X. Py, N. Calvet, R. Olives, P. Echegut, C. Bessada et al., THERMAL STORAGE FOR SOLAR POWER PLANTS BASED ON LOW COST RECYCLED MATERIAL, vol.3, issue.1

T. Fasquelle, Q. Falcoz, P. Neveu, F. Lecat, N. Boullet et al., Operating results of a thermocline thermal energy storage included in a parabolic trough mini power plant, AIP Conf. Proc, vol.1850, 2017.

, Technology Roadmap, IEA, p.52, 2014.

N. Calvet, Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system, Appl. Energy, vol.109, pp.387-393, 2013.

J. E. Pacheco, S. K. Showalter, and W. J. Kolb, Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants, J. Sol. Energy Eng, vol.124, issue.2, pp.153-159, 2002.

C. Xu, Z. Wang, Y. He, X. Li, and F. Bai, Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system, Appl. Energy, vol.92, pp.65-75, 2012.

A. M. Bonanos and E. V. Votyakov, Sensitivity analysis for thermocline thermal storage tank design, Renew. Energy, vol.99, pp.764-771, 2016.

S. Khare, M. Dell'amico, C. Knight, and S. Mcgarry, Selection of materials for high temperature sensible energy storage, Sol. Energy Mater. Sol. Cells, vol.115, pp.114-122, 2013.

X. Py, Recycled Material for Sensible Heat Based Thermal Energy Storage to be Used in Concentrated Solar Thermal Power Plants, J. Sol. Energy Eng, vol.133, issue.3, p.31008, 2011.

R. L. Virta, Worldwide Asbestos Supply and Consumption Trends from, vol.34, 1900.

A. Gutierrez, Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials, Renew. Sustain. Energy Rev, vol.59, pp.763-783, 2016.

L. D. Maxim, Asbestos: Risk Assessment, Epidemiology, and Health Effects, Int. J. Toxicol, vol.25, issue.2, pp.139-141, 2006.

E. Gomez, D. A. Rani, C. R. Cheeseman, D. Deegan, M. Wise et al., Thermal plasma technology for the treatment of wastes: A critical review, J. Hazard. Mater, vol.161, issue.2-3, pp.614-626, 2009.

Y. Lalau, X. Py, A. Meffre, and R. Olives, Comparative LCA Between Current and Alternative Waste-Based TES for CSP, Waste and Biomass Valorization, vol.7, issue.6, pp.1509-1519, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01462303

N. Pfleger, T. Bauer, C. Martin, M. Eck, and A. Wörner, Thermal energy storage-overview and specific insight into nitrate salts for sensible and latent heat storage, pp.1487-1497, 2015.

T. Fasquelle, Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l ' école doctorale Energie Environnement ED 305 PROMES-CNRS UPR 8521 Spécialité : Sciences de l ' Ingénieur-Énergétique et Génie des Procédés MODELISATION ET CARACTERISATION EXPERIMENT, 2017.

R. Tiskatine, Suitability and characteristics of rocks for sensible heat storage in CSP plants, Sol. Energy Mater. Sol. Cells, vol.169, pp.245-257, 2017.

T. Fasquelle, Q. Falcoz, P. Neveu, J. Walker, and G. Flamant, Compatibility Study Between Synthetic Oil and Vitrified Wastes for Direct Thermal Energy Storage, Waste and Biomass Valorization, vol.8, issue.3, pp.621-631, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01887776

J. Felinks, Particle-particle heat transfer coefficient in a binary packed bed of alumina and zirconia-ceria particles, Appl. Therm. Eng, vol.101, pp.101-111, 2016.

T. Esence, A. Bruch, S. Molina, B. Stutz, and J. F. Fourmigué, A review on experience feedback and numerical modeling of packed-bed thermal energy storage systems, Sol. Energy, vol.153, pp.628-654, 2017.

Z. S. Chang, X. Li, C. Xu, C. Chang, and Z. F. Wang, The design and numerical study of a 2MWh molten salt thermocline tank, vol.69, pp.779-789, 2015.

F. Motte, S. L. Bugler-lamb, Q. Falcoz, and X. Py, Numerical study of a structured thermocline storage tank using vitrified waste as filler material, Energy Procedia, vol.49, pp.935-944, 2013.

P. Auerkari, Mechanical and physical properties of engineering alumina ceramics, 1996.

M. Munro, Evaluated Material Properties for a Sintered alpha-Alumina, J. Am. Ceram. Soc, vol.80, issue.8, pp.1919-1928, 2005.

H. Agalit, N. Zari, M. Maalmi, and M. Maaroufi, Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants, Sol. Energy, vol.122, pp.603-616, 2015.

R. Meffre, X. Olives, C. Py, P. Bessada, U. Echegut et al., Design and Industrial Elaboration of Thermal Energy Storage Units Made of Recycled Vitrified Industrial Wastes, Energy Syst. Anal. Thermodyn. Sustain. Combust. Sci. Eng. Nanoeng. Energy, Parts A B, vol.4, pp.757-762, 2011.

A. Jeanjean, R. Olives, and X. Py, Selection criteria of thermal mass materials for low-energy building construction applied to conventional and alternative materials, Energy Build, vol.63, pp.36-48, 2013.

T. Fasquelle, Q. Falcoz, P. Neveu, and J. F. Hoffmann, A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants, Appl. Energy, vol.212, pp.1153-1164, 2018.

C. Mira-hernández, S. M. Flueckiger, and S. V. Garimella, Numerical Simulation of Single-and Dual-media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants, Energy Procedia, vol.49, pp.916-926, 2014.