M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput Methods Appl Mech Engrg, vol.142, issue.1-2, pp.1-88, 1997.
DOI : 10.1002/9781118032824

R. Verfurth, A review of a posteriori error estimation techniques for elasticity problems, Comput Methods Appl Mech Engrg, vol.176, issue.1-4, pp.419-440, 1999.

S. H. Lo, Volume discretization into tetrahedra-1. Verification and orientation of boundary surfaces, Comput Struct, vol.39, issue.5, pp.493-500, 1991.
DOI : 10.1016/0045-7949(91)90059-u

S. H. Lo, Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach, Comput Struct, vol.39, issue.5, pp.501-511, 1991.
DOI : 10.1016/0045-7949(91)90059-u

D. Dureisseix and H. Bavestrello, Information transfer between incompatible finite element meshes: application to coupled thermoviscoelasticity, Comput Methods Appl Mech Engrg, vol.85, pp.6523-6541, 2006.
DOI : 10.1016/j.cma.2006.02.003

URL : https://hal.archives-ouvertes.fr/hal-00141161

B. Zeramdini, C. Robert, G. Germain, and T. Pottier, Simulation of metal forming processes with a 3D adaptive remeshing procedure, 2016.
DOI : 10.1063/1.4963636

URL : https://hal.archives-ouvertes.fr/hal-01313283

A. Srikanth and N. Zabaras, Shape optimization and preform design in metal forming processes, Comput Methods Appl Mech Engrg, vol.190, pp.1859-1901, 2000.
DOI : 10.1016/s0045-7825(00)00213-9

S. Kumar, L. Fourment, and S. Guerdoux, Parallel, second-order and consistent remeshing transfer operators for evolving meshes, 2015.
DOI : 10.1016/j.finel.2014.09.002

URL : https://hal.archives-ouvertes.fr/hal-01143752

. Fig, The effect of mesh-distortion on the geometry of the workpiece with superconvergence property on surface and volume, Finite Elem Anal Des, vol.93, pp.70-84

D. Peric, C. Hochard, M. Dutko, and D. Owen, Transfer operators for evolving meshes in small strain elasto-placticity, Comput Methods Appl Mech Engrg, vol.137, issue.3-4, pp.331-344, 1996.

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element, Comput Methods Appl Mech Engrg, vol.101, issue.1-3, pp.207-224, 1992.
DOI : 10.1016/0045-7825(92)90023-d

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimation. Part I: the recovery technique, Internat J Numer Methods Engrg, vol.33, issue.7, pp.1331-1364, 1992.
DOI : 10.1002/nme.1620330702

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimation. Part II: error estimates and adaptivity, Internat J Numer Methods Engrg, vol.33, issue.7, pp.1365-1382, 1992.
DOI : 10.1002/nme.1620330702

I. Babu?ka and W. C. Rheinbildt, A posteriori error estimates for the finite element method, Internat J Numer Methods Engrg, vol.12, issue.10, pp.1597-1615, 1978.

P. Ladevèze, G. Coffignal, J. P. Pelle, Z. O. , G. J. Oliveira et al., Accuracy of elastoplastic and dynamic analysis, 11 Accuracy Estimates and Adaptive Refinements in Finite Element Computations, pp.181-203, 1986.

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int J Numer Methods Eng, vol.24, issue.2, pp.337-357, 1987.
DOI : 10.1002/nme.1620240206

P. Ladevèze and J. Pelle, Mastering calculation in linear and nonlinear mechanics, 2004.

R. Boussetta and L. Fourment, A posteriori error estimation and three-dimensional adaptive remeshing: application to error control of non-steady metal forming simulations, AIP Conf Proc, vol.712, pp.2246-2251, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00531233

R. Boussetta, T. Coupez, and L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation, Comput Methods Appl Mech Engrg, vol.195, pp.6626-6645, 2006.
DOI : 10.1016/j.cma.2005.06.029

URL : https://hal.archives-ouvertes.fr/hal-00512775

P. Coorevits and E. Bellenger, Alternative mesh optimality criteria for h-adaptive finite element method, Finite Elem Anal Des, vol.40, pp.2195-1215, 2004.
DOI : 10.1016/j.finel.2003.08.007