorithm (see Figure 4). Of course, if the variable set of the problem
is very dynamic, then the complexity of an automatically extended
TCP-net may be high, and thus efficient consistency verification of
the specified preference relation is important. For discussions and
results on this issue we refer our reader to [6, 5].

Another issue of the configuration process in which the TCP-net
model seems to be beneficial, is explanation generation for users [9].
The goal of an explanation for a generated configuration is to help
the user understand the decisions that were taken during the search
process, e.g. why this particular configuration was chosen. The im-
portance of explanation is even more significant if the configuration
task is preference-based, i.e., it is about optimization, not only satis-
faction. It seems reasonable to build an explanation in respect to the
values of the variables in the accepted solution according to the same
order that these variables were examined during the search. Recall
that the flow of the $ % '*)
 + algorithm in Figure 4 is guided by the
structure of the TCP-net. If so, then this structure may be exploited
during the explanation generation. However, this issue is not in the
scope of this paper, and we leave it as a possible direction for future
research.

One of the interesting applicative issue in the framework of elicita-
tion of qualitative preferences is model acquisition from speech/text
in natural language [12]. Observe that the intuitiveness of the qual-
itative preferential statements is highly related to the fact that, at
least most of them, have a straightforward representation in natu-
ral language of everyday life. In addition, collections of preferential
statements seems to form a domain that is apriori constrained in a

very special manner. This may allow us to develop specialized tech-
niques and tools for understanding the corresponding language. Fi-
nally, both offline and online language understanding should be con-
sidered, since a user can either describe her preferences offline, as a
self-contained text, or can be asked online, as a part of interactive
process of (possibly mixed) preference elicitation and preference-
based constraint optimization [3].

REFERENCES
[1] F. Bacchus and A. Grove, ‘Graphical Models for Preference and Util-

ity’, in Proc. of UAI-95, pp. 3–10, (1995).
[2] S. Bistarelli, H.Fargier, U. Montanari, F. Rossi, Thomas Schiex, and

Gerard Verfaillie, ‘Semiring-Based CSPs and Valued CSPs: Frame-
works, Properties, and Comparison’, Constraints, 4(3), 275–316,
(September 1999).

[3] C. Boutilier, R. Brafman, C. Geib, and D. Poole, ‘A Constraint-Based
Approach to Preference Elicitation and Decision Making’, in AAAI
Spring Symposium on Qualitative Decision Theory, Stanford, (1997).

[4] C. Boutilier, R. Brafman, H. Hoos, and D. Poole, ‘Reasoning with Con-
ditional Ceteris Paribus Preference Statements’, in Proc. of UAI-99, pp.
71–80, (1999).

[5] R. Brafman and C. Domshlak, ‘Introducing Variable Importance Trade-
offs into CP-Nets’, in Proc. of UAI-02, (2002).

[6] C. Domshlak and R. Brafman, ‘CP-nets - Reasoning and Consistency
Testing’, in Proc. of KR-02, (2002).

[7] C. Domshlak, R. Brafman, and S. E. Shimony, ‘Preference-based Con-
figuration of Web Page Content’, in Proc. of IJCAI-01, pp. 1451–1456,
(2001).

[8] C. Domshlak and S. E. Shimony, ‘Predicting Likely Components in CP-
net based Multimedia Systems’, Technical Report CS-01-09, Dept. of
Computer Science, Ben-Gurion Univ., (2001).

[9] E. Freuder, C. Likitvivatanavong, and R. Wallace, ‘Explanation and Im-
plication for Configuration Problems’, in Proceedings of 4th Workshop
on Configuration (IJCAI-01), pp. 31–37, Seattle, US, (August 2001).

[10] E. Freuder and B. O’Sullivan, ‘Modeling and Generating Tradeoffs
for Constraint-Based Configuration’, in Workshop on Configuration
(IJCAI-01), (2001).

[11] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems and their Appl., 13(4), 78–85, (1998).

[12] G. James, ‘Challenges for Spoken Dialogue Systems’, in Proceedings
of the IEEE ASRU Workshop, (1999).

[13] U. Junker, ‘A Cumulative-Model Semantics for Dynamic Preferences
on Assumptions’, in Proc. of IJCAI-97, pp. 162–167, Nagoya, Japan,
(August 1997).

[14] U. Junker, ‘Preference-based Search for Scheduling’, in Proceedings
of Seventeenth National Conference on Artificial Intelligence, pp. 904–
909. AAAI Press, (August 2000).

[15] U. Junker, ‘Preference Programming for Configuration’, in Workshop
on Configuration (IJCAI-01), pp. 50–56, Seattle, US, (August 2001).

[16] S. Mittal and B. Falkenhainer, ‘Dynamic Constraint Satisfaction Prob-
lem’, in Proceedings of the Eighth National Conference on Artificial
Intelligence, pp. 25–32. AAAI Press, (1990).

[17] P. La Mura and Y. Shoham, ‘Expected Utility Networks’, in Proc. of
UAI-99, (1999).

[18] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, San Mateo, CA, 1988.

[19] D. Sabin and R. Weigel, ‘Product Conguration Frameworks - A Sur-
vey’, IEEE Intelligent Systems and their Appl., 13(4), 42–49, (1998).

[20] T. Soininen and E. M. Gelle, ‘Dynamic Constraint Satisfaction in
Conguration’, in Proceedings of AAAI Workshop on Conguration,
(1999).

[21] T. Soininen and I. Niemelä, ‘Formalizing Configuration Knowledge Us-
ing Rules with Choices’, in Int. Workshop on NonmonotonicReasoning,
(1998).

[22] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1993.

[23] M. Veron and Aldanondo, ‘Yet Another Approach to CCSP for Con-
figuration Problem’, in Proceedings of 3rd Workshop on Configuration
(ECAI-00), Berlin, Germany, (August 2000).

106

Neural networks to approximate data collection or
computer code in constraint based design applications

Eric Bensana and Taufiq Mulyanto 1

Abstract. During a design or configuration process, some knowl-
edge cannot directly be provided as analytical relations between de-
sign variables. In such cases, an analytical approximated relation has
to be built.

The work is focused on the approximation capabilities of different
kind of neural networks and the integration of the corresponding ap-
proximations into a constraint based system, such as constraint logic
programming.

1 INTRODUCTION

Building an application on top of constraint programming requires
that all constraints of the problem have to be made explicit using a set
of basic constraints provided by the language. But, in some cases, the
analytic relation between the variables is not available. The reasons
for that unavailability can be the complexity of the underlying model,
or the experimental nature of the relation or even confidentiality.

In such situations, embedding these relations within a constraint
programming environment is not straightforward. The work under
progress is aimed at studying how approximation schemes coming
from neural networks may be used to build constraints when the an-
alytical formulation of the underlying relation is not available. The
first part of the paper precises the type of relations we intend to deal
with. The second part is centered on neural networks approximation
capability. And the third part presents some preliminary results.

2 NON ANALYTIC KNOWLEDGE

When dealing with the design of complex systems, such as aircrafts,
two types of knowledge, not available as analytical relations, may be
encountered : collections of data and existing computer code.

2.1 Data collection

In this case, basic knowledge about the relation is made of sets of
points where the relation is satisfied. Typically, these points repre-
sent a family of curves expressing the relation between several vari-
ables. For instance, relations between altitude, speed and thrust for
a given turbojet engine are available under this form. They are pro-
vided by the engine manufacturer and result from thermodynamics
theory, simulation and experimental validation. When trying to take
into account engine performances into a design process, you have to
find a way to integrate such data.

Another example of such knowledge is the use of statistical data :
the data set represents in fact the value of different parameters for

1 ONERA-DCSD, BP 4025, 2 av E. Belin, 31055 Toulouse CEDEX 4, France
{eric.bensana,taufiq.mulyanto@cert.fr}

a set of existing items, which are assumed to be extrapolated. For
instance, in an aircraft, the repartition of weights for each subsystems
is often computed by considering existing similar aircrafts.

2.2 Computer object code

In this case, knowledge about the relation between variables is pro-
vided as an existing computer object code (procedure). Several rea-
sons may explain why translating this procedure into a set of basic
constraints is not possible :

• confidentiality : when design requires cooperation between differ-
ent entities, sometimes you are allowed to use a function, but not
to know how it is built. In this case typically, an object code like
a shared object library and a description of the basic call for the
different functions are the only knowledge source;

• translation : even by assuming that the source code is available,
the lack of documentation or the inherent complexity of the pro-
cedure like simulation-based procedures for instance, makes the
translation into constraints hard.

• duration : in some cases, the difficulty arise from procedure run-
ning time execution; the approximation is needed to reduce com-
puting time and to allow the integration of the knowledge within
a constraint propagation mechanism.

2.3 Proposed framework

When dealing with design applications, such situations are frequent.
In aeronautic design applications based on optimization techniques
[16], approaches based on approximation techniques have been pro-
posed. A distinction is made between inputs and ouputs and the ap-
proximation is always to compute outputs when the inputs are given.

As the use of constraint programming for design is more recent,
these situations have received less attention. Contrary to classical
programming techniques, in constraint programming the user only
express the relation between variables (constraints) and do not im-
pose a particular data flow. A computation procedure (constraints
propagation), embedded in the constraint programming language
computes domains reduction for the variables and decides, at each
propagation step, of the data flow within a constraint.

2.3.1 Generalization

Although different in nature, both situations are very close from the
approximation point of view. The distinction relies in the definition
of the learning space which can be used to build the approximation :

• In the data collection case, the space is given explicitly (the given
set of points);

107

• In the computer code case the limits of the space for the variables
are given and thus every point in this subspace can be used to build
the approximation.

The study is focused on the approximation of real functions of
the type :Y = f (X1,X2, ...,Xn). Actually, we consider only functions
where theXi andY are reals (but in the future, integers should also be
considered). The aim is to build a constraint of arityn+1, approxi-
mating f : ACf (X1,X2, ...,Xn,Y). To allow the reuse of this approxi-
mating constraint in the design application,ACf should be expressed
using a set of basic constraints available in the constraint program-
ming environment.

In case of multiple outputs, like for example in computer code,
a relation{Y1, ..,Yk} = f (X1, ...,Xn) can be split intok basic rela-
tionsYi = fi(X1, ...,Xn), leading to the building ofk approximations.
By doing this, we limit possible interferences in the approximation
building process. But this decomposition is only a possibility, if re-
lations between outputs are required the full relation should be taken
into account.

2.3.2 Knowledge characterization

In order to characterize the initial knowledge, we will assume that
the following information about the relation is provided :

• a characterization of the variablesXi andY : type (input or output)
and domain of values;

• the definition of the computation support : either a set of data
points where the relation is known(Xi

1,X
i
2, ...,X

i
K ,Yi) or an ex-

ecutable computer codeF implementingf .

We assume also that the approximating constraint building pro-
cess is done before the use of the resulting constraint in the design
application.

2.4 Approximation background

Approximation is widely used in engineering and specially in design
applications. Starting from a set of data representing an unknown
function f , the aim is to determine a functiong which is as close as
possible to the training data set, according to a criteria.

Interpolation is a special case of approximation where the function
g must go through all the data points of the training set. Several in-
terpolation methods exists like Lagrange, Neville-Aitken, Newton or
cubic spline. They differ mainly by the type of basic functions used
to build the interpolating function.

Different approaches have been developped for building approxi-
mations :

Least Square : approximations according to least-square optimiza-
tion like polynomial, exponential, power, trigonometric logarith-
mic approximation [4, 19] are, because of their simplicity, cer-
tainly the most widely used techniques. Once a general form for
the approximation is selected, a least-square optimization process
finds the parameters of the functiong.

Response Surface : originally developped to analyze the results of
physical experiments, this method postulates thatf can be approx-
imated byg(x) = h(x)+ ε whereh is a polynomial function (usu-
ally linear or quadratic) andε a random error of mean 0, indepen-
dent of observations. The parameters ofhare computed using least

square regression techniques which minimize the sum of squares
of deviation between predicted values and actual values.

Kriging methods : these methods, named from Krige, were orig-
inally defined to cope with stochastic aspects in data analysis in
the mining domain. Kriging approximation [14, 5, 8], introduces
also a stochastic component in the approximating function.g is
defined asg(x) = p(x) + Z(x) where p is usually a polynomial
function (very often restricted to a constant term) which takes into
account the global approximation off andZ is the realization of a
stochastic process of mean 0, varianceσ2 and non-zero covariance
which approximates the local deviation. Depending on the choice
of the correlation function kriging methods can be used to build
interpolations or approximations.

Neural networks : multi-layered perceptron [20, 18, 11, 12], radial
basis functions neural nets [10], self-organizing maps [2] or neural
gas [21] are known to have good approximating properties and
will be discussed in section 3.

Genetic algorithms : chromosoms represent trees of computations
where each gene represents a basic unary or binary arithmetic
functions. By applying crossing and mutation, new functions can
be built which are matched again the learning set to evaluate their
fitness [1, 3].

Fuzzy rules : the functionf is approximated by a set of fuzzy rules
like i f X1 is A1 and...and Xn is An then Y is B, whereAi andB
are fuzzy sets [7, 13]. For example, in [9], rules can be derived
from the analytical knowledge off and its first derivative. This
approach is well adapted for example to introduce analytical rules
into fuzzy controllers.

Design of experiments : Although the definition of experimental
plans is not an approximation technique, it is often associated to
an approximation scheme in order to limit the identification, train-
ing or learning preliminary phase by avoiding extensive compu-
tations. These approaches have first been defined by the english
statistician Fisher in the 20s and they have been highlighted in the
80s by Taguchi in the domain of production quality [17].

2.5 Work orientation

The goal is to define a generic approach for embedding both data col-
lection and computer code compatible with constraint programming
and which does not require too much user interaction. By consider-
ing some of the specificities of the foreseen applications, the domain
of investigation can be restricted :

• stochastic aspects are not present in the case of computer code, so
Response Surface, including stochastic aspects will be discarded;

• kriging methods, also including stochastic aspects, can be used
in computer code case, like for instance in Design and Analysis
of Computer Experiments (DACE) [15], but they have not been
considered here because of their complexity;

• interpolation is not required because we consider design applica-
tions at a high level of description, which imply imprecision and
because it is incompatible within the computer code case.

• before using least-square approximation, you need to look at data
before selecting the type of approximation to use or build different
approximations before selecting the one which matches best : this
point does not match our goal of low level interactivity

108

• fuzzy approximation does not match the fact that the approxima-
tion should be directly translated into a set of basic arithmetic con-
straints;

• genetic approximation allows to build complex functions by com-
bining a set of basic functions but this approach seems to be quite
complex to implement;

• design of experiments methods will be needed when adressing the
computer code case to help to generate an explicit training set.

These reasons lead us to focus on neural networks, even if other
methods like those derived from kriging methods could be used.

3 NEURAL NETWORKS

3.1 Mathematical formulation for neural nets

Because of the numerous types of neural networks (NN), we will
limit our presentation to the feed-forward types, which are those used
for approximation. A neuron model is given in figure1. Information
is propagated through it according to the arrows.

Inputs are represented by the vectorE = {e1,e2, . . . ,en} andW =
{w1,w2, . . . ,wn} is the vector of the weights of the vertices linking
inputs to the neuron. The neuron is modelled by an input integra-
tion functiong(.) and a transfer functionf (.). These functions allow
to compute the output of the neurons. The output vertex allows to
propagate the output to others neurons. The bias parameterb helps
to improve the model.

f(.) sa

b

1e

e

e

e

e

...

n

3

2

g(.)

w1

w

wn

3

w...

w2

Figure 1. Mathematical model of a neuron

The functiona = g(W,E,b) combines the inputs, the weights and
the bias in a single value. The transfer function (also called activation
function) takes into account non-linear aspect.

3.2 Definition of a neural network

The definition of a given neural network is usually made in two
steps :

1. the definition of the general architecture of the network : number
of layers, number of neurons, types of the functionsf andg;

2. the training of the network, in order to compute the values of the
different parameters : weights and biases.

There is no real methodology for deciding of the general archi-
tecture of a network for a given problem. Thus intuition or experi-
ence are often the only rules. As far as approximation is considered,
several types of neural networks architectures are known to be effi-
cient : multi-layered perceptron (MPL), radial basis function neural
nets (RBFNN), self-organizing maps (SOM) or neural-gas (NG).

3.3 Neural nets for approximation

In this paper, only MLPs and RBFNNs are considered. Other NN
architectures like SOMs or NGs should be considered later in the
study.

3.3.1 Multi-Layers Perceptron

The multi-layers perceptron (MLP) [20, 18, 11, 12] is one of the most
simple network to build. Their basic characteristics are :

• they are structured by layers : one input layer, several hidden lay-
ers and an output layer;

• inside a layer a neuron is not connected to any other neuron of the
layer but connected to all neurons of previous and next layer;

• the input layer has one neuron for each input and can be forgotten
by considering that each input is connected to all neurons of the
first hidden layer : the number of layers is the number on hidden
layers + 1

• the activation functiong is common to all neurons of the hidden
layers.;

• for each neuron of a hidden layer :

– the integration functiong should be a summation∑i ei .wi +b,

– the transfer functionf must be monotonic increasing like for
instance the sigmoid function 1/(1+exp(−α.u)) or the hyper-
bolic tangenttanh(α.u)

• for each neuron of the output layer :

– the integration function is also a summation;

– the transfer function is linear;

Consequently, when two layers MLP are considered (one hidden
layer and the output layer), each output neuron computes the follow-
ing function :

y =
p

∑
j=1

b j .g(
q

∑
k=1

a j,k.xk +c j)

where :

• p is the number or neurons of the hidden layer andq is the number
of inputs;

• g is the activation function associated to the neurons of the hidden
layer;

• the b j are the weights of the links between the neurons of the
hidden layer and the neuron of the output layer considered;

• the ai, j are the weights of the links connecting the inputs to the
neurons of the hidden layer;

• c j is the bias associated to thejth neuron of the hidden layer;
• thexk are the inputs andy is the output.

The training is supervised, meaning that a training set has to be
determined. The learning algorithms which allows to compute the
weights of the network are generally error backpropagation algo-
rithms and the modification of the weights is based on the quadratic
error.

109

3.3.2 Radial Basis Functions Neural Nets

Radial Basis Function Neural Nets [10] are very close to the multi-
layered perceptron. Their structure is also layered, but there is only
one hidden layer. The neurons of the hidden layer use a regular and
radial symetric activation function, which is assumed to deal with
proximity between data. A regular, radial symetric function is of the
form : g(~x) = K(‖~x−~c‖) where :

• ~c is the class center
• ‖ is a norm : for instance euclidian distance

√
∑i(xi −ci)2)

• K is a Green function like for example thee−ax2
with a > 0;

For instance, gaussians are regular radial symetric functions.
The neurons of the output layer, as in the MLP case, perform a

linear combination of the output of the neuron of the hidden layer.
The approximation performed by each neuron of the output layer is
then :

p

∑
j=1

b j .g(‖~x−~ci‖,σi)

Three types of training are available for this type of network :

• a one step algorithm which computes directly the networks pa-
rameters by minimizing the approximation error;

• two steps algorithm :

1. the learning of the characteristics of the radial basis functions :
one neuron for each training point or one neuron for each class
of input (which may require a preliminary classification of the
training set);

2. learning with some kind of backpropagation algorithms of the
weightsb j of the links between the neurons of the hidden layer
and those of the output layer.

• a training of the output layer only : the hidden layer is fixed by
the user or randomly and the learning reduces to the solving of an
linear optimization problem.

Generally this type of network is easier to build than the MLP.

3.3.3 Adequation

These two types of neural networks, havea priori interesting prop-
erties :

• their approximating capabilities are known;
• they have a rather simple structure : simpler for the RBFNNs than

for the MLPs;
• the approximation formulation can be easily and directly trans-

lated as a set of basic arithmetic constraints : sum, square, expo-
nentiation, productetc.

• they can deal with multiple outputs models.

4 EXPERIMENTATION

The purpose of the ongoing experimentations is to test different neu-
ral networks architectures to evaluate their pertinence for building
approximating constraints. In order to evaluate and compare differ-
ent architecture, evaluation criteria and test cases must be stated.

4.1 Evaluating neural-based approximation

The training of neural networks is usually done using to set of ex-
amples : a training set which is used by the learning algorithm to
computes weights and biases and an evaluation set, different from
the training set, which is used to evaluate how the neural network
really performs.

To evaluate, the pertinence of a neural-based approximation, two
aspects must be balanced :

• the approximation quality which measures the intrinsic perfor-
mance of the approximation builtw.r.t the initial knowledge; this
evaluation is done by computing both approximation error for the
points in the training set and the generalization error for the points
of the evaluation set; both errors are related to the size of the net-
work in term of number of neurons, the approximation error de-
creases when the size increases, but if the size becomes too high
the generalization error may increases;

• the propagation effectiveness which measures how constraint
propagation performs on the approximating constraint built from
the neural net; propagation effectiveness usually decreases when
the number of neurons increases.

To improve propagation effectiveness and avoid tow large gener-
alization error, it seems interesting to build neural networks as small
as possible.

Another aspect, which can taken into account, is related to running
time : learning time or propagation time.

4.2 First experimentations

Preliminary experimentations have been conducted, using the Neural
Network Toolbox of Matlab.

4.2.1 Example

An example has been built from the following function (see figure2) :

z= [y·exp−(0.5x−1)2
·sin(2y)]+

y(1+x)2

20

−5
−3

−1
1

3
5

0

2

4
−2

0

2

4

6

8

XY

Z

Figure 2. Surface for z=f(x,y)

A training set of 55 points has been built by varyingx from -5
to 5 (step 1) andy from 0 to 4 (step 1) and an evaluation set of 14
points have been built by varyingx from -4.5 to 4.5 (step 1) andy
from 0.5 to 3.5 (step 1). Consequently,z= f (x,y) belongs to the in-
terval[−0.7788,7.6171]. Globally the data set is formed of 69 triples
corresponding to the values (x, y, z).

110

4.2.2 Architecture of networks

The following architectures have been tested and compared :

• one hidden layer MLP (MLP1) with 3,5,7 or 9 neurons in the hid-
den layer

• two hidden layers MLP (MLP2) with a neuron repartition 2-1, 2-
3, 2-5, 2-7, 1-2, 3-2, 5-2, and 7-2 (x-y meaning that there are x
neurons in the first layer and y in the second layer)

• RBFNN with 3,5,7 or 9 neurons in the only hidden layer;

All architectures have two inputs and one output.

4.2.3 Learning algorithms

As sixteens different learning algorithms are available in the Matlab
ToolBox with their own parameters, the testing has been limited.

Three backpropagation algorithms have been selected for MLPs :
Levenberg-Marquardt, Bayesian Regularization and Gradient De-
scent with momentum and adaptative learning rate.

For RBFNNs, the only algorithms available are of type one-step :
there is no real learning algorithm, in fact the building procedures
directly computes the architecture and the values of the parameters
from the training set. As inputs are read, neurons are added to the
hidden layer and parameters adjusted to limit the error to a maximal
value. The only parameters are the maximal error and a spread value,
which allows to control the smoothness of the approximation built.
The bias for the neurons is computed from the spread.

4.2.4 Testing

As learning implies random aspects, for each couple (network ar-
chitecture, learning algorithm), hundred runs have made in order to
compute mean and variance for the different criteria.

Propagation effectiveness tests have been done using the constraint
logic programming language Prolog IV. For a trained network, the
formulation of the computation it performs is translated into predi-
cates using basic constraints of the language.

4.2.5 Preliminary results

On the simple example, both approximation quality and propagation
effectiveness have been measured for the sixteen different configu-
rations of NNs and with the learning algorithms selected. Detailed
results will not be presented here, but only the main lessons learned :

• to get a same approximation quality, an MLP needs a smaller num-
ber of neurons than a RBFNN;

• the most appropriate algorithm for MLP is Bayesian Regulariza-
tion;

• for two hidden layers MLPs, architectures of type N-2 give better
results than those of type 2-N;

• for MLP and for a same number of neuron, the one hidden layer
architecture gives better results than the two hidden layers one;

• for one hidden layer architectures and for a same number of neu-
rons, MLPs with one hidden layer perform better than RBFNNs;

• propagation effectiveness degrades in quality and running time
when the number of neurons increases;

• for networks with only one hidden layer (MLP1 or RFBNN),
propagation effectiveness is similar but the MLP formulation is
slower.

To summarize, simplest architectures must be preferred like MLP
with one hidden layer or RBFNN. At this point a final choice is
difficult : on one hand, the building of RBFNN is simpler and can
be done automatically, but on the other hand MLP need less neu-
rons than RBFNN to achieve the same quality and thus are better
for constraint programming translation. Further experiments are re-
quired before deciding of the best architecture.

5 CONCLUSION

This work, partially supported by SPAE, is under progress and thus
only limited and partial results are presently available. Several re-
maining points can be addressed :

• more extensive validation to compare MLP1 and RBFNN archi-
tectures;

• determination of the training and evaluating sets specially in the
case of computer code;

• limitations of the approach in terms of total number of variables
(inputs and outputs) which can be handled efficiently;

• improvement propagation for the approximating constraint by us-
ing more powerfull consistency techniques like box-consistency
[6] or defining specific ones;

• impact of considering variables restricted to be integer;
• testing other types of neural networks such as SOMs or NGs or

other approximation schemes like DACE and comparison of re-
sults;

• applicabilition to real-life design application in the aeronautic area
such as radar characteristics or engine performances where alti-
tude, mach number and thrust or consumption are linked.

REFERENCES

[1] L. F. Alvarez, V. V. Toporov, D. C. Hughes, and A. F. Ashour, ‘Ap-
proximation model building using genetic programming methodology :
applications’, in2nd ISSMO/AIAA Internet Conference on Approxima-
tions and Fast Reanalysis in engineering optimization, (2000).

[2] M. Aupetit, P. Couturier, and P. Massotte, ‘Function approximation
with continuous self-organizing maps using neighboring influence in-
terpolation’, inNeural Computation B, (May 2000).

[3] J. Frohlich and C. Hafner. Extended and generalized genetic program-
ming for function analysis. Internet.

[4] A. A. Giunta, ‘Aircraft multidisciplinary design optimization using
design of experiments theory and response surface modelling meth-
ods’, Technical Report 97-05-01, Multidisciplinary Analysis and De-
sign Center, Virginia, (1997).

[5] A. A. Giunta and L. T. Watson, ‘A comparison of approxima-
tion modeling techniques : polynomial versus interpolating models’,
in 7th Symposium on multidiscplinary Analysis and Optimization.
AIAA/NASA/UASF/ISSMO, (sep 1998).

[6] Pascal V. Hentenryck, David McAllester, and Deepak Kapur, ‘Solving
Polynomial Systems using a Branch and Prune Approach’,SIAM J. Nu-
merical Analysis, 34, 797–827, (avr 1997).

[7] B. Kosko, ‘Fuzzy systems as universal approximators’,IEEE transac-
tions on computers, 43(11), 1329–1333, (1994).

[8] A. Limaiem and H. A. ElMaraghy, ‘Curve and surface modelling with
uncertainties using dual Kriging’,Journal of Mechanical Design, 121,
249–255, (jun 1999).

111

[9] D. Lisin and M. A. Gennert, ‘Optimal function approximation using
fuzzy rules’, inInternational Conference of the North American Fuzzy
Information Processing Socier, (1999).

[10] C. G. Looney, ‘Radial basis functional link nets as learning fuzzy sys-
tems’, Cs479, University of Nevada, Department of Computer Science,
(1996).

[11] P. G. Maghami and D. W. Sparks, ‘Design of neural networks for fast
convergence and accuracy’, in39th Conference on Structures, Struc-
tural Dynamics and Materials. AIAA/ASME/ASCE/AHS/ASC, (sep
1998).

[12] V. Maiorov and A. Pinkus, ‘Lower bounds for approximation by MLP
neural networks’,Neurocomputing, 25, 81–91, (1999).

[13] S. Mitaim and B. Kosko, ‘What is the best shape for a fuzzy set in func-
tion approximation’, in5th IEEE International Conference on Fuzzy
Systemes, (sep 1996).

[14] T. W. Simpson, J. J. Korte, T. M. Mauery, and F. Mistree, ‘Compari-
son of response surface and kriging models for multidisciplinary de-
sign optimization’, in7th Symposium on multidiscplinary Analysis and
Optimization. AIAA/NASA/UASF/ISSMO, (sep 1998).

[15] T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen, ‘On the use
of statistics in design and the implications for deterministic computer
experiments’, inASME Design Engineering Technical Conference, (sep
1997).

[16] J. Sobieszczanski-Sobieski and R. T. Haftka, ‘Multidisciplinary
aerospace design optimization ; survey of recent developments’, in34th
Aerospace Sciences Meeting and Exhibit, (jan 1996).

[17] P. Souvay,Les plans d’exṕerience : ḿethode Taguchi, AFNOR, 1995.
[18] D. W. Sparks and P. G. Maghami, ‘Neural networks for rapid design

and analysis’, in39th Conference on Structures, Structural Dynamics
and Materials. AIAA/ASME/ASCE/AHS/ASC, (sep 1998).

[19] R. Unal, R. A. Lepsch, and M. L. McMillin, ‘Response surface model
building and multidisciplinary optimization using D-optimal design’,
in 7th Symposium on multidiscplinary Analysis and Optimization.
AIAA/NASA/UASF/ISSMO, (sep 1998).

[20] V. Vysniauskas, C. A. Groen, and B. J. A. Krose, ‘The optimal number
of learning samples and hidden units in function approximation with a
feedforward network’, Technical Report CS-93-15, University of Ams-
terdam, Faculty of computer science and mathematics, (1993).

[21] M. Winter, G. Metta, and G. Sandini, ‘Neural-gas for function approx-
imation : a heuristic for minimizing the local estimation error’,IEEE,
(2000).

112

�

�����������	
��
�����
�������
������
�������������
����	

�
���
�	�������
������	�

����
���������
�

����
��������

�

���
����
!"�����#

�

������������������������������ ������������������������������ �����
�� ������	��
�������
���������������������������������
����������
�����
������������� ��������������
�
�
���!"#"���$�%&''��(�)*'+'�,��
���(��*
����"� -���.�/��-�"���	���������-�"������������-�"0�����
�12��
"����

�$������%����
����3�3��������
����
���3����4���
������33������
���*
��5����������3�������������������-������������������
�������3���*
��
��
�� ������������ ���
����"� 6 �� �����7�� ���� ��-3���� �
�
���
�����3
���� ������ ���
����� �����
��
���� ������3
���� ���������� ����
���������
����-��������������3
�"����������
��������������������4���

��������������������3�����
����-�������
��������
��
�����	���������
������
������������
����-��������������3
�"������������
���
��
��
����
����
�����������
��3����������
��������������
������33��
�������
���
�$��
����
�����5���� ���
������
����� ��� ��3�����
���
������������
��*

����� ������3
����"� ���������
����� ���� ����� ��-�� ������������
��
�
��5����� �$
�������
��� ������
� �����3
����7�
����� ��� ���������
����
	���������
����3
�������
�����3�����
�����5��
���"��

�
 &'���(���&�'

���
��������
�������
���������4��������������������������������
�����*

��
���
�� 3��������� 4�

��� ���������
���� -��������� ���������� ����

����"����������
������������������������
��������-����������
���
��

-���������� ���� ����
������� 3�����
�"� �
�
��� ��-��
�-��� ���
�����

3�����
������������-�����������4���-����������������-3��
��
����
���

���
����������
���8�9"�����-��
����
�-�
�������������-��������������

����-4������������4���3�����
�� ���
��
�
����������-3���������
��*

�������*���4�������
�������������3���������������
��
����8�9"���-�*

:��� �����
� ���
��� ���
����� 3�����
���-���� ���� �����
��
���� ���������

���� 4���� �3��
� ��� ������3���� �����
��
���� ������3
���� ����������

;�<=�>����� ��3�����
����
����� ��*���4�������
���������
����� �����*

��
����"������3�����
���-������ �����<=��������
����� ����
��3��
��

���
������
�������-�����������������4���3�����
���������������
����

-��������� ���������"������� ����-�����<=������ ������������������

4�
�����
��-�8+�?9"�

���
����3�3��������
����
���3����4���
������33������
�����5������*

����3�������-������������� ������������-���������� ���� ����
�������

3�����
��
�����������������
����"���3����5����
��������-�����3���
��

��������������
����
��
����3��4��-����
�����������-�33�������-�
���

�����3
����7�
���� ��� ���
����� ���
�-��
�� �� �����3
����7�
���� ���

���������
���� 	��������"� ��������
���� ����� ��� �����7��
�����

3��-����
��<=���
�
��������3
����������������-3����
��-���
��
���

-�:��������3
�����������-������������������
����	��������"�������

���
��� ��������� ���� ��-3�������� ��� ���������
�� ��3�����
� -����

�����3
�� ����<=�� ������
��� ���������
����-��������� �����3
�"����

����
������������
������������3�
��
���������������$
�������
������*

������
����-��������������3
����
���<=��������������3
�"�

(���
���3��3��������
����3�3������������
��
�����
������-3��
��
�

�<=�.���-��8@�,�&9��6 ����
�8A�B9�����C�����8%��'9"�#�
����
������

��-������4�������������
�������������
���������
�����<=��
��
��
��

���������� ����������� ���
���"� ���� ���������� ��� ��-�� ��� ���
����

3��-�
���4��
������
�
��
��������
��������������-�����
��������������

��
�����������������������
�����<=�"�6 ����
���������������
����<=�

��
������� ��������� ��-��
��������������4���4�������������3��
�����

���
����"���
��
�������������-���-�
���������������3
�������4����*

�����-�	��6 ����
��-3��
��
��-�����<=�"�C�������������--�������

���� �
�!����3�������-��� ���
������"����������� ���
��������<=��

����� �����--��������33����
������ �
� ������ �-3��
��
��$�-3������
���

3���
�������3��
������<=�"�

���
�������������3���
����
�����-3�����������-3���������������*

������
������3�����
���4������������
���"�8��9"��������
���������*

����7��� 3����� �����3
����7�
����� ��� ���������
���� 	��������"�

0��������� �
� ��� ����� ��-�����
�� ���
���� �������7��� ���������
����

��
������ 3�����
��� 4�� (��������� �
� ��"� 8�+9"� ������ ��� �
� ���-��
��

������ -��
� �33��������
�� ���������
���� -���������� �
� ��� �� ��
�����

����������3���
����������3
������������������"�

���� ��-������� ���
���� 3�3��� ��� ������7��� ����������.���� ����*

�����������
����������
��
���������<=�������4��������������
����+"�

���
����?� ��
�������� �������-����	����� �����7���� ���� ��-3������

�<=����������
��
���-��
��-3��
��
�������
����
�������
������<=�"�

������
����@������-3�������4�
�����
����<=������
��������3
�����

������������
������
���������3�����
��"���-�33�������-�
���-��
�

�-3��
��
� �����3
�� ����<=��
��
��� �����3
�� ���
��� ���������
����

��
���������������������
����,�����3�
��
�����$
�����������
�����
��*

������������������������
����&"�6 ���������������������������3����*

�������	� ������
����A��������������������������������������
�3����

�������
�������������������
����B"�

)
 ����*��+
���,&�+����+�
�'(

���,&�+����+
(+���&��&�'

-�'.��.+�

���
����������
��
������������
�-�3��3��
��
��������4��
�������*������

�
���
���� ��� �� ���
����� ���
�-"� ���� ������������� ��� ������������

�����
��
���� ����� ���������� ���
����� ���
�-�� ��� ����� ������
���"�

������ ���� ��������� ��� �������� ���������� ����3
��� -�
���� ���� ��*

����4�������
����������
��
���"���-3���-�
������������������������
��

����$��
���������
��
����� �
�������������4�$*���*�����������-����
��

��������������-��
����������4���� �������7���
��4�� �����5��
������

���
��	�8�?9"��������
�������������������4�

���-�
����"�

�����
��
����������3
��������������;�<=�>�������3��-���������*

����
�� ����
���� ����
��� �����
��
���� ������3
���� 3��4��-"� =�������

��������� �<=�� ���� ���-��� ��
�
����� ��
�� ����*�������� ��-��
�����

������3��-����3��3���� ���
�� ��3�����
�
��������
��
����������
�����

���
�-�"�����������-4�������<=�������4����3��3����"��<=�������

��� ��--���
��� �����3
� ��� ��-3����
�� ��
������ ��������
� �<=��

����� ��������
� ��-�������
��� ��-�� �����3
�8?9"���
� ���
����� �
����

������
����
����� �<=�� ������� ���-� ����� �
���� ���������"� ��-�� ���

��-������������3�������33����
������-���������
���������������
���

�� �� �3������� �����
��
����� �
���� 8?9"� �<=�� ����� �-3���� ��������
�

113

�

���-����-�� ���� �3��������� ��-��
����� ����
����� ��� �����
�� ��� ����

�����������
������
�$�������-��
���������������"�

����-��
������-��
������-��
����������
��
�����������3
����� ��*

��������������������������	������
��������
��
	�������8?�@��?9"�

��-3����
����3�����
�
���-������-3�
�
���������-��
��������
��

�
��������
������
�-"���
��
�������
����������3����
��
���4�$������
���

4�$*���*�����������-�"������
��� ���������������
���������$�-3�������

��-3����
�"� ��� �� ���	���� ���
�-�� �� ��-3����
� -���
� -������
�

�
������������$���
�4�����������������-������	���4����"�8@9�

���	�� ��-3����
��� ������
���� ���� ��
� ����� ��� �33����
���� �3�*

��������-3�
�
����������
��������
�-�"����
�����
������3�����
���
��*

��
�����4�
�������-3����
�"������4�$*���*�����������-��������
����

���� ��3��
��� ��� ������ 4�
�����
��� 4�$��"� $�-3���� ��� ������
����

��������-�
����������
�����3�3�����������
�4�������
"�8@9�

��-3����
������4��������
���
��������
����
�����-����������*

����"������������-�
�-������������
��������
�-��8@9���������
��
�����

���������
�����8?9"����-�����<=��� ��-3����
�� ���� ����� 4�� ���*

���
���
�������������
���D��$3����
��������������
�������������4����

3��3����������������������
����
����������<=�8?9"���3�������� ��-*

3����
�� ���� ������
���
�� ����� �
����
������� �����������������"�

<�������
��<=�������
����� ������
����3���
����
����������
� ��-����

�"�"�3��
������������
������"��

��� ��-�� �<=��� ��-3����
�� ���� ����� ����� ��� ������ �
���
���"�

�������-3����
������������������
������������������
������3��*

���
�����4���
�-�
��
�������������
��
��������
�����"�6 �
����-3���
��

��-3����
���
�����-3��
��
�
��4���4���
���3����������
���������3��
��

���
��� ��-3����
� ���� ���	���
��
��� ��-3����
� �
����"�
��������
���

���	���� ��� �������� 4�� 4������� ������
���� 3���
�� ���
��� ��-3�����

��-3����
���
��������
����3���
����� �
��3��
�"���
��
�������4�������

-�����
��
�
���������
����3���
����
�����-3�������-3����
� ��� ���

���
� �� ������
���� 3���
� ��� ��-�� �
���� ��-3����
� �������
��� ��-*

3�������-3����
"��

��3���
���������������
���<=�����
���
������33��
�������4�������

��-"��������33��
������
����
������3�����
����3�3����������
�����������

�� �����7��
��� -��������� ���������"� ��������� �
� ������� 4�� ��
���

��
� ��33��
�����������
�����$���
�4��� ���
�-����
� ��������
��
�����

������3
���������������
�������������������������<=��8?9"�����������

������������4�����������������������
����-��������"�

/
 �'�-0�&�
��
�,�++
���,&�+����+

(+���&��&�'
-�'.��.+�

���
�������
������������
�������������-����	����������7����������-*

3������
��������3
������<=����
��
�����������������
���"��������*

���� ��� ����
��� ���-����	�
�� �
����
����� �<=�.� ��-�� 8@�,�&9��

6 ����
�8A�B9�����C�����8%��'9"��

/%�
 ���������

��
��������
���
����������

���������-��
���3����-����������4���4��
������������
������
��*

��������
��
�3�����
������8�+9����.�
�$���-������
���
�����
�3�������

����������� ����
����� ���� ����
����
�"�
���������� ����
��� �4���*

-��
������ 3����-���� ���
��� ��������� ��� ���������
����	���������

��
��
����� ��������� ���
��
	����������������������� ���
��
	������

���
��������������� ���� 	��
�	����������������"� ������ ���� ���

��������������
�
�����������������
������������
����-�����	���������

�������������
��������
����	�������������3��
�����"�

���
�������������
����� ��4���
������ ��� ����� ��������
��� �4���*

-��
�������<=������������-3����������-����	���-3��������
�����

3��
�"� ���� ����
� 3��
� ���������
��� 	��� �����3
�� ��� �<=�� ����
���

���������
���� ��
������� ����
��� ����
����� 4�
�����
��-"����� ���*

��3
�� �������� ������������ ��������	��� ���
��
	�������� �����������

�����������	��
�����	���
	�����

�������� ���� �����	�����"� ���� ����*

����� �������� ���������� ��������� ���� ��	
��
	�"� ���� ������� 3��
�

����������
����$��
����������������
������3
������
�3����������
�����"�

�������
�3��
����
������-����	����
��������
����-�������-��3��������

4���<=������
������������
������
�����"�

/%)
 ����

����4����� �����3
�� �����-�� ���� ������������ ��������	�� ���� ����

����"����
�-����
�����-��
��-��������������
���"�#��
����
����������

����� ���� ��� ����
���
�� ���� ���������� ��� ����
����� ��� ��-�"� ��
��

��-3����
�� ���� ������
���������������
����3���
��
��
� ���� �������

��	��� ���� ��-3����
�� ����	����� ���� ������
���"�����������������

����������-3����
��������
����3��
���������"���-3����
���������*

���
���
��������
����4�������������������������4�
�����
���3��
����

����-3����
�����
�������������������
��"�#���������
���-������*

���
� -��
�3��� ��-3����
�"� ��-3����
�� �����
� 4�� ������
��� ��*

���
���
�� ����� �
���� ���� ���
���� ���� �� ������
���
�� ���
����

������
��"�8@9�

��-3����
�� ���� ������
���� ��������� �

��4�
���
��
� ���� �������

3��3��
���������-�"�!��3��
������������
��3��
������������"�"�
�������

��
������������-��
�����������"�

��� ��-��� ������� ����
����
�� ���� 4�� �������� ������ ����
� ������

3������
�������"����������4����
���� ����	����������
	�����.���������
�

����
����
��-��
���������������������
�������
����
������-���������
��

������
��������4��
�������������-�����
�-"�����
����
������4�������

���$3���������������3��
�������-�����
�-�.��"�"�
����$��
���������

����������3��3��
��������
���������
�����3�����
���������
�-"�8,9�

�������
�������-��������������
���
�����������	��	������������
��
�

����4�����������������4���������
����
����������������-3����
������

������
��"����������� ��� ����
�����������	��	����������������� ����

4�������
���3������
���������3���������4�
�������������
���3�����*

�
��������������������-��
"�������������������������-��
������������

���� ��
���� ��3�����
�
����� ��� ��3*-�3�"� #��� 3����4��� ���� ���
�����

����
���
�� ��� ��3�����
����
��� ��-3���
������ �
���
��������� ��-3�*

���
� ����
��� ������3��������� 4�
�����
��� 3��
�� ���� ������ ���
���

��-3�������-3����
�����
��������
������
��������-3����
�"�8@9"�

��
������
�3��� ���� ��
� ����
� ������ ��
�
���� �����-��� �
� ����
���

�3�� ���
�-�.� ���� ���� ������� ���-��
�
�3��� ����� ���� ���
���� ����

���
�-�"� ��3��� ���
��� ������� ���-��
�
�3�� ���
�-� ���� ��
�� ��� ��*

5�������
���
����� �"�"�����������-��
��������
����������������"�)���

�3�������4�����-������-��$��
����
�3���
���������4
�3���"����
�-�

�3��������������
�������"�����-����������
���������������-��
�
�3��

������
����"���4
�3��� �����-������ ���� 4�����-���
������� ������� ���

-��
�3���������
����"������������
�-�����4�����������
��4����-�-4���

���-������-����
�3��"�8&9�

6��
�-�	���
�3��� �� ���������� �����3
� �����-�� ���
��
� �������

���-��
�� ���� ���
�-�� ����� ��
������ ��
�3�� ��� 4�� ��-�-4��� ��� ��

��-��������3��
�����"�������������-��
�4����������������
�3��-������

�-3�����
��
�
�������������-��
�����
����
���
����������������3���*

�����4��
��
�
�3�"���-���������
����-������������
�-�4�������-�-4���

�������-���� ��������
��
�
���
�3��������
��������
�����-��������
�3��

������
��������
������
�-��
��"������������
�3�����
�-�������-������

4������������������
����-������$3�������-�������-"�

�������
�$�������-��
���������-���������-��������������
�����
*

������
��-�������-�33����
������
�������3������
�������"�

���������-�
��4���������
���
�� �����-������-��������������
�"�

6��
� ���-��
�� ��-��������
�
��-��������������4���
�� ���
�����-����

����
���
"��
�����4�������
���3����������
����
�3��������
������������

4������
�������
�-�"�(��
���-���������
����
������4�������
����������

������
��
��
����������
��������������-��
�"��������
�����-��������*

��
����� ��-3��-��
��� ��
�� ����
����
�� ���-�
�� 3������� �� -����*

���-������3���������3�����
���-��������
�����
����3��3��
���"�

114

�

/%/
 * ��	��

��������-���
�����������������������������	��������������	����	�����

�������������������6 ����
�����
�������-��
��������
�����-�����4�
��

���������"� ������ ���� ��� �

��4�
���� ���������� ��� ����
����"� 6��
�

���
����������6 ����
����-���-������-�	����
��3�������-�����<=��

����
����������3���������
���4������������3��
����������������
��������

��-3����
�������
���3����4���
�����������������4��������
������3���*

����
����"�6 ����
��������!�;��--�����
������5���
����!��������>�

�3�������� ���8�@9�������-����33����������
���3��3����.�;�>��3�����*

���� 3���������
��
� ������� ���6 ����
� ���-��
�� ����;+>� ��������� ��*

-��
����������*��!�3��
�����
�����������"��������
����!���������-���

-�
���� ���� �3��������� ���� �����7����
��� 4��������� ��� �4:��
�� ���

��-�������5��������������
�����������
����������"�����3�

�������

����
��
��
����3����4�����������4:��
����
��-������	�����"�8A�B9�

 ����3��
��������������������
�����
������!�3������"��������
�����

�����������
���������-3����
��������������3���
�������������-3�*

�
���� 3�������� ���3��
�����"� ���� ����� ��� �� ������
��� ��������
���

�3���
�������
���������
�����������
�
�"����
�����
����������������
���

��� �3���
����� ���
��� �
���� 3��������� ���
��� ������
��"� !��
�� ����

�

������
�� ������
�����-� ���
�-�"�6�����3��
�� ����4�� �

������
��

������������� �����
��-�����4��
�����3�������������3
����"�����4�����

����� ���
��
���3��
�����4���

������
��������� ���
���3��
������4������

����� ������� ��
��
��������4����4��
��� ����"�����
�������������!���*

����������-3�
�4���
������
����4�
�����3��
�����������"�

����������������������!����6 ����
�������������-��
����������*

��!�3��
�����
��������������������������
������3���
���������!�
��

��������4��
�3��3��
�����-��
���
�4����4��
�����*���	�������-�������

6 ����
�������
��"�������������-3��
��
����������
������33��
����4����

4��
������������������������-��
�������6 ����
"�

6 ����
� ������� ������4����������������� �
���
���� ���4�
�� ��-3�*

���
�� ���� ������
���"������ ��������4�������������� ���
�-� ��
��
���

3����������3������"��������
����
��
������-��� ���
�-� �3�������
�����

4��������4�
�����
���3��
������������-������
����������������-��
�

����
������3�����������
���������������
�-������
��4���3�������"�

6 ����
� ���
���������� 4�
����� ��-3����
� ���� ������
���
�3���

���� ���
�����"� ���� ������
��� ���� ��-3����
� ��� ��� �$��
��� ����

�3�"�����������������������
�$���-�����
�3��"��

�������
����
����-3����
�����������
���
�3����6 ����
������������

����
���
�������������"��
���������������
��������
�3��������
���������

�����	�����"� ����� ���� �$3������� ��� ����
� ������ 3������
�� ������ ����

���� ���� 4�� ����� ��� �� -������ ��-�����
��
��
� ��� ��-�� ������4���

�4���"��������
����
�� ��-3����
� ���� ������
���
�3��������
��������

�
���� ���� �������� ����	
��������� ������
����"� ����� ���� 3������� ��*

����3
�����
��
�����4����������3��
����������������
����"��

��3��������
���������
���������4��3���-�
���7��"����
�����3��
�����

���
�3��������
��������4�����
��3�������������������4�����������������

���
�3��������
��
��
��"�)����
���������4�������������
��-������$��
*

���������
���������4
�3���.�
��������
��������
�����-��
�3��������*

����� ���� ����
����
�� ���
��� ���� ���� 3���� ��-�� ����
������
�3��

������
�����������
����
�"��

E����
���� -�������-�� ��� 6 ����
� ���� ��-������� ��-�
��� ��� ����

��-��� ��
������ ��-�� �����
���
��-� ��-���� ������ 6 ����
� �����

�
���"��������
���
�������33��-��
�����
������
����
�����-�
��4���4���

���$3����������4���
�"�

/%1
 2����

���
�������������������4����4�����
���C�����-��������������������

��� �� -���� ������� ���-��
"� ��
� ��� �
���� ���3��
��� C����� ��������

����
������-� �
�� 3����"����C������
����� ��� ��� ��
���� ��� ������
�����

���������������
������������
����
�"����
��
	�������������-3���������

��-3����
��������
���
��������
����
�����������	
�����
��
�����
���

������
����3���
�����C����"�����������
����4�
�������-3����
�����

��
���--�
���.������
���
�������-����4�
������	�����������	��
�	���

����	
����"�=���������������� �� ��-3����
����������3�������� ��
��*

�����-�����
��
�
�����-3����
�������� ��-���������������
������-*

3����
��
�� ���"� ��-�������� �� ��5������ ��
������� �������� �� ��������

4����� ��5������ 4��
��� ��-3����
� ���-� ��-�� �
���� ��-3����
"�

C�������
��������������-�����
��
���������#0����F���"�8�'9�

���������� ��-�� ��-�
�
������������ ��
������������4��������
���

�� ����� �
���.� ����� ��5������ ���� 3�������� ��
�������� ���
��� ��-��

��
�������
�3������4��������
�����
��������
���������������5������

��
�������-��
�4��������
���
���� �������3�������� ��
������"�#��
���

�
������������3����������
�����������4��������
���
��������-4������

��5��������
�������������������7���"�

�������
����
��������
������
��������
��������
������
����3����4���
��

������
� ����
�
���
� 3��
�� ��� ��
�������� �����
��"� ������ 3��
�� ����

�������

�������"� ������� ��
�������� ��� C����� ���� ��
� �
�-��� �����

�������������������������
����3���
�"�

C�����������
�3�����
�-.������
���
�������-����4�
�����4�
����*

������� ���� ��-3����
�
�3��� ���� ���
�����"������� ������������� ���

�$���-�������-3����
������
�������
�3��"��

��-3����� ��-3����
�� ���� 4�� �����
�� �$3����� ��-3���
������

�
���
�������C�������"�"��
������-3����
������4�����
��������
������

��-3����
"���� ��
��������������-3�������-3����
�����4��4�����

�������
���������������4�������
��������-3����
"�

C��������������������
���
�����
�����������������-3����
���
�*

��
� ��� ��
������� ��� �
�� ���"� 0������� ���� ����� ������� ��-3�����

��-3����
������������� ��
�������"���33��������� �$�-3����
��
� �����

��-3����
� ���
������ ��� �� ��-3����� ��-3����
����� ��� ���
����7�*

������
�������
��4���������4������������
�����-3����
"�<���
��4���*

������������
���������
�4��3����4���
��4��������
�������
��������
������

������� ��
������� ���
��� ��-3����� ��-3����
"� ����������� �� ����

���������
���� �3������� -������ ��� �����.� �����
��� ���
����7�
����

����
��������
�����-3�������-3����
������������
��������������
���
��

��� -������� ������ ���
���� ������
��� ���
����7�
���� ����
����� ��� ����

������������-3����
�����
����������������"�

�������
����
��
�������
���
����������-��
�������C�����3��������

-�������-���������������4�
��
�������	��������	����������-3����
��

����
��� ��	
��
	�������	����� ��� �� ���������
���"� ��
������ �����
�� ���

-������
��� ��� �����
���� ��� ��-3����
� 3���-�
���"� ������ -��� 4��

��3���������� 4�
����� 3���-�
���.� �� 3���-�
��� ������ -��� �-3���

��
����
����3���-�
������������
���������"��
���
������������
��3��*

�����
����
����
����3����������
����������������5��������
������.��"�"�

�����-���4��-��
�3�����-3����
��
��
�3�������
�����-�� ��
�������

��5������4�������
������-3����
"������������4�
�����
�����
��������

���-����4��������
���
�����������������
�����
�
��������
��
�����
���-*

3����
�-��� ���
��������-�
������5����������
��������
���� ���������4����

�����
�������������-��������
����
�-�"�

6 ���������� �����-�
���� �4��
����
����C������������-�������*

���������
�$������-��
���"�

1
 ��!���&��'
��
��'�+���
��
�,+
�(-�

* &�,
�,+
��'�&.����&�'
�'��-�.0

���
�������
�������������������-����	��������� ���
���3�����������*

����������-3������
��������3
����������
���
�����������
����<=��

��
��
��������
������������
������
�����"�

1%�
 2��
��������
���
���
���������
$������
����

��-3����
����
������
���������3
������-���6 ����
�����C����"��
����

�����3�����
����
������������
������
��������
��
��
���-����-�"�����

��-��
���� ���� ��� ����� ��-����.� ��-3����
�� ��3�����
�
��� ���������

3��
����������
�-�������������
����-����������
��"��������
��������*

115

�

�-������������������-������6 ����
��������������
����������������

���C����������������
��3��
� ���
������������
������
���������-����

���������
���"�

������
�������������
����3���
������������--���
������
����
������

-���������-�
����"������-������6 ����
�
���������������3��
������

�����������-3����
������������
��������3��
�����"����C�����������*

���� 3���
�� ����
��-��� ��
�������� ���� ���
��� ��
������ 3��
�"� ����

��-��
�������������
����3���
�������������-������������
��������3�����.�

��������
��
���-�������-�����������
�����
������
�
���"�

������
���� ���� ����
*������ ��
�7���� ��� ��-�� ���� 6 ����
"� ���*

������
������������������
���� ���
������������
������
���������C�*

���"�������
����������-�:���������������������
��������3�������������

�����
��
�����������
����G���� �-3��
��
� ������ ���4�
���<=������ ���

������������
������
�����"�

6��
�
���� ���
��� ������� ����
���� ��������-��
� ��� �����
��
�����

������
���H�6��4�������
��
��
�����
���3��
���������������
����-3��*

��������������
���������-������6 ����
�����4�����������
��������*

����������-3
��������
��-����������������
����<=����
��
������ ���

����3�3��.���-�:��� ������ ��� ���
����������
��
��������4���� ��������

�$��
���� ��-3����
�"� (��
���-�����
����� ���� 4���� ���������4���

�����
� ���
������
�������������������--���
��
�� ��������
�������*

������-3����
��������������
�4��������
��������
���
��������
����

����
�� ��������
� ��--�����
���� -�������-�� ���� �������� �
����

�������"������������������
���������4���� ��
�������� ����<=�������

������������������
������
�������������-3����
�"�

��� C������
��� ��
��
���� ��� ��
���� ��������
.� ��-3����
�� ���� ��*

-�������� ����
����� ���-��
�� 4�� ��� 3��4��-� ��� ������
����
��-�

�����
�����"�"���
���
�������
���"��������C��������-�����������
��
���

���������
������
������
����6 ����
�����C����"�

����������� �� ���
���� 3�����
� ���
��� ���������
���� ��
������ 4�
�

��
� ��� ���� ���
����<=��� ��� ��-�����
��
��� ��
���� ��� 3�������� ����

��5������ ��
��������3�����
� ���C����� ���
���������
��
�
��������4�
��

��
�*��--�
���"� 6��
� ��� -����� ���������� ���� 3�������� ���� ���*

��-���4����-3����
���:��
������
������������3��������������5�����"�

��������� ���������� ����3�������� ���� �����-��� ��� ���
����5���
�*

�����������������
��-�-���� �$3�������� 3����� ��-3�������
��
���

��
�������3��������������5��������
�������"�

��� ����
����
�� ��-���
���� 3�������� ���� ��5������ ��
��������� ��*

������������4�������
��-������
�����������
�5���
�
���"������5���
�*

���� ��������-�-����� 3������ ��
3�
� ��3���
�� ����
������3�
"�����

���
����� ������������ ��--���
�� ���� ����������� ��-����� �������

�-3��
��
�8�,9"�������� ���������� ���������������� 4�� ��� �-3��
��
�

���
�������
������������
������
����������������
��-��������
�����

�����
��
���"�

0�������������
����� ��� ���
�������
���� ���
��� ���������
���� ��*

������
��
� ����
������<=��3�����
��� ���
����3�3��� ���	"�(���
�����

���� ��� �-3��
��
� ��3��
� ��� ���
����� ������������ ��������
��-���

���
��������
�����-����8�&9"�6 ��4�������
��
����������
�����������4��

�����������������-������������
�������
��
�����
�����"�

����
��� �<=������� ��-�� -�������-�� ���� -��������� �
���
���"�

���������
��� ���������
���� ��
������ 3�������� -���� �
�������

-�������-�.�
��� ���������
���� ��
������3�������� ������� ������ ���

�����
����-�������-�"�(��
���-��������
������������
������
��������

��-3����
� ���� 4�� �� 3��
� ��� -���� ��-3����
�� ��-��
����������

�����������
�3����4�������������
����<=�"�

����
��� �����3������ �$��3
� C����� ����� �$3����
� -�������-�� ����

�$3������������
����
�"�(��
����� ������������3����������������
����
��

�$��
��
�������� ���������$3����������4��
�
������*4�����������3��3*

��
������������
�-�-�����������
��
������3����"�����������������
��
����

��� ���������
������
�������
����� ��� ��������
� ��33��
�����������
���

����
����
������������� �����-�"���33��
�����-���������3�����������

���� �3
�-�7�
���� ���
����� ����� 4���� ����
������ ��� �-3��
��
� ����

������3�������
�������������������������
���"�

1%)
 (����������
$������
�����
���
&��������

����
���
����� �<=������� ��-�� ���
���
���� 4�
�����
�3��� ���� ��*

�
�����"������-���
������
���
���������
�������	�����
���
�3�����
�-��

����4��������������-3���-������$3�������-�������-"�)����
��������

����� ���
�$���-��4�
�����
�����-��
�3��"�������
��
���� ��� ��
����

��-����� ��� 6 ����
.�
�3��� 4���� �� ��

��� -������� ��� ����"� ���� �����

����
���� ���
�3��� ���-��
�� 4��������
�
���� ��� ��������� ���� ��
������

����������3�

����"����C��������
�������
�3��������
��������
���������

��
� ����� ��
�������� ���
��� ��-��
�3�� ���� 4�� ������
��"� ������ ����

������������
�$���-������
�����
�������
�3��"�������-3����
�
�3���

���-�
��������������
����4���������������
����
���
�����������
����

��-3����
�"����������-3����
�
�3������-�
��4�����������
���
����

���	����
�3��������-������6 ����
"��

���
��� ���������
���� ��
������� �
����� ���
���
���� 4�
�����
�3���

���� ���
������ ��� ���� ���
��� 4����� ����-3
����� ���� ���-�������� ����

	����������
�
���"���3�������������7������
�$���-���"�

1%/
 3��������
! ���������

�� 5���
���� �������� ����
��� ��
��
��� ���
���
���� ���
�3��� ���� ��*

�
��������.�6��
����4�����-�������������3�����
������3�����
���-���"�

���� ���������
���� ��
������ ��-�� �
� -��������� 3�����
� ��-�����"�

���������
����-�����	�����������������
�����--���3��3��
�������

�����-����-�-4���"�����
���������
����-�������-������3�������"�

����
�
������
�����������������-������6 ����
��4�
�����
��������*

�����������4�������
��3���������-����33��
�����-��������������4��*

�
�.�
�������������$3����
������
����-�������-���4�
�
�����-4���
����

������
�-�
�3�����������
����
�����-�
��4���4���
���$3�������--���

�
���
�����������4������
����3�����
�"�

���C������
����������-��	����������4��
�
�����--���3��3��
����

�������
���3�����
�.���-3����
�������
��������������
����������
�����

��� �� ��-3����
� ��3���
���� ����
���� ���� ��--���
�� ��������
� ���*

�-��
��4������
���
���8�'9"�������
��
�3��������
������������4������
�

���3�����
������$��
���
�����-��3����-�����4�����������������������

3��������4��
�����-��������
���
���-������4��
����
��������
���
����

6 ����
"����
����������������
����
��
����-3��-��
�
����������
�3��

������
�������C������
�����33��
�3��������4��C��������������4���
�����

���	���
����
��
���-������6 ����
"�

���
���3�����������
������
������
�
���
��
�C�����������-�����4�
��

��
�����������
���
����������
�"����������
�����
�
�-��
�����
��
��
���

�4���� �4�����
����
��
�C����� 3�������� �� ���	��� ��33��
���������*

�4���
��
������-������6 ����
H�6������-�
��
������������������
��

��� ���
���
� ���-�� ��� �����4���
�"� ���� �����4���
�� ��� ��-�� ����

6 ����
�����4�������
���3�������
����3�����
����
��-������-�����
�����

�������
�������������3�����
���-���"�#��
����
����������
��������
����

-�������-�� ��� C����� ���-�
�� -����� 4����������� �����
�� ��� ���
*

������-4�����������3��������3�����
����
����.��"�"���
������������
�

����4��������������
�����3������������-��3���-�
���"�#�����������
�

������4���������
��
�
���
������������
���������$�-3������� ������
����

3�����
���-���"�)����
��������������������
��������
����-�������-��

�����������4�����$�-3���������������
�3����-���"�

4
 !�(+--&'.
����*��+
���,&�+����+

* &�,
�,+
��'�&.����&�'
�'��-�.0

���
���� ���
�������� �
�����
�� ���
����7��
��� ���������
���� ��
������

��
��
��� ��-���� ��� ���
����� �����
��
���"�6 �� ���
���� 4��-�33����

��������3
�� ���
����<=��
����-�������3
���������3
�� ���
������*

������
������
�����"���-3����
���3��
���3��3��
�������������
����
��

���� ��3�����
��� ���
��� �4������-������ ������
����� �����
� ����
��*

3��
��� ��������
��� ��3�����
�
���� ��� ������
���� ���� ������ ��� -����

3��4��-�
��"� ������� ��� ����� 3�����
� �� -�33���� ��� ������
����
��

116

�

��-3����
�������3��������������5��������
��������
��3��
����
��
���

�������
�3���3�������
����"�

4%�
 ! �������	
����������
��
�
����
�

���������

���
������
����
�����-��
�������������
���������-������6 ����
���
��

�����3
�� ���
��� ���������
���� ��
������� �
� ���3��
�� �4������
��
�

��-3����
�� ���� ������
���� ����� �
���
����� ����� ��-�����
�� �����

�
���"� ����������� �
� ��� ��
�����
�� ����� ������
��� ��� �� ��4
�3�� ���

��-3����
���
���3��������-��
�������
����
�"���������������������*

���
���
��4������4
�3�������-3����
���������4������
���$3�����3��
�

���
��� ��-��
���� �������
�����
�� ������
���"�(��
���-�������� ����

����������������������
����
��4��3��
�����
���������
��*
�3����-3�*

���
�"� ��� ��������
��� ����
� ���� ��� ������
����� ��� ������� ���
�4���

����
����
��
��
���������
�������
��������������
���.��"�"����6 ����
��

�������������������������������
��������
��
�4�
���������-3����
�

������������
��"�

��4
�3�������� �����4��������������
�����������3�������� ���� ��*

5������ ��
�����������-������
���"���������������--��� ��3��
�3���

����3��������������5������ ��
�������� �
� ���3����4���
�������-��
�3���

������
�����
�������
��������������������3��
�
�3�����3��������������

��5�����"��������������
����
���
����3����4���
�������
�
��
���������
��

�����������3��������������5��������
�������
�3�������"�(������
������

��� ���
�
��
� ��� C����� �� ��5������ ��
������� -��
� 4�� ������
���
��

�$��
��� ���� 3�������� ��
������� ���
��� ��-�� ��
�������
�3�� ���� 4��

���������3
���������������
����
�"�

4%)
 ��������	
��5������

��
�������������
�����C����� ����4����3
�������
���

��4�
�����������

4�� ��-3����
�� ���� ����
����
�"� <�3���������� 4�
����� ��������
�

3���-�
���� ���� 4�� ��3
����� ������ ����
����
�� 4�
����� �

��4�
��

������������-3����
�
�3��"�

���
��� ���������
���� ��
������� ���������
�� ��� �� 3��
� ��������
���

�-���
����3��
��
��
�����4��������
���
���
"����������
������4�������

����3
������-����3��
������
���
������������
�����C����"�������������

���������
������
���
��������������3��
���3�����
��������5��������
��*

������ -��
�3��� 3�������� ��
�������� ��3�����
��� ��� 3��
�� ������ 4��

������
���
��
��
�3��
"����������������3��
��������
��������
��������
�*

�����4��
����������������3��
�����������
������4��������
��D����*

�
����
������4�������
��-�����
���"��

6
 +7�+'�&�'�
'++(+(
���
!�(+--&'.

����*��+
���,&�+����+

��4��
�
������������
������
��������3
�������-�:���3��
������3��
�����

����
����
�������<=�����������
��-�������-�����
�����
���-���������

�����������������5������$
�������
�����
�����"�

��3
�������������
��������4���������������
�����������
�����-��

-��� ��5����� ������� ��-�� -�
���� ��� ��3�����
���� �3
�-�7�
����

���
���������3��������������
������������
������
�����"�

������������-�������-����
������������
������
���������������8

���	
$���5����
��-�����
��
�������������!���������������6 ����
"����

���
��
��� ���������
���� ��
������ �������� 4����������� ��3��
�� ��*

�����"���������������������4����������������4����5���������
������*

������
���� ��
������� �
� ������ 4�� ��
�����
�� �$
����
��� ����
����
�

���������
�� ������ 4����������� ��3��
��� ���
��� ����
����
� ���������

����4����������
����$
�������-�������-����
�����
�����"�

C����� ���������
��� -�
���� ���
�������
 $�����	�� ��� ������
���

����
�
���
� ����
����� ��� ��
�������� ���� ������
��� �����
���
�� �����

�
�������
�������������
������
��������8�'9"����������
���
����������

��
�������
���
����
��C�������
�������"�I�����
��
���
�����������C�����

����-����������
��3��
�� ���
������������
������
�������
�������
��*

���
�� ��
��
��� ����������� ����-3
���� ��� 3��
�� 4����� ��������4���

������
����3���
�"���� �� �����
��
����� ��� ��-��-�
���4�
����� ��
��*

���������C���������3��
�����
������������
������
�����"�

�������������-4������3����4��������
����3
����3��
����
����
������

�
���
���"���������
��������
��-�	��C���������
�����
���4��������������

������
���"�
����
���
�����
���� �33������ ��
�������� -�:��� 3��4*

��-�"�(���
������
�������������������
���������
��3��
����
����������*

��
������
�����"������������33������
����33��������������	���������

�� ���������� ��-3��$�
�� ��� -������ ��� ���
����� 3�����
�.�
��� ���
�

��
������
��������������
����������������
������-3�����
���"�

������������33������������4��
����
���������-3���
�������
���*

��������3��
�����
������������
������
�����"��33�����
��
���3��4��-�

�
� ������ ��
�������
�3��� ������3����
�� 3��
�
�3���
��
� ����� 3��
��

������3�������
������
��������
�����3��
�"�������33������ ����33���*

���.��
�-������
�������
����4�
�������
����������������
��������������

������3�������
��
��� ��
��
����������
����������
��� �����"������ �3*

3��������������5�����-�:�����������
��
�����
��������������"�

9�����	
 �

 �����
����
 �

 �
 ��������
 ���������
 ����
 ���

�����
����
�

���
�����
������������
�������
�������C��������	������

����
��3��
����
�����
�����"��
����-��
��
�
�����
�����������������

��4���$
��������������������
�
��-�����
����3����-����"�

:
 (&�����&�'
�'(
��!���&��'
* &�,

��+3&���
* ��2

�������������33����
���������������
�����
��������
�����
�����3�����
�

�����
����� -�������� ��� ��������
� �����3�����"� ���
��� ���������
����

��-�����
���� ��
� ���
�3�������
��-��� ��� ���������4��� 3�����
� ��� ��

3�����
���-���"�#������
������������������
����
�������
���������3
����

��3��*����������������� �
���
������
���� ��
���������
���� ���
������*

������
�����8�A9"�#��
����
�����������4�����
�����������
��
�C�����

��33��
�������--����
���
������������
����3�����
�"�������
��C��������

��
�
����
��� �
� -��������� �� 3�����
� ��-���� ��� �� ��
� ���
��-�� 4�
�

3�����
� 3�3���
������ ������ ���� �������� ��� �� ��
� ��� 3�����
�� ��
��

-������--�����
����4�
��������
��-����������������8%9"��������
���

�������������-�����
����<=�-���������������������
����-���������

������
�
�
�������-����"�

���
���3�����������
�����
������
�
���
��
������
�����
����-�33����

������ 4�� ������ ���� ����
���� 4������� ���C����"� #��� 3����4���
��
��

���3����
��
���� ���� ��-����� 3��4��-�� ���
�� �������
��� 3��4��-�
���

���
���"� ����
�����������������3��
������<=�
��
��������3���
�����

���
�����
����� �-3��
����� ��� ��
�������� ������ ��� ����
*����
������

����
����4�������
��
���������������-����������������������
���������*

��������
������������
������
���������-������������
�����3�����
�"�

�����������
���5���
������.����������
���������<=���������4��-��*

�����"�����������5���
����
��
����������4�����������������4���-3���*

���������������
��
�����
����������
�����3�����
���-�����"�

���������������������
���
��
����3�3�������4����������
����������"�

6 �������
�	��������������� �

�-3
�������-3������
��� �����3
�����

���
����� �����
��
���� ������3
����
��
����� ��� ���������
����-����*

����"���������
���-�������
��4�
�����������3�3��"�

���
��������	��0J����
K��
���"������3���
�����
�
����$��
��������

�����������������������������4������
�������������
��������-��	���

������������
��������8�B9"�������������
������������
������
������*

��3
������<=�������
�������3��3���������-�33�������-�
��������*

��3
��
��
�����������������
����-�����������-���"�

#��
����
����������8�%9�3�����
�������-���7������
������������*

��
���� -�����-��
� ;��0>� ��
�����"� ���� �����3
�� ���
��� ��0�

��
������ ����� ��������� ��������
� ���-�
����� ���
��� ���������
����

��
�����"� ����� ���� ��-��� �
� ��3�����
����
��� -�������� ������� ���

3��	������
�������������� ����
��� ��3���������� 4�
�����
����"�����

117

�

��
�������������
�
�	����
��������
�
���������
�����������
��������

4�
�������-3����
����������
�-"�

(����������
���"������3��3�����������-����������
���
�����������*

��
����4��������
0=�������3
�����������������
����	���������8�+9"�

�����������
����� �33������ ������ 4�� ��������� ����
���� ���������
����

�������
�����3�����
���������"��������33���������������������������
�

���-� ���� �33�����.�
������ ��� 4����� ��� 3�����
���� ���������
����

	��������� ���
0=�� ������ ���� �33������ ��� 4����� ��� -���������

���
�������
��
��������3
�����3�����
����������
���"�

���8+'9��CL�������3�����
�������33������
�����
��������������*

����4���������
���
��������4��������"����������
�
�����
�����-�
����

��-�����
������
�� �
�
��-������������� �3���������
��� 4��������� ��� ��

-�����"�������33�����������-�����
��6 ����
����
��
��
�������4���4�
��

�
���
���� ����4��������"�6 �
�� �
�������� ���������4����������� ���*

�
����
������-�	���������������������
������������
����3��������
����

�33�����������������
����-�����"���

;
 ��'�-��&�'�
�'(
�����+
* ��2

�4�������������3�����
������������������
������<=��������-3�����

����� �����3
��
�� �� �����3
����7�
���� ��� ���������
����	��������"�

������-�����4����
���������-�33�������-�
��������3
������<=��
��

��������
������������
������
�����"�#�����������
���������������
����

��
�����������
����33��
����
�����
��������������������
����"�

6 �� ������ ����
��3��
�� ���� ������ ������3��������� ���
��� ���*

������
���� ��
������ ����
��� -���� ���-��
�� ���
��� �<=�� ��� �����

�
������ ���� ����� �4���
�� 3��3���� �� -�33���� 4�
�����
��-�
��
�

������
��
� ���������
���� ���������� ���� 4�� ����� ���� ��3�����
����

�����
��
����� 	��������"� (��� ���
������ 4�
�� ������
��� ��
���� ���

��-3����
�"�(��
���-�������-3���
�������
���
��������
�-�����-���

���������
�����-3����
����������
����
������3����-����3�����
����

4�
�������3�����"���������
����-��
��
�
��������3
�����
������������*

������
���������� 4�� ���������-��������� ���
����� 3�����
�"����*

������ ��3
������ ��-����3��
�� ����<=�� ���-��
�� ��5����� �$
�������

������������
������
�����"���������3��
��������������
����4�������

���� 4�������
��� ������
���� 3���
�� ��� ��-3����� ��-3����
����
��

������
���� 3���
�� ��� �
�� ������ 3��
�"� ���
���� �-3��
��
� ��3��
� ���

-��������� 4��������"� #��
��� �<=��� 6 ����
� -������ 4��������"�

����
���������
��� �33������ 3�����
��� 4�� CL��� ����� �-3����7���

4���������8+'9"�����5���
�������
����4�������������3��
�������������

�-3��
��
������������4��-����������������������������
�����3���*

��
���-��������������4�����������
��������-3������
�����"������$��*

����� ���C������ �� ��--��������<=���
�� ��� 4���������-����������

������
��
��
�-���������4��������������
��4����
�������������"��

�����������
�����3���5���
�����������������������
�������	"��
� ���

����������
���������
���-�33�������
����<=������3
��
��
��� ���*

������
������
������-���� ����������"�0��������������
������������

���������
���� ��������� ���� ���
����� 3�����
�� ������� 4�� �������"�

����������3��4�4�����5����������
���
����-����
����������
���������
�

�<=������
��������3
����7�
�������������3����������������0�����*

���
�����������
����4�����3�����--����8�&�+�9������������������
���

������3-��
�� ���
���
0=� ��--���
��� ��� ����� ��� ����� �
������ ���

����� ���
����� 3�����
���-�����"���
��� ��-3��
����
����� ����� �
������

�����������
���������
����33����4���
�����
������������
�������������

��-������������
����"����
����������
��4���������������
�����-3�*

�
������ ��-3��$�
�� ��� ������������ ���
����� 3�����
�"� ������
�����

��-3��$�
�� ��������� ���� 3������� ������
� ��
��
���� ������� 4�
� �����

�$3���-��
����
�������3�����
�������������������
������-�
�������
���

3���
����������4���
�����-�
����3���
��������"�6����-������
�������

�-3��������
��������
�������������������
��������������������
����$��
*

�������������
���� ����
�����-��������� ����������4��
� ��33��
� ���
*

��������������
�����
���-������
������������
�������
�����
���"�

��2'�*-+(.+!+'��

6�����
���������	���������
���������������33��
����-������-�����

(������� ;3��:��
� ,�?%@>� ����)�
������ ����������� ������� ���

(�������;��	��>"�

�+�+�+'�+�

�

8�9� F"� ������� ����������������
� �
���	��!	�������
	��"�!������������

#����������$	��
���%����!��	�������������*6�������+'''"�

8+9��"�E��
����!��
	��	��&��	��������������	������
�'�
	�!	�������
	��

����	�������%���
����"�������������3��
"��������������
�-��M���*

����������
�����%%?��

8?9�)"� 0���������� ���� �"� 0"� �������� N�� ����������
���� ���� ��-3�������

(��-����	� ���� ���
����� �����
��
���� <�����3
���� =��������O��(###�

�	����������������
���	���������	�����)6�
A'*%?��;+'''>"�

8@9�<"�I��������"��"�0�����������<"�6 �����N��-�.���������
��
����<�����3*

������
���������=�������O����"�$	�����������
��! �&)*+,���%%A"�

8,9�<"�I��������"��"�0�����������<"�6 �����N��-�.������
��
�����<�����3
����

�����-3����
*���������
�-�O�� ��"�'�
����������
�����������-�����

 ����������-4������
�������
��!������+'''"�

8&9��"��"�0�������<"�I�����������<"�6 ���"�!������
�	�����.��
��"������*

�4��� �
� P�

3.QQ���*+"��"�-�"���Q���Q��Q3��:��
Q�4��Q���Q��-�6�4Q�

��0 R+'�
���0�����"�
-�S"���
���0���������+''+�

8A9��"�����������<"�I�������N��(��-������������������
��
�����������
���O��

!�.��	������������� �
���	��#������	�����;�%%A>"�

8B9��"����������(��-����33������
�����
����������
��
���"�<��
�����������*

�
������%%A"�

8%9� �"� ���� #--������� N���������
���� 0�����-��
� ��� ��-3����
� ������

!�����
�!�3���
����O����"�$	�����������
�������(���	���������/�	������

��� �
���	�����
��
	������.����������0 �.�123���+''�"�

8�'9��"�����#--�������("���������=�������F"�C��-��������F"�0������N����

C����� ��-3����
�0����� ���� �����-��� ���
������� ���
����O��(###�

����
��	��//�
AB*B,��;+'''>"�

8��9� �"� ���������� F"� ���������� �"0J����
K�� ���� �"��������� N�������� ��

I�������#�
������������������
���O��!(�#�!.���)�
?,A*?A+��;�%%B>"�

8�+9��"�(����������I"�(��������������<"�F��������N
0=����<�-�����3�������

=�������� ����
��� ����
���
���� ��� C��������*������ ���������
����

���
�-�O��(���	���������4�
	�����
� �
���	��#������	��������5�����

�����#������	������<�
@@%*@&%��;+'''>"�

8�?9�<"�I�������N���
����������
��
���O����"�#�������������
� �
���	��#����

���	�����F"�F"�0�������	����"�F����6 �����M�������+''�"�

8�@9��"��"��"������������
��������� ��
�������$	���������!���
���*������

�%B,"�

8�,9�<"�I����������<"� "�!������N��
�����
����
��
����3������������������
*

����� �����
��
���O�� (###��	����������������
���	���������	�����

;�%%,>"�

8�&9�C"��7�����	������
"�6 "� ������	����6���	������$	��	������������*

���*6�������+'''"�

8�A9�F"������������"�=��
�������"������������
����� �N0�����������������4���

!�����
�(�-�����O�� ��"�$	�����������
�����17���(���	������������
�	�

��������#������	�����������0(�#�*++3���%%%"�

8�B9� �"� 0J����
K�� �"� ���������� ���� �"� ��������� N!�����
� ���������
����

E����
�����
�����!�����
�(�-�����O����"�$	�����������
�������(���	���

�������/�	��������� �
���	�����
��
	������.����������0 �.�123���

+''�"�

8�%9��"����:J�����N����������<������
��������-�
����������������
����0��*

���O����"�$	�����������
�����'�	���(���	������������
�	������������
�

���������%������+'''"�

8+'9� C"� CL���� N0�������� �
���
���� ���� ��������� ���� C��������*������

���
��������������
���O����.�$	�����������
�����#�!(�7222�/�	������

���)������
�������$�������8� ����
����8�������������+'''"�

8+�9� �"� !��������� N(��
���*#����
��� !�����--���.� �� (����� =��	� �
� #4*

:��
�O����"�$	�����������
�#�&&$*+,���%%A"��

118

Customizing the Interaction with the User in On-Line
Configuration Systems

L. Ardissono1 and A. Felfernig2 and G. Friedrich2 and A. Goy1 and D. Jannach2 and
M. Meyer3 and G. Petrone1 and R. Schäfer3 and W. Schütz3 and M. Zanker2

Abstract. The provision of services on the Web is challenged by
its heterogeneous customer base: Web catalogs are accessed by users
differing in interests and knowledge about the products and services
they search for. Moreover, in the companies selling complex con-
figurable products and services, configuration systems are used by
employees playing different roles: e.g., technical engineers and man-
agers. For some of these people, the configuration task is problem-
atic, as it exposes them to a large number of technical details to be
specified. Effective personalisation strategies are thus critical to the
development of successful Web-based configuration systems.

This paper presents the personalisation techniques applied in
CAWICOMS, a prototype toolkit for the development of Web-based
configuration systems that personalise the interaction with their
users, supporting individual needs during the configuration task and
the presentation of the solutions. The overall goal is that of assist-
ing the user during the configuration process by suggesting suitable
choices and providing her4 with the information she needs for mak-
ing informed decisions. To this purpose, our framework integrates
user modelling and personalisation techniques with constraint-based
configuration techniques.

1 INTRODUCTION

The provision of services on the Web is challenged by its heteroge-
neous customer base: as the popularity of Web shopping has dramat-
ically increased, electronic catalogs are visited by users differing in
interests and knowledge about the products and services they search
for. The one-to-one recommendation of items, based on the recog-
nition of the customer’s preferences, has been introduced in several
Web-based systems to help users find the goods best satisfying their
needs [4, 5, 6, 11, 14, 17, 19]. However, this facility does not support
the creation of personalised solutions on the fly: only pre-configured
items can be managed by the traditional recommender systems. As
the configuration of items is essential to comply with the customer’s
requirements when purchasing complex products, or registering for
services, the need for assistance in this task is emerging as an im-
portant requirement. At the current stage, this type of activity can be
performed by using non-personalised configuration systems offering
a single type of interface. Moreover, as the configuration of com-
plex items would challenge the user with technical details, the sys-
tems available on the Web typically solve simple configuration tasks,

1 Università di Torino, Italy.
2 Computer Science and Manufacturing Research Group, University of Kla-

genfurt, Austria.
3 DFKI, Saarbruecken, Germany.
4 We refer to the user in a unique gender for readability purposes.

which can be reduced to exploring a pre-determined set of already
configured solutions; for instance, see [8] and [9].

This paper presents the personalisation facilities offered by the
CAWICOMS5 framework for the personalised configuration of prod-
ucts and services [2, 3]. This framework is based on the idea that al-
though, during the configuration of an item, technical details have to
be addressed, an intelligent user interface can fill the gap between the
system’s point of view, focused on the implementation of the solu-
tions, and the customer’s one, focused on the usage of the product, or
on the service fruition. This approach supports the use of the system
by heterogeneous users such as inexperienced customers and tech-
nicians configuring items for third parties. CAWICOMS customises
the following aspects of the interaction:

� Configuration process: during the selection of the features of the
product/service, the system assists the user by suggesting, when-
ever possible, the values best fitting her requirements. Moreover,
it provides information about such features, to help the user make
informed decisions.

� Presentation of solutions: when a configuration solution is pro-
duced, the system presents it by focusing on the most interesting
features, given the user’s role. In this way, different perspectives
on the product/service are offered (e.g., consider the presentation
of technical details, with respect to the provision of information
about the price and the main functions offered by the solution).

In order to achieve these two types of personalisation, the system ap-
plies user modelling strategies, aimed at identifying the user’s indi-
vidual interests and expertise, as well as the company’s requirements.
In several application domains, configuration systems are used by
specific categories of users, identified by their roles in the organisa-
tions: e.g., sales engineers and managers. Our framework uses this
type of information by applying stereotypical user modelling tech-
niques [18], aimed at estimating the user’s interests and domain ex-
pertise since the beginning of the interaction with the system. More-
over, to take into account individual characteristics, dynamic user
modelling techniques are applied to update such estimates, accord-
ing to the user’s behaviour.

The system also employs probabilistic inference techniques to rea-
son about the user’s requirements and customise the configuration
process. Furthermore, it uses personalisation strategies that, on the
basis of the recognised interests, skills and requirements, prescribe
the configuration and presentation actions to be performed: e.g., sug-

5 CAWICOMS is the acronym for ”Customer-Adaptive Web Interface for
the Configuration of Products and Services with Multiple Suppliers”
(www.cawicoms.org). This work was funded by the EU through the IST
Programme under contract IST-1999-10688.

119

gesting a value for a feature of the item to be configured, or focusing
the presentation of a solution on a of its features. A rule-based ap-
proach is employed to tailor the interaction to the user’s requirements
and to integrate business rules in the configuration process.

The CAWICOMS framework has been applied to the develop-
ment of a Web-based system supporting the configuration of high-
technology products (telecommunication switches) and services (IP-
VPN, Internet Protocol Virtual Private Networks) on the Web. In
the present paper, we describe the user modeling and personalisa-
tion techniques applied in the system by referring to the prototype
supporting the configuration of telecommunication switches.

This paper, which represents an extension of [1], is organised as
follows: Section 2 outlines one of the application scenarios guiding
the development of our framework and Section 3 summarises the
main personalisation requirements on configuration we identified.
Section 4 describes the CAWICOMS framework for the personalised
configuration of items by specifying the typical flow of the interac-
tion with the user (4.1), the graphical interface used to elicit informa-
tion about the product/service features needed by the user (4.2), the
knowledge representation for describing users and products/services
(4.3), the personalisation strategies for customising the configuration
task (4.4) and the inference techniques for reasoning about the user’s
interests and expertise (4.5). Section 5 sketches the system architec-
ture and Section 6 concludes the presentation.

2 TELECOMMUNICATION SWITCHES
DOMAIN

The development of the CAWICOMS framework was guided by ap-
plication scenarios from the telecommunication domain. One of them
is the configuration of large telecommunication switches for next-
generation public telephony. The core of the product consists of a
switching network that can be decomposed into a set of building
blocks called racks, frames and modules. The number of these build-
ing blocks and their structure depends on the required performance
characteristics and features specified by the customer. Therefore, the
core of the switching system is complemented by routing compo-
nents to conform future IP-based telephony requirements or software
packages that offer control and maintenance functionality. In order to
completely specify such a product, up to several hundreds of param-
eters and questions may be posed to the sales person interacting with
the configuration system. Users can easily become overstrained and
are unable to overview the configuration process. This is especially a
problem when sales personnel is not well trained or lacks deep tech-
nical knowledge. In those cases, configuration systems play a crucial
role as a corporate knowledge management tool, where user specific
knowledge presentation requires an intelligent interface.

In our application domain we identified four user groups differing
in the level of product knowledge and the frequency of system inter-
action: Sales engineers have deep technical knowledge. These users
want to be able to drill down to configuration details and are able
to interact with a non-personalised configuration system without any
assistance. Senior sales representatives typically have good knowl-
edge about the products and services to be configured and reasonable
experience in the usage of configuration systems. Junior sales repre-
sentative: this category encompasses sales personnel with almost no
experience, and/or low level of technical understanding. Customers:
the system is not allowed to assume any training on the product and
must be prepared to give several explanations. This type of user is
particularly important, when the configuration system is used as a
medium to deliver product information.

In CAWICOMS, we addressed the requirements of these user
classes, which are represented by stereotypes providing information
about their skills and interests.

3 PERSONALISATION REQUIREMENTS OF
CONFIGURATION TASKS

In order to take the user’s interests and knowledge requirements into
account, a configuration system should fill the gap between the un-
derlying representation of the product/service and the user’s percep-
tion of such an entity. While an expert user is assumed to have precise
knowledge about the features of a product/service and its structure, a
novice one only perceives its most “external” aspects. For instance, a
telecommunication switch is characterised by a large set of features,
some of which are very technical, such as the number of trunk lines
to be exploited. However, the novice user’s view of the product may
only concern a subset of all the features: e.g., she may want to spec-
ify whether a Voice-mail function is needed, or how many terminals
will be connected to the switch.

We have identified a set of requirements concerning the person-
alisation of the interaction by interviewing people regularly using
the configuration systems available to a telecommunication company
and occasional users of on-line configuration systems. The most rel-
evant issues follow.

1. The configuration process may require the specification of a large
set of data.

2. Depending on the user’s knowledge, the specification of the pa-
rameter values may be difficult, if not impossible, as the user
might not know the impact of her selections on the configuration
solution.

3. Most users are only interested in the cost and the usage charac-
teristics of the solution, while they do not care about how it is
implemented (and therefore about the values to be set during the
configuration process).

4. Some configuration parameters depend on the customer’s features
and should be automatically set: e.g., the customer’s nationality
determines the currency for payments.

5. Other configuration parameters are so critical that the user must
take the responsibility to set them. At least in these cases, she
should be supported with extra-helpful information about the pa-
rameter.

6. The user should be enabled to postpone some configuration deci-
sions, when she is uncertain about the preferred value for a param-
eter, and carry on the configuration of the other aspects of the item
under definition.

We have also identified requirements on the presentation of configu-
ration solutions, but we only sketch them, as this paper is focused on
the adaptation of the configuration task.

� The features of the configuration solution should be presented by
taking the structure of the product/service into account. For in-
stance, the structure of a telecommunication switch could be used
to present the solution component by component, instead of show-
ing a flat list of features (as most configuration systems do).

� Very critical information should be presented, regardless of the
user’s interests. However, if the information is too complex for
the user, additional information should be available in order to
help her understand the presentation.

� The presentation of solutions should be focused on the features
most relevant to the user’s interests: different types of information

120

Figure 1. A personalised question page generated during a configuration step.

about the configured product/service should be presented, depend-
ing on the user’s role. For instance, a technical engineer should get
technical information about the solution, while a manager could
benefit from a presentation focused on its performance and eco-
nomic aspects.

� The presentation should be tailored to the user’s knowledge about
the product/service: for instance, technical details should be hid-
den, if they are too complex for the user (and do not represent
particularly critical information).

� As a general rule of Adaptive Hypermedia systems, the user must
always be able to access the complete information about the solu-
tion. This means that details considered irrelevant, or too complex
for the user, should be made available as additional information
about the product/service. In this way, they can be reached on de-
mand (by following ”more info” links).

4 MANAGEMENT OF PERSONALISED
CONFIGURATION TASKS

4.1 Interaction Flow

In the CAWICOMS system, the configuration process is organised in
phases corresponding to the logical structure of the item to be config-
ured: in each phase, a different component of the product/service is
configured. Moreover, as each phase may consist of a possibly com-
plex task, the interaction with the user within a phase is managed ac-
cording to a dynamically generated sequence of configuration steps.

At each step, the user selects values for a subset of the product
features: these features are represented by configuration parameters,
each one associated with the set of its possible values (the domain of
the parameter). After the selection of the parameter values, the user

submits such values to the configuration engine. As in our framework
this engine is based on a constraint satisfaction system, the values are
propagated in a constraint network representing a partial solution.
The propagation may trigger domain reductions on other parameters.
After each propagation step, the user is shown another set of pa-
rameters to be set and their current domains, until the phase is over.
Then, another configuration phase is started, until the whole prod-
uct/service is specified. When the constraint network evolves to a so-
lution where each parameter is set to one value, the system presents
the solution. In contrast, if the user’s choices generate a failure in the
constraint propagation process, the configuration fails.

4.2 Management of a Configuration Step

The selection of parameter values within a configuration step is per-
formed by filling in a form that shows the parameters to be set, to-
gether with their domain. The form may also include questions about
the user’s preferences for high-level properties of the product/service,
such as its reliability. After having selected the values for the various
questions, the user can submit the form to the configuration system
by clicking on a “go on” button.

For instance, Figure 1 shows a typical page generated by our
system during the configuration of a telecommunication switch
(TeCOM). The leftmost part of the page displays the list of questions
the user is asked about and includes configuration parameters (e.g.,
version of the switch, number of analog subscribers) and information
about the customer’s requirements: her interest in the economy of the
product, i.e., on how costly the solution will be.

As shown in the figure, a help button (“what does it mean?” link)
is available behind each parameter to retrieve detailed information

121

Reliability

Trunk Lines
 number

Additional
Server PC

property of
product/service

configuration
parameter
(feature of
product/service)

evaluation of
property (y) given
the parameter
values (x)x

y

x

y

x

y

Figure 2. Relations between parameters and properties in the Frontend
Model.

about its meaning: for instance, Figure 1 shows the explanation win-
dow for the “version” of the TeCOM. Notice also that, at each config-
uration step, the system may set some parameters, by applying per-
sonalisation techniques. When this happens, the system shows these
settings below the list of questions. For instance, in Figure 1, the sys-
tem has set country and currency for the switch.

4.3 Knowledge about Products/Services and Users

4.3.1 Introduction

The satisfaction of the requirements in Section 3 is based on the inte-
gration of user modelling, personalisation and flexible dialogue man-
agement techniques, and on the use of a domain ontology describing
personalisation oriented information about products and services.

4.3.2 Representation of information about products and
services

The technical knowledge about products and services is described
in a Product Model supporting a conceptual, structured description
of entities with features, components and constraints among com-
ponents; see [10] and [7]. This model specifies the technical infor-
mation needed by the configuration engine to generate solutions,
but does not include high-level information typically addressed dur-
ing the interaction with the user. This further type of information is
stored in the Frontend Model, that extends the Product Model with
data such as the explanation of the meaning of configuration param-
eters and an estimate of their technicality and of their criticality de-
grees. The Frontend Model also stores the impact of parameters on
the utility of the solution regarding different aspects and the difficulty
of knowing such information. For example, Figure 2 shows the rep-
resentation of the impact of some product features (number of trunk
lines, additional server PC) on the reliability of a switch. As shown
in the figure, the number of trunk lines has positive impact on the
reliability of a switch. Similarly, the number of additional servers
enhances this product property.

4.3.3 Representation of information about users

The system manages an individual user model storing information
about the user: this model is stored in the system’s database, so that
it is available after the first interaction, and includes various types of
information:

� The user’s personal characteristics, such as nationality and enter-
prise type, are represented as � feature-value � pairs;

� The user’s knowledge about each product/service feature, corre-
sponding to a configuration parameter, is represented as a proba-
bility distribution on the values of a binary variable, associated to
the feature; this variable represents the system’s estimates that the
user knows/does not know the meaning of the feature.

� The user model also describes the user’s interests in different as-
pects of the product, such as its reliability and economy, corre-
sponding to the properties defined in the Frontend Model. These
interests are represented as probability distributions on the values
(levels) of variables associated to such properties. For each vari-
able, three level of interest are considered: low, medium and high.

� The user model stores information about individual defaults, rep-
resenting preferences for particular parameter values. This type of
preference may be available because the system enables the user
to set “long-lasting” preferences about product features.

The estimates about the user’s interests and expertise are initialised
by means of stereotypical information [18] about the most relevant
classes of users interacting with the configuration system (private
customers, sales representatives and technical engineers). Moreover,
to take individual properties into account, the system’s estimates are
dynamically updated on the basis of an interpretation of the user’s
observable behaviour. (see Section 4.5).

4.4 Personalisation Strategies

The conceptual representation of products and services stored in the
Frontend Model guides the system in the management of a struc-
tured configuration session, suggesting the configuration of the prod-
uct/service one component after the other, in a possibly hierarchical
order. However, the system enables the user to postpone the setting
of parameters and to select the components that she wants to config-
ure first. In this way, mixed-initiative dialogues are managed, where
both the system and the user can take the initiative during the con-
figuration process (requirement 6 in Section 3). The Frontend Model
also supports the user during the setting of parameter values by pro-
viding her with with explanations of the meaning of the parameters
to be filled in (requirement 5).

Finally, the assessment of the user’s interests and expertise, to-
gether with the exploitation of the information stored in the Frontend
Model, supports the satisfaction of the first four requirements, as it
enables the system to automatically set parameters and to personalise
the formulation of questions. Given a configuration parameter to be
filled in, alternative strategies can be used to identify the value(s) to
be set and a personalisation module evaluates the alternatives, search-
ing for the most promising one:

1. If the criticality of the parameter is over a threshold, then ask the
user about the value to be set.

2. If the user model contains an individual default value for the pa-
rameter and the value is included in the current domain of the
parameter, then set the parameter accordingly.

3. If a personalised default matching the user is available for the pa-
rameter and the intersection between the suggested values and the
current domain of the parameter is not null, then set the parame-
ter to the intersection.
Personalised defaults represent business rules suggesting param-
eter settings based on customer’s characteristics and are repre-
sented as production rules. The head of the rule specifies a pos-
sibly complex and/or condition on the user data. The consequent
suggests a set of values for the requested parameter, together with
the result of the evaluation of the head on the user model. For in-
stance, in the interaction of Figure 1, a simple personalised default
is applied that sets the “currency” parameter of a telecommuni-
cation switch to the appropriate currency (USD vs. Euro) on the
basis of the user’s nationality.

122

4. If the parameter is related to some properties for which the user’s
estimated interest is low, then set a standard (non personalised)
default value consistent with the current domain.

5. If the user’s estimated expertise is sufficient to choose a value for
the parameter, then ask her to set the preferred value, given the
current domain.
This strategy relies on a comparison between the user’s expertise
and the difficulty of the parameter in order to estimate the likeli-
hood that the user will be able to answer the question [12].

6. Given the parameter domain, select the best value and set it, given
the user’s interests in the product/service properties.
This strategy exploits the information in the user model to pre-
dict the preferred values for the parameter. The properties related
to the parameter in the Frontend Model are used to focus on the
corresponding user interests, which are analysed to check if a suf-
ficiently substantiated prediction of the best value can be made.
Section 4.5 describes the evaluation model ascribed to the user in
our system.

7. Elicit (if not yet done) information from the user about her inter-
est in properties of the product/service that are influenced by the
parameter to be set. Then, apply strategy 6 to possibly set the pa-
rameter values.
This strategy is applied to let the user self-assess her interests,
when the information in the user model is not sufficient to per-
form any prediction.

8. Postpone the parameter setting to a later stage of the configuration
process (last resort).

These strategies are sorted by priority because, whenever safe, au-
tomatic parameter settings are favoured over questions to the user.
However, the selection of the strategy to be applied is a little more
complex: while the evaluation of the first three strategies is binary
(either they suit the current situation, or they do not), the other strate-
gies rely on uncertain information. For instance, strategy 4 depends
on the estimation of the user’s interest for the properties related to
the parameter in focus; similarly, strategy 5 is based on the probabil-
ity that the user knows the meaning of the parameter. In order to take
this uncertainty into account, the suitability of a strategy is evaluated,
in the [0..1] range, and applicability thresholds are defined to rule out
weak strategies.

For each parameter to be filled in, the personalisation module
evaluates the strategies, according to their priority, and selects the
first one exceeding the application threshold. The selected strategy
is applied to continue the interaction with the user, either by elicit-
ing information from her, or by autonomously setting the value. The
question pages submitted to the user reflect the fact that the various
parameters may be filled in according to alternative strategies. For
instance, in Figure 1, the user is questioned about parameters and
interests; moreover, some parameters are set by the system.

4.5 Reasoning About the User’s Knowledge and
Interests

For applying the personalisation strategies described in Section 4.4,
the user’s interests and the user’s expertise have to be estimated based
on her observable behaviour. The inference mechanism used for this
estimation process has to take into account the uncertainty associated
with the interpretation of the observations. This is the reason why we
use a probabilistic inference mechanism, namely Bayesian networks
[16], for this purpose.

For estimating the user’s interests, we have to ascribe the user an
evaluation process which she employs for assessing products and

services. In an idealisation, we use Multi-Attribute Utility Theory
(MAUT [21]) for this purpose. MAUT is a general evaluation scheme
which is applied or at least compatible to the schemes applied by
many user modelling approaches for estimating the user’s interests
[20]. Many users are also already familiar with MAUT, because it
is used by consumer organisations for evaluating products. For ex-
ample, in Germany, Stiftung Warentest uses MAUT for evaluating
consumer products (e.g., digital cameras [22]). According to MAUT,
the overall evaluation of an object determines its utility for the user.
Usually, many aspects of an object can be evaluated and not all the
users are interested in the same aspects to the same degree. These as-
pects are called value dimensions. For example, a telecommunication
switch can be evaluated on the performance, reliability, and economy
dimensions. In this example, some users are more interested in per-
formance and reliability and less in economy.

The overall evaluation is expressed on a numerical scale, e.g., from
0 to 10 and the overall evaluation is defined as a weighted addition
of the object’s evaluation on its relevant value dimensions [21].6 A
weight is associated with each dimension to describe the user’s inter-
ests. The more interested the user is, the bigger the weight is.

In the same way as for the overall evaluation, the evaluation of the
object on each dimension is based on a weighted addition of the eval-
uation of the attributes relevant for this dimension. In order to evalu-
ate attributes (in our configuration task, corresponding to parameters
to be set), a numerical scale is constructed which represents the prop-
erties of the levels of an attribute (levels correspond to the parameter
values). Then, an evaluation function maps evaluation values onto
the attribute levels. For example, regarding reliability a guaranteed
uptime of 99% yields 10, whereas an uptime of 50% yields 2. For
simplicity, we assume that the evaluation functions of the attributes
and their weights are fixed. The described weights and the evaluation
functions are defined in the Frontend Model. See bottom of Figure 2
in Section 4.3.

For fulfilling the goal of estimating the user’s interests, the weights
associated with the dimensions have to be determined. In CAW-
ICOMS, this is done by means of a probabilistic approach and the
weights are represented as a probability distribution. Initially, a first
estimate is obtained by using stereotypical knowledge about users. A
set of stereotypes define categories of users, such as representatives
of a small company. These stereotypes are activated based on the
user’s personal characteristics. Then, the user’s observed behaviour
in typical situations is interpreted in order to update these estimates.
The following situations can be processed:

� Self assessment: especially at the beginning of the interaction, the
system may ask the user about her interests. The user’s answer
reflects her self-assessment, which is very likely related to her in-
terests, but this fact should not be taken for granted because the
user might misunderstand the meaning of the terminology used
by the system.

� The user can also change the parameter values that the system pro-
posed as defaults by applying personalisation strategies. This type
of action provides evidence that the user believes that the change
has a positive impact on the overall evaluation of the configuration
solution. In other words, the user believes that the new parameter
settings cause a positive shift in the evaluation of the item to be
configured, with respect to the evaluation with the values proposed
by the system.

� After generating a configuration solution, the system presents it.
Then, the user has to decide whether accepting the solution and

6 Other possibilities for aggregation are described by [21].

123

ending the configuration process, or not. If she accepts the solu-
tion, her overall evaluation of the solution is probably quite good.

For each of these situations, a Bayesian network has been specified
which reflects the above described dependencies. These specifica-
tions are domain independent. At runtime, the actual network for
processing the situation with the parameters involved is created and
used for the interpretation of the user’s behaviour. This interpretation
results in an update of the probability distributions representing the
weights of the dimensions corresponding to the user’s interests.

For estimating the user’s expertise we use an approach based on
[12]. For example, if a user is observed to click on a help button,
she probably does not know the implications of the parameter and
therefore her expertise is probably low. If we observe that the user
knows the implications of a parameter (e.g., because she specifies a
parameter value), her expertise is probably high.

5 SYSTEM ARCHITECTURE

The CAWICOMS system is based on a modular, distributed architec-
ture, where a specialised module is associated with each main task to
be carried out during the interaction with the user: e.g., configuration,
user modelling, personalisation and generation of the Web pages.
The system is implemented in Java and exploits standard software
development environments. The user interface consist of a sequence
of Web pages, implemented as JSPs, whose content is dynamically
generated on the basis of the interaction context and the application
of the personalisation strategies. The JSPs run within an Apache Web
Server. Specialised, commercial engines are used within the system
to perform complex tasks: for instance, the ILOG’s JConfigurator en-
gine [10, 15, 13] is used to generate configuration solutions.

6 DISCUSSION

We have presented the personalisation facilities offered by CAW-
ICOMS, a framework for the Web-based configuration of products
and services. These facilities allow tailoring the interaction style to
the individual user and also support her in the configuration of the
product/service which suits her needs best. The personalisation of the
interaction is based on the integration of a user-oriented view of the
configuration task with the technical level at which configuration sys-
tems usually work. This result is achieved by integrating constraint-
based configuration techniques with user modelling, personalisation
and dialogue management techniques. Our approach also uses a do-
main ontology describing personalisation-oriented information about
the items to be configured. We have applied this framework to the
development of a prototype system for the configuration of telecom-
munication switches; moreover, a second prototype, supporting the
configuration of IP-VPNs, is under development.

We have performed a first test of the personalisation facilities of-
fered by the telecommunication switches prototype, with a limited
number of users having different background and playing different
roles in their organisations (managers, technicians, etc.). The results
show that such facilities are appreciated, especially as far as the au-
tomatic setting of parameters is concerned, because it speeds up the
configuration process, leveraging the selection of the values for the
parameters to be set. However, they want to control the system’s de-
cisions, possibly overriding them. For this reason, we have modified
the user interface, to produce editable personalised suggestions: these
suggestions should respect the user’s preferences, but if they do not,
she can correct the settings.

The users also appreciated the system’s explanation capabilities,
although only partially developed, because they shed light on the
comples underlying configuration process.

Moreover, the users asked for more flexibility in the management
of the dialogue between system and user. For instance, they sug-
gested that the user should be enabled to notify the system that she
does not care about a value, therefore the system should set it au-
tonomously. We have incorporated these facilities in our prototype.

Finally, requests for a more flexible management of the overall
configuration task came. For instance, the management of reconfig-
uration, with its implications (corrections of previous parameter set-
tings, revision of a configuration solution, recovery from a configura-
tion failure), was considered essential and is part of our future work.

REFERENCES
[1] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach,

M. Meyer, G. Petrone, R. Schaefer, W. Schuetz, and M. Zanker. Per-
sonalising on-line configuration of products and services. In Proc. 15th
Conf. ECAI, to appear, Lyon, 2002.

[2] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, R. Schae-
fer, and M. Zanker. Web-based commerce of complex products and
services with multiple suppliers. In Thoben, editor, E-Business Appli-
cations, to appear. Springer Verlag, Berlin.

[3] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, R. Schaefer, and
M. Zanker. A framework for rapid development of advanced web-based
configurator. In Proc. 15th Conf. ECAI, to appear, Lyon, 2002.

[4] L. Ardissono and A. Goy. Tailoring the interaction with users in Web
stores. User Modeling and User-Adapted Interaction, 10(4):251–303,
2000.

[5] L. Ardissono, A. Goy, G. Petrone, and M. Segnan. Personalization in
business-to-consumer interaction. Communications of the ACM, Spe-
cial Issue “The Adaptive Web”, 45(5):52–53, 2002.

[6] BroadVision. Broadvision. http://www.broadvision.com.
[7] A. Felfernig, G. Friedrich, and D. Jannach. UML as domain specific

language for the construction of knowledge-based configuration sys-
tems. Int. Journal of Software Engineering and Knowledge Engineer-
ing (IJSEKE), 10(4):449–469, 2000.

[8] FIAT. buy@fiat: la tua prossima auto. http://www.buy@fiat.com, 2001.
[9] Fidelity Investments. Insurance center @fidelity.

http://www400.fidelity.com:80/, 2001.
[10] ILOG. ILOG JConfigurator. http://www.ilog.com/products/jconfigurator/,

2002.
[11] Net Perceptions Inc. Net perceptions. http://www.netperceptions.com.
[12] A. Jameson. Knowing What Others Know: Studies in Intuitive Psycho-

metrics. PhD thesis, University of Amsterdam, 1990.
[13] U. Junker. Preference-programming for configuration. In IJCAI Con-

figuration Workshop, pages 50–56, Seattle, 2001.
[14] A. Kobsa, J. Koenemann, and W. Pohl. Personalized hypermedia pre-

sentation techniques for improving online customer relationships. The
Knowledge Engineering Review, 16(2):111–155, 2001.

[15] D. Mailharro. A classification and constraint-based framework for con-
figuration. AI in Engineering, Design and Manucturing, 12:383–397,
1998.

[16] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA,
1988.

[17] P. Resnick and H.R. Varian, editors. Special Issue on Recommender
Systems, volume 40. Communications of the ACM, 1997.

[18] E. Rich. Stereotypes and user modeling. In A. Kobsa and W. Wahlster,
editors, User Models in Dialog Systems, pages 35–51. Springer Verlag,
Berlin, 1989.

[19] D. Riecken, editor. Special Issue on Personalization, volume 43. Com-
munications of the ACM, 2000.

[20] R. Schäfer. Rules for using multi-attribute utility theory for estimat-
ing a user’s interests. In Proc. 9. GI-Workshops: ABIS-Adaptivität und
Benutzermodellierung in interaktiven Softwaresystemen, 2001.

[21] D. von Winterfeldt and W. Edwards. Decision Analysis and Behavioral
Research. Cambridge University Press, Cambridge, UK, 1986.

[22] Stiftung Warentest. Digitalkameras: Pixeljagd. test, (6), 2000.

124

Deployment of Configurator in Industry :
Towards a Load Estimation

M ichel Aldanondo1 - Guillaume M oynard1,2

Abstract: Our communication deals with configurator deployment
in industry. Our goal is to define an estimation function that permit
to quantify the workload necessary for deploying a configuration
software in industry. As this work is in progress, we mainly focus
on the configurator deployment problem and relevant estimation
factor definitions. At the end of the paper, we provide some ideas
about the estimation function.

I INTRODUCTION

Configuration software is becoming more and more frequently used
by companies fighting in the mass-customization market. Almost
all the ERP software proposes now configuration modules fully
integrated in their offer as reported in [1]. The Lapeyre group, a
European leader in industrial carpentry (windows, door, kitchen
furniture…), has been being a
significant user of configuration for
almost 10 years. For the Lapeyre group
and for many companies deploying
configuration software, an important
issue deals with the following questions
(figure 1) : “ for each configurator
deployment, how many man-months of
deployment capacity should I forecast ?
what would be the resulting deployment
cycle time ?” .

If some scientific works have been achieved for this question for
ERP deployment in terms of method and approaches, as far as we
know, deployment load estimation for configuration software is not
very frequent in the open scientific literature. Many configurator
vendors have got their own method and approaches, but very few of
them have been presented or discussed, some ideas can be found in
[2]. Some rare estimation works in the field of product design are
closer to our estimation goal, see [3] and [4].

Our goal is therefore to determine a quantitative estimation
function for configurator deployment load ; the problem of the
deployment cycle time will not be studied. This work, conducted by
a Ph.D. student, is taking place in the Lapeyre group and gathers
both selling aspect (product configuration) and manufacturing
aspects (bill-of-materials configuration). This work is in progress
and the presented results deal mainly with factors identification.
Some ideas about the estimation function establishment will be
provided.

The communication is divided in three parts. We first address the
configuration deployment problem and underline the need for some
estimation calculus. Then, we propose and discuss load estimation
function factors. In the last part, we present the work that we intend
to do concerning the load estimation function set up.

2 THE CONFIGURATOR DEPLOYMENT
 LOAD ESTIMATION PROBLEM

2.1 Configurator deployment, a two step problem

Deploying a configurator can be decomposed in two steps : (i)
modeling the product and (ii) coding the model in the configurator.

The purpose of the modeling step is “ to put on the paper” the
configurable product.
Normally, this activity should be conducted without taking into
account the configurator that will be deployed. But in fact, most of
the configurator vendors propose some modeling tools that fit their
software. Some scientific modeling approaches can be found
relying on various frameworks can be found in [5] for constraint
satisfaction problem approaches or [6] for oriented object
modeling.
As we target selling and manufacturing aspects, modeling is, most
of the time, achieved by people from product marketing, product
design and product manufacturing teams. The variety of persons
and product knowledge involved in modeling makes this modeling
phase very delicate. People from design and manufacturing
“discover” what the marketing team thinks in terms of product offer
and, at the opposite, marketing and selling persons “discover” that
some new customization possibilities that they would never dare to
ask are in fact very easy to handle. Sometimes getting these people
around a modeling table generates conflict and withholding
information is frequently observed. Thus, human factors and
company organization are important factors for a smooth
deployment achievement.
In our wok, modeling is decomposed in product configuration
model design and bill-of-materials configuration model design. In
order to discuss load deployment factors, we rely for (i) product
model on a CSP based modeling approach (variable, domain,
constraint) as shown explain in [5] and for (ii) bill-of-materials
model on a generic bill of materials inspired form the work
presented in [6]. Of course these two models are related in order to
derive the configured bill-of-materials from the configured product.

The purpose of coding step is “ to enter the product model” in the
configurator.
In a perfect world, this activity should be conducted by somebody
that knows only about configuration and configurator utilization
without any product specific knowledge. As the product knowledge
is gathered in the model on the “paper” , the person in charge of
modeling should just translate the model into the coding entities
existing in the configurator.
As it has already been pointed out, most of the time, modeling is a
little bit dependant of the configurator. Therefore it happens
sometimes, that model designing and coding are achieved by a
same person. Nevertheless, we think that the load estimation
function has to be considered for the two different steps, and we
assume that the coding team members receive a valid model form
the modeling team members. Once coding is done, an important
sub-step is to check if the resulting configurator is valid. This is an
important and hard issue (elements about this problem can be found
in [7] or [8]) and such validation is most of the time done by the
coding person with some help from model designers.

1 DRGI - Ecole des Mines d'Albi - Campus Jarlard - Route de Teillet -
81013 Albi CT Cedex 09 - France

2 Lapeyre-GME - 2-4 Rue André Karman - 93200 Aubervilliers –
France

?
Configurator
Deployment
- work load
- cycle time

Figure 1 – The problem

Configurator
Need

125

As a conclusion, the following aspects :
• many people involved from various company teams,
• organization of modeling and coding,
• information sharing problem,
• product and configurator knowledge distribution,
tend to generate long and difficult configurator deployment
projects. Many companies measure configurator set-up workload in
man-years of modeling, coding and maintenance. Thus, before
deploying a configurator in a company or extending an existing
configurator to a new facility or a new product family, being able to
estimate the effort that will be done is of great interest. In order to
do so, next sub-sections introduce the load estimation function.

2.2 Load estimation function set-up elements

The objective of the estimation function is to calculate the
deployment work amount in load units “man-months” with respect
to factors. Our goal is therefore to propose a function as :

Load = F ({ factors})

In order to establish F, we will first identify factors characterizing :
• the industrial situation and organization in front of the

deployment project,
• the product size and complexity.
Then, configuration deployment cases will be investigated in order
to gather data provided by configurator deployment experts who are
either project managers or consultants. The data can result :
• from effective deployment : quantitative values for factors and

measured load,
• from quantitative estimation : factor values are provided to the

expert who gives in return load estimation.
We will then have a set of cases ({ factor value} , Load } , that

should permit us to derive the estimation function.

2.3 Two levels of load estimation

One of the problems of project load estimation is to decide when
and with what kind of information load estimation can be
undertaken. Discussions with various configurator deployment
experts allow concluding that two levels are interesting.

The first one corresponds with an order of magnitude estimation.
This estimation must be conducted in around a single day of work
involving a specialist of each company team (marketing, design,
manufacturing and presumed project leader). The accuracy of the
load estimation can be quantified around +/- 50%. Therefore this
kind of load estimation is done before the configurator deployment
final decision. We call this one : “ rough estimation” .

The second one is more detailed and can need up to ten days of
work and requires some product modeling work. The idea is to
estimate the load with some formalized elements concerning the
configurable product. This allows reducing estimation inaccuracy
down to +/- 20%. This kind of estimation is, most of the time, done
once the configurator deployment is decided in order to plan the
resouce deployment. We call this estimation : “detailed estimation” .

2.4 Conclusions

The need for configurator deployment load estimation function has
been shown. Two estimation levels, rough and detailed, have been
introduced. Our estimation targets to cover selling purpose (product
configuration) and production purpose (bill-of-materials
configuration). Estimation factors are split in two groups :
industrial situation factors and product factors.

Finally, an important point not already mentioned is relevant to the
deployed configuration software. For this study, only one
configuration software (provided by a configuration software
company) is used, therefore the estimation function is valid for this
single software. But each software has good and bad deployment
capabilities and therefore we can assume that the results can be
extended for other configurators.
The next section presents and discusses the estimation factors.

3 LOAD DEPLOYMENT FACTORS

The identified factors are the result of various configuration
deployment case analysis. They must be considered as a first set
that has been validated by configuration deployment experts. This
set will be improved when the first estimation function will be
tested.

3.1 Industr ial situation estimation factors

These factors can be gathered in two sub-groups characterizing (i)
the company know-how in terms of industrial organization and (ii)
the organization of the persons involved in the deployment project.
Once the factors of each sub-group are quantified, they can be
aggregated in a single factor that will be used in the estimation
function.

3.1.1 Company industrial organization factors

These factors characterize the general behavior of the company in
front of any software deployment. These factors can be taken into
account when estimating the load deployment of ERP or PDM
systems for example. Four factors have been identified.

F1.1 : Management capabilities factor.
F1.1 characterizes :
• the existence of company projects dealing with : quality

assurance, process reengineering, total quality control…
• the existence of regular utilization of project management

techniques,
Factor quantification :
• if both exist : F1.1 = 1
• if none exists: F1.1 = -1
• if one of the two exists : F1.1 = 0

F1.2 : Sub-contracting factor
F1.2 characterizes if
• product manufacturing,
• analysis before software deployment,
• coding or customizing the software,
are subcontracted.
Factor quantification :
• if nothing is subcontracted : F1.2 = 1
• if one activity is subcontracted : F1.2 = 0
• if more than one activity is subcontracted : F1.2 = -1

F1.3 : Multi-lingual factor
F1.3 characterizes if the people involved in the deployment speak
the same language and if the software will use more than one
language.
Factor quantification :
• one language : F1.3 = 1
• more than one language : F1.3 = -1

F1.4 : Multi-location layout factor
F1.4 characterizes if sale, design and manufacturing are
implemented in different physical locations.

126

Factor quantification :
• one location : F1.4 = 1
• more than one location : F1.4 = -1

The company industrial organization factor, F1, aggregates these
four factors through a sum. Therefore FI ranges from –4 to +4
corresponding with very low and very good situation for software
deployment.

3.1.2 : Configurator deployment involved person factors

These factors characterize the general organization and knowledge
of the persons that could be involved in the configurator
deployment. They are more specific to configurator deployment
that the previous factors. Four factors have been identified.

F2.1 : Product knowledge existence factor
F2.1 characterizes if a single person with a good global knowledge
level can be easily identified for each of the major following
knowledge field :
• marketing and/or selling process,
• product design,
• product manufacturing.
Factor quantification :
• if the three knowledge fields are covered : F2.1 = 1
• if two of the knowledge fields are covered : F2.1 = 0
• if only one knowledge field is covered : F2.1 = -1

F2.2 : Modeling knowledge existence factor
F2.2 characterizes if a person in the company has already made
some generic modeling, or if some models (whatever the formalism
is) already exist for :
• product configuration, (for sale and design)
• bill-of-materials configuration. (for manufacturing)
Factor quantification :
• if both are covered : F2.2 = 1
• if one kind of model is covered : F2.2 = 0
• if nothing has been done in modeling : F2.2 = -1

F2.3 : Configuration model coding knowledge existence factor
F2.3 characterizes if a person in the company has already
implemented in a configurator, a spreadsheet or in any computer
language :
• product configuration model,
• bill-of-materials configuration model.
Factor quantification :
• if both have been coded : F2.3 = 1
• if one kind of model has been coded : F2.3 = 0
• if no coding has been done : F2.3 = -1

F2.4 : Project organization factor
F2.4 characterizes a possible distribution of knowledge and know-
how of the people that could be involved in deployment. Product
knowledge can deal with selling, designing and manufacturing,
while know-how is relevant to modeling and coding of product and
bill-of-materials. This can be summarized in the table of figure 2.

Factor quantification :
Figure 3, equivalent to figure 2 plus ellipses representing persons
shows typical cases of knowledge and know-how distribution
among the persons involved in the project.

Case 1 and 4 represents project organization with highly
specialized person requiring strong and frequent information
exchanges that will tend to slow the deployment.
Case 2 and 3 represents some kind of good complementary skill
and know-how with some interesting overlapping in case 3.
Therefore, for organization close to :
• case 3 and 2 : F2.4 = 1,
• case 1 and 4 : F2.4 = -1.

As for factor F1, the configurator deployment involved person
factor, F2, aggregates these four factors through a sum. F2 ranges
from –4 to +4 corresponding with very low and very good project
resource organization for configurator deployment.

3.1.3 : Conclusion on Industrial situation estimation factors.

Eight factors are used to characterize the industrial situation. These
eight factors are aggregated in two factors ranging from [-4, +4] :
• F1 : Company industrial organization factor,
• F2 : Configurator deployment project involved person factor.
These two factors will be used to determine the estimation function.
If gathered data coming from deployment cases is sufficient, it will
be possible lately to consider the eight factors in the estimation
function.
In terms of estimation level, rough and detailed estimation use
exactly the same factors. Of course, for detailed estimation, as more
time can be used to study the case, the industrial situation analysis
provides much accurate value for these factors.

3.2 Product estimation factors

These factors target to take into account the product size and
complexity in configurator deployment. By “size” we want to
characterize the amount of characteristics needed for product and
bill-of-materials configuration modeling and coding. Complexity
tends to modulate this amount with the conceptual effort relevant to
the interdependencies of characteristics.
We discuss rough estimation then detailed estimation. For each of
them we will sequentially analyze product configuration and bill-
of-materials configuration factors.

For these two estimations, the load estimation is conducted for a
product family that has been identified as representative of all the
company configurable products. Then this “product family load” is
extrapolated to all products of the company. Therefore, families are
identified with an extrapolation factor providing the family
extrapolation factor set.

F3-4.1 : Family extrapolation factor
Factor quantification: F3-4.1: { (family_ref , extrapolation_factor) }
For example if two product families have been identified :
family_ref_1 and family_ref_2. If :

Product
Knowledge
Modeling
Know_how
Coding
Know_how

Sale Product
design

Product
manufacturing

Product
configuration

Bill-of-mats.
configuration

Figure 2 – Skills and knowledge distribution

Case - 1

Case - 2

Case - 3

Case - 4
Figure 3 – Examples of Skills and knowledge distribution

127

• family_ref_1 has been chosen as representative
• F3-4.1 = { (family_ref_2, 0.6) } ,
Therefore : Load(family_ref_2) = 0.6 * Load(family_ref_1)

3.2.1 Product rough estimation factors

For this estimation, there is no modeling work just some rough
analysis made through discussions with some people from
marketing, design, and manufacturing.

3.2.1.2 Product configuration factors

As we rely on CSP modeling approaches for product configurable
modeling, the factors will deal with variable number, variable
definition domain size and constraints. The three following factors
have been identified and must be quantified for the representative
product family.

FR3.1 corresponds with an estimation of the number of
configuration variables. We mean by configuration variables,
variables that would be present in a CSP based model.
Factor quantification : FR3.1 : number of variables

FR3.2 corresponds with an estimation of an average variable value
number.
Factor quantification : FR3.2 : average number of variable values

FR3.3 corresponds with an estimation of complexity. For us
complexity means the degree of interdependence existing between
the variables. In a CSP based model, this could represent some kind
of ratio taking into account : variable quantity and number of
constraints (gathering compatibility and activity constraints in the
sense of DCSP approach of Mittal et al [9]). As no modeling is
done for the rough estimation, complexity is estimated with the
selection in figure 4 of one of the four cases representing different
level of variable interdependence. Each small cross represents a
configuration variable and each line a constraint between the two
variables.

Factor quantification :
• very low complexity : FR3.3 = -2
• low complexity : FR3.3 = -1
• high complexity : FR3.3 = 1
• very high complexity : FR3.3 = 2

With the proposed factors, it is to be noticed that identification of
the number of product families is of importance and has an
important impact on the estimation.
Let us consider, for example, a case where the configurable
products are windows and doors. It is possible to consider :
• either 2 families with for each family :

• number of variables, FR3.1 = 15
• complexity : low

• or one family
• number of variables, FR3.1 = 20
• complexity : very high.

It is not easy to decide what is the best solution. The two family
case :
• limits modeling and coding complexity during deployment,

• increases the amount of basic modeling and coding due to the
total number of variables

• increases maintenance effort by having two models and
relevant pieces of code to maintain instead of one.

Interesting elements concerning this hard problem of family
identification can be found in [10].

 3.2.1.2 Bill-of-materials configuration factors

As bill-of-materials generic modeling consist of a hierarchical
physical decomposition of the product. The resulting model shows :
• standard components (with frozen characteristics) at the

lowest level of the bill-of-materials,
• generic sub-assemblies for the intermediate levels,
• father-child links with some conditional existence rule

between :
• upper level configured product and generic sub-

assemblies,
• generic sub-assemblies of different levels,
• generic sub-assembly and standard components.

For rough estimation, factors just deal with standard components
and bill-or-materials decomposition levels.

FR4.1 corresponds with an estimation of the number of different
standard components that can be present at the lowest level of the
generic model bill-of-materials.
Factor quantification : FR4.1 : number of standard components

FR4.2 corresponds with an estimation of the number of
decomposition levels that should be present in the generic model of
the hierarchical bill-of-materials of the family.
Factor quantification : FR4.2 : number of bill-of-materials level

These two factors permit in fact to get an order of magnitude of the
number of generic sub-assemblies and relevant bill-of-materials
links, which correspond to the modeling and coding workload.
As constraints are mainly taken into account in the CSP based
product model, we do not take into account a complexity factor for
generic bill-of-materials modeling and coding.

3.2.1.3 Conclusion about product rough estimation factors

The proposed factors have been discussed with different people
who are familiar with configurator deployment problems. We think
that three points might be subject to discussion and may need
further investigation :
• FR3.2 : when the configuration variable definition domain is

continuous (for example when dealing with parametric or
tailored components) the meaning of “average number of
variable values” should be different.

• FR3.3 : the discretization of product complexity in four levels,
• FR4 factors : the fact that bill-of-material complexity is not

taken into account.

3.2.2 Product detailed estimation factors

When this estimation is processed, the generic modeling of the
representative family has been done for both product and bill-of –
materials configuration. Therefore, the estimations of some factors
are replaced by measurement achieved on the models.

3.2.2.2 Product configuration factors

As the CSP based model is on the “paper” , the factors F3.1 and
F3.2 are the same except that the numbers are counted on the
model. For F3.3, the estimated complexity is replaced by the
number of constraints that are present in the model.

very low low high very high

Figure 4 – Product complexity estimation

128

Factor quantification : FD3.1 : number of variables
Factor quantification : FD3.2 : average number of variable values
Factor quantification : FD3.3 : number of constraints

At this time of the study, in order to be consistent with the
complexity factor FR3.3, we consider product complexity close to
the ratio : number of variables / number of constraints.

3.2.2.2 Bill-of-materials configuration factors

As in the previous sub-section factor values are not estimation
anymore but rely on the bill-of-materials model analysis. The
definition of FD4.1 is unchanged. But for FD4.2, instead of the
number of hierarchical levels of the generic bill-of-materials, we
consider the number of generic sub-assemblies that are present in
the model.

Factor quantification : FD4.1 : number of standard components
Factor quantification : FD4.2 : number of generic sub-assemblies

At this time of the study, we do not take into account the number of
generic links of the bill-of-materials and the number of constraints
or rules modulating links existence. This might be necessary in a
very close future.

3.2.2.3 Conclusion about product detailed estimation factors

As for the rough estimation factors, these factors have been
discussed. The main improvement that have been proposed is to
take into account the fact that pieces of product and pieces of bill-
of-materials (or sub-assemblies) might be used several times for a
same product family.
For product modeling and coding, this means that some
configuration variables grouping is possible. For example, a
configurable fastening device may be configured more than one
time during the configuration of a single window. In order to avoid
multiple modeling and coding of a same device many configurators
and some modeling approaches [11] or [12] propose a notion of
“group of configuration variables” with re-use possibilities.
For bill-of-materials modeling and coding, it is obvious that a
single generic sub-assembly can be re-used in different branches of
the generic hierarchical bill-of-materials. For example, considering
the configurable fastening device as a generic sub-assembly, it is
clear that this sub-assembly will be modeled one time and the
corresponding piece of code re-used in the configurator when
necessary.

3.2.3 Conclusions about product estimation factors

The proposed set of factors must be considered like a first
proposition. We are, at that time, far from the final validation, but
we think that the proposed elements permit to establish a good first
approach of the estimation problem.
For the family load extrapolation mechanism introduced in the
beginning of section 3.2 that permits to determine, from the
analysis of a single product family, the deployment load of all
product families, it is obvious that the re-use problem presented in
section 3.2.2.3 is to be considered. This must provide a re-use
factor between families for both modeling and coding of both
product and bill-of-materials.

F3-4.2 : Family re-use factor
Factor quantification: F3-4.2:
{ (family_ref_x, family_ref_y, re-use_factor) }
For example if two product families have been identified :
family_ref_1 and family_ref_2. If :
• family_ref_1 has been chosen as representative,
• F3-4.1 = { (family_ref_2, 0.6) } ,

• F3-4.2 = { (family_ref_1, family_ref_2, 0.1) } ,
Therefore : Load(family_ref_2) = (1-0.1)*0.6*Load(family_ref_1)

4 LOAD ESTIMATION FUNCTION

At the present time, we are working on the determination of the
load estimation function and this section presents our current ideas
about :
• the estimation function shape we hope to get,
• the deployment load data collection,
• cases gathering.

4.1 Estimation function

The estimated function will be characterize by the following
elements :
• The estimated deployment load for product configuration

(Load_3) and bill-of-materials configuration (Load_4) are
additive. This mean that two independent load estimation
function, f_3 and f_4, respectively for product and bill-of-
materials should be identified :
• Load_3 = f_3(F3.1, F3.2, F3.3)
• Load_4 = f_4(F4.1, F4.2)

• These two deployment loads are added and modulated, with a
function f_1, according to industrial situation estimation
factors introduced in section 3.1. Company industrial
organization factors (section 3.1.1) and configurator
deployment project involved person factors (section 3.1.2) are
first aggregated in a function f_2.

These assumptions permit to present the shape of the estimation
function we target :
F ({ factors}) =
f_1 [f_2 (F1, F2) , f_3(F3.1, F3.2, F3.3) + f_4(F4.1, F4.2)]

The major drawback of the estimation function shape is that
industrial situation estimation factors modulate in a same way
product and bill-of-materials deployment load. This could be of
course decomposed, but the number of investigated cases would be
necessary much larger.

4.2 Deployment load data collection

As explain in section 2.2, data can result from effective deployment
measurements or quantitative estimation of theoretical deployment
cases.
For both data sources, once factor values are identified the
deployment load is gathered in a table as shown in figure 5. This
table allows collecting data in various ways :
• detailed data collection, with load corresponding with (1)

combinations, that allows the most detailed statistical analysis,
• semi-detailed data collection, with load corresponding with (2)

or (3) combination allowing some differentiation according to
product/bill-of-materials or modeling/coding in the statistical
analysis,

• global data collection, corresponding with the total
deployment load (4) that does not permit any differentiation.

Modeling

Coding

Product
Bill-of-
material

(1)

(1)

(1)

(1)

(2) (2)

(3)

(3)

(4)

Figure 5 – Data collection possibilities

129

This way to collect data is interesting mainly for completed
effective deployment, where project decomposition can vary and
load measurements can not provide detailed data. Most of the time
project decomposition is done according to the product/bill-of-
materials deployment criterion and relevant set of data (2) is most
often collected.

4.3 Cases gather ing.

We try to gather cases according to common experimental design
rules that permit to avoid that some factor level disturb the
estimation function while taking into account some factors
correlation possible existences.

5 CONCLUSION

We have presented in this communication elements trying to
calculate a load estimation function for configurator deployment.
This work is in progress and we are currently gathering data. We
hope to be able very soon to show some quantitative results in
terms of functions.
The proposed set of factors need a strong validation and some
improvements will be necessary. Nevertheless, they can be
considered as a first basis for discussion.

During this factor identification work, all the discussions we have
been having in industry with people involved in configuration
software deployment, permit to conclude that load deployment
estimation is a main issue for companies that either provide or use
configuration software.

REFERENCES

[1] Gartner Group. Supercharge the Sales Effort: Sales Application for
Large Enterprise, Strategic Report Analysis n° R-14-4280, Gartner
Research, September 2001.

[2] M. Aldanondo, S. Rougé and M. Veron, Expert Configurator for
Concurrent Engineering: Cameleon Software and Model, Special
Issue: Production Systems Design and Control, Journal of Intelligent
Manufacturing, Vol. 11, n° 2, pp. 127-134, April 2000.

[3] H.A. Bashir and V. Thomson, A quantitative estimation methodology
for design project. IEPM 1999 conference, Vol 2 pp 198-506,
Glasgow UK, july 1999.

[4] A.T. Bahill and W.L. Chapman. Case studies in system design.
Workshop on system engineering and computer based system. pp 43-
50, Picataway NewJersey USA 1995.

[5] M. Aldanondo M., G. Moynard and K. Hadj-Hamou., General
configurator requirements and modeling elements, ECAI Workshop
on Configuration, Berlin, Germany, pp. 1-6, 2000.

[6] A. Felfering, G. Friedrich and D. Jannach, UML as domain specific
language for the construction of knowledge base configuration
system, 11th Int Software Engineering and Knowledge Engineering
conference, Kaserlautern, Germany, pp 337-345, 1999.

[7] A. Felfering, G.Friedrich, J. Dietmar and M. Stumptner, Exploiting
structural abstraction for consistency based diagnosis of large
configurator knowledge bases, ECAI Workshop on Configuration,
Berlin, Germany, pp 23-28, 2000.

[8] M. Sabin, M. and E.C. Freuder, Detecting and resolving
inconsistenciy and redundancy in conditional constraint satisfaction
problems, AAAI Workshop on Configuration, Orlando, USA, pp 90-
94, 1999.

[9] S. Mittal and B. Falkenhainer, Dynamic Constraint Satisfaction
Problems , 9th National Conference on Artificial Intelligence AAAI,
Boston, USA, pp 25-32, 1990.

[10] N. H. Mortensen, B. Yu, H.S. Skovgaard and U. Harlou, Conceputal
modeling of product families in configuration projects, ECAI
Workshop on Configuration, Berlin, Germany, pp. 68-73, 2000.

[11] D. Sabin and E.C. Freuder, Configuration as Composite Constraint
Satisfaction, Proceedings of the Artificial Intelligent and
Manufacturing Research Planning Workshop, AAAI Press, pp. 153-
16, 1996.

[12] M. Véron and M. Aldanondo, Yet another approach to CCSP for
configuration problem, ECAI Workshop on Configuration, Berlin
Germany, pp 59-62, 2000.

130

	09p02-Pargamin.pdf
	1 INTRODUCTION
	RENAULT’S BASIC CONFIGURATION REQUIREMENTS
	RENAULT VEHICLE DIVERSITY SPECIFICATION AND MODELLING
	PRINCIPLES OF RENAULT CONFIGURATION ENGINE C2G
	FILTERING ON A MAXIMUM PRICE
	
	
	6 RESTORING CONSISTENCY

	SUMMARY AND CONCLUSION
	REFERENCES

	09p02-Pargamin.pdf
	1 INTRODUCTION
	RENAULT’S BASIC CONFIGURATION REQUIREMENTS
	RENAULT VEHICLE DIVERSITY SPECIFICATION AND MODELLING
	PRINCIPLES OF RENAULT CONFIGURATION ENGINE C2G
	FILTERING ON A MAXIMUM PRICE
	
	
	6 RESTORING CONSISTENCY

	SUMMARY AND CONCLUSION
	REFERENCES

	22p14-Bensana.pdf
	INTRODUCTION
	NON ANALYTIC KNOWLEDGE
	Data collection
	Computer object code
	Proposed framework
	Generalization
	Knowledge characterization

	Approximation background
	Work orientation

	NEURAL NETWORKS
	Mathematical formulation for neural nets
	Definition of a neural network
	Neural nets for approximation
	Multi-Layers Perceptron
	Radial Basis Functions Neural Nets
	Adequation

	EXPERIMENTATION
	Evaluating neural-based approximation
	First experimentations
	Example
	Architecture of networks
	Learning algorithms
	Testing
	Preliminary results

	CONCLUSION

