P. Diez and G. Calderon, Remeshing criteria and proper error representations for goal oriented h-adaptivity, Comput Methods Appl Mech Engrg, vol.196, issue.4-6, pp.719-733, 2007.

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput Methods Appl Mech Engrg, vol.142, issue.1-2, pp.1-88, 1997.
DOI : 10.1002/9781118032824

R. Verfurth, A review of a posteriori error estimation techniques for elasticity problems, Comput Methods Appl Mech Engrg, vol.176, issue.1-4, pp.419-440, 1999.

S. H. Lo, Volume discretization into tetrahedra-1. Verification and orientation of boundary surfaces, Comput Struct, vol.39, issue.5, pp.493-500, 1991.
DOI : 10.1016/0045-7949(91)90059-u

S. H. Lo, Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach, Comput Struct, vol.39, issue.5, pp.501-511, 1991.
DOI : 10.1016/0045-7949(91)90059-u

D. Dureisseix and H. Bavestrello, Information transfer between incompatible finite element meshes: application to coupled thermoviscoelasticity, Comput Methods Appl Mech Engrg, vol.85, pp.6523-6541, 2006.
DOI : 10.1016/j.cma.2006.02.003

URL : https://hal.archives-ouvertes.fr/hal-00141161

B. Zeramdini, C. Robert, G. Germain, and T. Pottier, Simulation of metal forming processes with a 3D adaptive remeshing procedure, 2016.
DOI : 10.1063/1.4963636

URL : https://hal.archives-ouvertes.fr/hal-01313283

A. Srikanth and N. Zabaras, Shape optimization and preform design in metal forming processes, Comput Methods Appl Mech Engrg, vol.190, pp.1859-1901, 2000.
DOI : 10.1016/s0045-7825(00)00213-9

S. Kumar, L. Fourment, and S. Guerdoux, Parallel, second-order and consistent remeshing transfer operators for evolving meshes, 2015.
DOI : 10.1016/j.finel.2014.09.002

URL : https://hal.archives-ouvertes.fr/hal-01143752

. Fig, The effect of mesh-distortion on the geometry of the workpiece with superconvergence property on surface and volume, Finite Elem Anal Des, vol.93, pp.70-84

D. Peric, C. Hochard, M. Dutko, and D. Owen, Transfer operators for evolving meshes in small strain elasto-placticity, Comput Methods Appl Mech Engrg, vol.137, issue.3-4, pp.331-344, 1996.

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element, Comput Methods Appl Mech Engrg, vol.101, issue.1-3, pp.207-224, 1992.
DOI : 10.1016/0045-7825(92)90023-d

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimation. Part I: the recovery technique, Internat J Numer Methods Engrg, vol.33, issue.7, pp.1331-1364, 1992.
DOI : 10.1002/nme.1620330702

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimation. Part II: error estimates and adaptivity, Internat J Numer Methods Engrg, vol.33, issue.7, pp.1365-1382, 1992.
DOI : 10.1002/nme.1620330702

I. Babu?ka and W. C. Rheinbildt, A posteriori error estimates for the finite element method, Internat J Numer Methods Engrg, vol.12, issue.10, pp.1597-1615, 1978.

P. Ladevèze, G. Coffignal, J. P. Pelle, Z. O. , G. J. Oliveira et al., Accuracy of elastoplastic and dynamic analysis, 11 Accuracy Estimates and Adaptive Refinements in Finite Element Computations, pp.181-203, 1986.

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int J Numer Methods Eng, vol.24, issue.2, pp.337-357, 1987.
DOI : 10.1002/nme.1620240206

P. Ladevèze and J. Pelle, Mastering calculation in linear and nonlinear mechanics, 2004.

R. Boussetta and L. Fourment, A posteriori error estimation and three-dimensional adaptive remeshing: application to error control of non-steady metal forming simulations, AIP Conf Proc, vol.712, pp.2246-2251, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00531233

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation, Comput Methods Appl Mech Engrg, vol.195, pp.6626-6645, 2006.
DOI : 10.1016/j.cma.2005.06.029

URL : https://hal.archives-ouvertes.fr/hal-00512775

P. Coorevits and E. Bellenger, Alternative mesh optimality criteria for h-adaptive finite element method, Finite Elem Anal Des, vol.40, pp.2195-1215, 2004.
DOI : 10.1016/j.finel.2003.08.007

P. Ciarlet, The finite element method for elliptic problems. North-Holland publishing company, vol.45, p.4, 1978.

A. R. Khoei, S. A. Gharehbaghi, A. R. Tabarraie, and A. Riahi, Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization, Appl Math Model, vol.31, issue.6, pp.983-1000, 2007.

I. Babu?ka, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj, and K. Copps, Validation of a posteriori error estimators by numerical approach, Int J Numer Methods Engrg, vol.37, issue.7, pp.1073-1123, 1994.

N. E. Wiberg, F. Abdulwahab, and S. Ziukas, Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions, Inter J for Numer Methods Engrg, vol.37, issue.20, pp.3417-3440, 1994.

T. Liszka and J. Orkisz, The finite differences method at arbitrary irregular grids and its application in applied machanics, Comput Struct, vol.11, issue.1-2, pp.83-95, 1980.

T. Liszka, An interpolation method for an irregular net of nodes, Int J Numer Methods Engrg, vol.20, issue.9, pp.1599-1612, 1984.

J. G. Cook and W. , A constitutive model and data for metals subjected to large strains high strain rates and high temperatures, 7th international symposium on Balistics pp, pp.541-547, 1983.

Y. Ayed, G. Germain, A. Ammar, and B. Furet, Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions, Int J Adv Manuf Technol, vol.90, pp.5-8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01391021

Y. Hu and M. F. Randolph, H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation, Comput Geotech, vol.23, issue.1-2, pp.61-83, 1998.