S. Z. Abbas, V. Dupont, and T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al 2 O 3 catalyst in an adiabatic packed bed reactor, Int. J. Hydrog. Energy, vol.42, pp.2889-2903, 2017.

M. Abdollahifar, M. Haghighi, A. A. Babaluo, and S. K. Talkhoncheh, Sono-synthesis and characterization of bimetallic Ni-Co/Al 2 O 3 -MgO nanocatalyst: effects of metal content on catalytic properties and activity for hydrogen production via CO 2 reforming of CH 4, Ultrason. Sonochem, vol.31, pp.173-183, 2016.

B. Abdullah, N. A. Ghani, and D. N. Vo, Recent advances in dry reforming of methane over Ni-based catalysts, J. Clean. Prod, vol.162, pp.170-185, 2017.

, ADEME, 2014.

, All eger l'empreinte environnementale de la consommation des Français en 2030, ADEME, 2014.

. Air-liquide, , vol.16, 2018.

E. Akbari, S. M. Alavi, and M. Rezaei, Synthesis gas production over highly active and stable nanostructured Ni-MgO-Al 2 O 3 catalysts in dry reforming of methane: effects of Ni contents, Fuel, vol.194, pp.171-179, 2017.

A. Albarazi, P. Beaunier, and P. Da-costa, Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce 0.75 Zr 0.25 O 2 mixed oxide, Int. J. Hydrog. Energy, vol.38, issue.1, pp.127-139, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913348

A. S. Al-fatesh, Promotional effect of Gd over Ni/Y 2 O 3 catalyst used in dry reforming of CH 4 for H 2 production, Int. J. Hydrog. Energy, vol.42, issue.30, pp.18805-18816, 2017.

S. D. Angeli, G. Monteleone, A. Giaconia, and A. A. Lemonidou, State-of-the-art catalysts for CH 4 steam reforming at low temperature, Int. J. Hydrog. Energy, vol.39, pp.1979-1997, 2014.

H. Arandiyan, Y. Peng, C. Liu, H. Chang, and J. Li, Effects of noble metals doped on mesoporous LaAlNi mixed oxide catalyst and identification of carbon deposit for reforming CH 4 with CO 2, J. Chem. Technol. Biotechnol, vol.89, issue.3, pp.372-381, 2014.

M. D. Argyle and C. H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: a review, Catalysts, vol.5, issue.1, pp.145-269, 2015.

H. Ay and D. Uner, Dry reforming of methane over CeO 2 supported Ni, Co and Ni-Co catalysts, 2015.

, Appl. Catal. B Environ, vol.179, pp.128-138

B. V. Ayodele, M. R. Khan, S. S. Lam, and C. K. Cheng, Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: kinetic and mechanistic studies, Int. J. Hydrog. Energy, vol.41, issue.8, pp.4603-4615, 2016.

B. V. Ayodele, M. R. Khan, and C. K. Cheng, Greenhouse gases abatement by catalytic dry reforming of methane to syngas over samarium oxide-supported cobalt catalyst, Int. J. Environ. Sci. Technol, vol.14, issue.12, pp.2769-2782, 2017.

M. M. Barroso-quiroga and A. E. Castro-luna, Kinetic analysis of rate data for dry reforming of methane, Ind. Eng. Chem. Res, vol.46, pp.5265-5270, 2007.

M. M. Barroso-quiroga and A. E. Castro-luna, Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane, Int. J. Hydrog. Energy, vol.35, issue.11, pp.6052-6056, 2010.

M. Baysal, M. E. Gunay, and R. Yildirim, Decision tree analysis of past publications on catalytic steam reforming to develop heuristics for high performance: a statistical review, Int. J. Hydrog. Energy, vol.42, pp.243-254, 2017.

J. D. Bellido and E. M. Assaf, Effect of the Y 2 O 3 -ZrO 2 support composition on nickel catalyst evaluated in dry reforming of methane, Appl. Catal. A Gen, vol.352, pp.179-187, 2009.

W. Cai, L. Ye, L. Zhang, Y. Ren, B. Yue et al., Highly dispersed nickelcontaining mesoporous silica with superior stability in carbon dioxide reforming of methane: the effect of anchoring, Mater, vol.7, issue.3, pp.2340-2355, 2014.

Y. Cao, H. Li, J. Zhang, L. Shi, and D. Zhang, and Pr) on NiMgAl catalysts for dry reforming of methane, RSC Adv, vol.6, issue.113, pp.112215-112225, 2016.

N. D. Charisiou, G. Siakavelas, K. N. Papageridis, A. Baklavaridis, L. Tzounis et al., Syngas production via the biogas dry reforming reaction over nickel supported on modified with CeO 2 and/or La 2 O 3 alumina catalysts, J. Nat. Gas Sci. Eng, vol.31, pp.164-183, 2016.

W. H. Chen, M. R. Lin, T. L. Jiang, and M. H. Chen, Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions, Int. J. Hydrog. Energy, vol.33, pp.6644-6656, 2008.

A. R. De-la-osa, A. De-lucas, A. Romero, J. L. Valverde, and P. Sánchez, Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst, Int. J. Hydrog. Energy, vol.36, issue.16, pp.9673-9684, 2011.

P. Djinovi-c and A. Pintar, Stable and selective syngas production from dry CH 4 -CO 2 streams over supported bimetallic transition metal catalysts, Appl. Catal. B Environ, vol.206, pp.675-682, 2017.

N. D. Factsage, , 2018.

P. Ferreira-aparicio and M. J. Benito, New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers, Catal. Rev, vol.47, pp.491-588, 2005.

S. Y. Foo, C. K. Cheng, T. H. Nguyen, and A. A. Adesina, Kinetic study of methane CO 2 reforming on Co-Ni/Al 2 O 3 and Ce-Co-Ni/Al 2 O 3 catalysts, Catal. Today, vol.164, issue.1, pp.221-226, 2011.

A. Fouskas, M. Kollia, A. Kambolis, C. Papadopoulou, and H. Matralis, Boron-modified Ni/ Al 2 O 3 catalysts for reduced carbon deposition during dry reforming of methane, Appl. Catal. A Gen, vol.474, pp.125-134, 2014.

X. Fu, H. Su, W. Yin, Y. Huang, and X. Gu, Bimetallic molybdenum nitride Co 3 Mo 3 N: a new promising catalyst for CO 2 reforming of methane, Cat. Sci. Technol, vol.7, issue.8, pp.1671-1678, 2017.

J. M. García-vargas, J. L. Valverde, F. Dorado, and P. Sánchez, Influence of the support on the catalytic behaviour of Ni catalysts for the dry reforming reaction and the tri-reforming process, J. Mol. Catal. A Chem, vol.395, pp.108-116, 2014.

J. M. Garcia-vargas, J. L. Valverde, J. Diez, F. Dorado, and P. Sanchez, Catalytic and kinetic analysis of the methane tri-reforming over a Ni-Mg/?-SiC catalyst, Int. J. Hydrog. Energy, vol.40, pp.8677-8687, 2015.

T. D. Gould, M. M. Montemore, A. M. Lubers, L. D. Ellis, A. W. Weimer et al., Enhanced dry reforming of methane on Ni and Ni-Pt catalysts synthesized by atomic layer deposition, Appl. Catal. A Gen, vol.492, pp.107-116, 2015.

N. Habibi, Y. Wang, H. Arandiyan, and M. Rezaei, Biogas reforming for hydrogen production: a new path to high-performance of Ni/MgAl 2 O 4 spinel catalysts, ChemCatChem, vol.8, issue.23, pp.3600-3610, 2016.

N. Habibi, Y. Wang, H. Arandiyan, and M. Rezaei, Effect of substitution by Ni in MgAl 2 O 4 spinel for biogas dry reforming, Int. J. Hydrog. Energy, vol.42, issue.38, pp.24159-24168, 2017.

, IEA bioenergy, task 37-energy from biogas and landfill gas, IEA, 2017. IEA, renewables 2017, 2009.

K. Jabbour, N. El-hassan, S. Casale, J. Estephane, and H. El-zakhem, Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane, Int. J. Hydrog. Energy, vol.39, issue.15, pp.7780-7787, 2014.

H. Jiang, H. Li, H. Xu, and Y. Zhang, Preparation of Ni/Mg x Ti 1À x O catalysts and investigation on their stability in tri-reforming of methane, Fuel Process. Technol, vol.88, issue.10, pp.988-995, 2007.

G. Jones, J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson et al., First principles calculations and experimental insight into methane steam reforming over transition metal catalysts, J. Catal, vol.259, issue.1, pp.147-160, 2008.

Y. Kathiraser, U. Oemar, E. T. Saw, Z. Li, and S. Kawi, Kinetic and mechanistic aspects for CO 2 reforming of methane over Ni based catalysts, Chem. Eng. J, vol.278, pp.62-78, 2015.

T. L. Levalley, A. R. Richard, and M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies-a review, Int. J. Hydrog. Energy, vol.39, pp.16983-17000, 2014.

X. Li, D. Li, H. Tian, L. Zeng, Z. J. Zhao et al., Dry reforming of methane over Ni/La 2 O 3 nanorod catalysts with stabilized Ni nanoparticles, Appl. Catal. B Environ, vol.202, pp.683-694, 2017.

D. R. Lide, Handbook of Chemistry and Physics, 2003.

K. Liu, C. Song, and V. Subramani, Hydrogen and Syngas Production and Purification Technologies, 2010.

Y. Lou, M. Steib, Q. Zhang, K. Tiefenbacher, A. Horváth et al., Design of stable Ni/ZrO 2 catalysts for dry reforming of methane, J. Catal, vol.356, pp.147-156, 2017.

Q. Ma, J. Sun, X. Gao, J. Zhang, T. Zhao et al., Ordered mesoporous alumina-supported bimetallic Pd-Ni catalysts for methane dry reforming reaction, Cat. Sci. Technol, vol.6, issue.17, pp.6542-6550, 2016.

L. J. Maciel, A. E. De-souza, V. O. Cavalcanti-filho, A. Knoechelmann, and C. A. De-abreu, Kinetic evaluation of the tri-reforming process of methane for syngas production, React. Kinet. Mech. Catal, vol.101, issue.2, pp.407-416, 2010.

E. G. Mahoney, J. M. Pusel, S. M. Stagg-williams, and S. Faraji, The effects of Pt addition to supported Ni catalysts on dry (CO 2 ) reforming of methane to syngas, J. CO 2 Util, vol.6, pp.40-44, 2014.

A. J. Majewski and J. Wood, Tri-reforming of methane over Ni@SiO 2 catalyst, Int. J. Hydrog. Energy, vol.39, issue.24, pp.12578-12585, 2014.

V. N. Nguyen, L. Blum, and R. Peters, Operational behavior and reforming kinetics over Ni/YSZ of a planar type pre-reformer for SOFC systems, Int. J. Hydrog. Energy, vol.39, pp.7131-7141, 2014.

V. N. Nguyen, R. Deja, R. Peters, and L. Blum, Methane/steam global reforming kinetics over the Ni/YSZ of planar pre-reformers for SOFC systems, Chem. Eng. J, vol.292, pp.113-122, 2016.

O. Omoregbe, H. T. Danh, S. Z. Abidin, H. D. Setiabudi, B. Abdullah et al., Influence of lanthanide promoters on Ni/SBA-15 catalysts for syngas production by methane dry reforming, Procedia Eng, vol.148, pp.1388-1395, 2016.

O. Omoregbe, H. Danh, C. Nguyen-huy, H. Setiabudi, S. Abidin et al., Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters, Int. J. Hydrog. Energy, vol.42, issue.16, pp.11283-11294, 2017.

O. U. Osazuwa, H. D. Setiabudi, S. Abdullah, and C. K. Cheng, Syngas production from methane dry reforming over SmCoO 3 perovskite catalyst: kinetics and mechanistic studies, Int. J. Hydrog. Energy, vol.42, issue.15, pp.9707-9721, 2017.
DOI : 10.1016/j.ijhydene.2017.03.061

?. Ozkara-ayd?nog-?lu and A. E. Aksoylu, A comparative study on the kinetics of carbon dioxide reforming of methane over Pt-Ni/Al 2 O 3 catalyst: effect of Pt/Ni ratio, Chem. Eng. J, vol.215, pp.542-549, 2013.

D. Pakhare and J. Spivey, A review of dry (CO 2 ) reforming of methane over noble metal catalysts, Chem. Soc. Rev, vol.43, issue.22, pp.7813-7837, 2014.

N. A. Pechimuthu, K. K. Pant, S. C. Dhingra, and R. Bhalla, Characterization and activity of K, CeO 2 , and Mn promoted Ni/Al 2 O 3 catalysts for carbon dioxide reforming of methane, Ind. Eng. Chem. Res, vol.45, issue.22, pp.7435-7443, 2006.

C. Pichas, P. Pomonis, D. Petrakis, and A. Ladavos, Kinetic study of the catalytic dry reforming of CH 4 with CO 2 over La 2À x Sr x NiO 4 perovskite-type oxides, Appl. Catal. A Gen, vol.386, issue.1, pp.116-123, 2010.

L. Pino, A. Vita, `. Cipit?, `. Cipit?, F. Laganà et al., Hydrogen production by methane trireforming process over Ni-ceria catalysts: effect of La-doping, Appl. Catal. B Environ, vol.104, pp.64-73, 2011.

L. Pino, A. Vita, M. Laganà, and V. Recupero, Hydrogen from biogas: catalytic tri-reforming process with Ni/LaCeO mixed oxides, Appl. Catal. B Environ, vol.148, pp.91-105, 2014.

L. Qian, Z. Ma, Y. Ren, H. Shi, B. Yue et al., Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH 4 reforming with CO 2, Fuel, vol.122, pp.47-53, 2014.

K. Ray, S. Sengupta, and G. Deo, Reforming and cracking of CH 4 over Al 2 O 3 supported Ni, Ni-Fe and Ni-Co catalysts, Fuel Process. Technol, vol.156, pp.195-203, 2017.

Z. Rong-jun, X. Guo-fu, L. Ming-feng, W. Yu, N. Hong et al., Effect of support on the performance of Ni-based catalyst in methane dry reforming, J. Fuel Chem. Technol, vol.43, issue.11, pp.1359-1365, 2015.

J. R. Rostrup-nielsen, Syngas in perspective, Catal. Today, vol.71, pp.243-247, 2002.

B. Sarkar, R. Goyal, C. Pendem, T. Sasaki, and R. Bal, Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of methane, J. Mol. Catal. A Chem, vol.424, pp.17-26, 2016.

K. Selvarajah, N. H. Phuc, B. Abdullah, F. Alenazey, and D. N. Vo, Syngas production from methane dry reforming over Ni/Al 2 O 3 catalyst, Res. Chem. Intermed, vol.42, issue.1, pp.269-288, 2016.

Y. T. Shah, F. R. Shamskar, F. Meshkani, and M. Rezaei, Preparation and characterization of ultrasoundassisted co-precipitated nanocrystalline La-, Ce-, Zr-promoted Ni-Al 2 O 3 catalysts for dry reforming reaction, J. CO 2 Util, vol.22, pp.124-134, 2017.

S. A. Singh and G. Madras, Sonochemical synthesis of Pt, Ru doped TiO 2 for methane reforming, Appl. Catal. A Gen, vol.518, pp.102-114, 2016.

R. K. Singha, S. Das, M. Pandey, S. Kumar, R. Bal et al., Ni nanocluster on modified CeO 2 -ZrO 2 nanoporous composite for tri-reforming of methane, Cat. Sci. Technol, vol.6, issue.19, pp.7122-7136, 2016.

S. A. Solov'ev, Y. V. Gubareni, Y. P. Kurilets, and S. N. Orlik, Tri-reforming of methane on structured Ni-containing catalysts, Theor. Exp. Chem, vol.48, issue.3, pp.199-205, 2012.

C. Song and W. Pan, Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H 2 /CO ratios, Catal. Today, vol.98, issue.4, pp.463-484, 2004.

M. A. Soria, C. Mateos-pedrero, P. Marín, S. Ordonez, A. Guerrero-ruiz et al., Kinetic analysis of the Ru/SiO 2 -catalyzed low temperature methane steam reforming, Appl. Catal. A Gen, pp.366-374, 2012.

M. I. Temkin, Advances in Catalysis, pp.173-291, 1979.

M. Usman, W. W. Daud, and H. F. Abbas, Dry reforming of methane: influence of process parameters-a review, Renew. Sust. Energ. Rev, vol.45, pp.710-744, 2015.

D. M. Walker, S. L. Pettit, J. T. Wolan, and J. N. Kuhn, Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce, Zr)O 2 catalysts, Appl. Catal. A Gen, vol.445, pp.61-68, 2012.

C. Wang, Y. Zhang, Y. Wang, and Y. Zhao, Comparative studies of non-noble metal modified mesoporous M-Ni-CaO-ZrO 2 (M ¼ Fe, Co, Cu) catalysts for simulated biogas dry reforming, Chin. J. Chem, vol.35, issue.1, pp.113-120, 2017.

N. Wang, X. Yu, Y. Wang, W. Chu, and M. Liu, A comparison study on methane dry reforming with carbon dioxide over LaNiO 3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier, Catal. Today, vol.212, pp.98-107, 2013.

N. Wang, Z. Xu, J. Deng, K. Shen, X. Yu et al., One-pot synthesis of ordered mesoporous NiCeAl oxide catalysts and a study of their performance in methane dry reforming, ChemCatChem, vol.6, issue.5, pp.1470-1480, 2014.

Y. Wang, L. Yao, S. Wang, D. Mao, and C. Hu, Low-temperature catalytic CO 2 dry reforming of methane on Ni-based catalysts: a review, Fuel Process. Technol, vol.169, pp.199-206, 2018.

J. Wei and E. Iglesia, Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts, J. Phys. Chem. B, vol.108, pp.7253-7262, 2004.

J. Wei and E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH 4 with CO 2 or H 2 O to form synthesis gas and carbon on nickel catalysts, J. Catal, vol.224, issue.2, pp.370-383, 2004.

T. Xie, X. Zhao, J. Zhang, L. Shi, and D. Zhang, Ni nanoparticles immobilized Ce-modified mesoporous silica via a novel sublimation-deposition strategy for catalytic reforming of methane with carbon dioxide, Int. J. Hydrog. Energy, vol.40, issue.31, pp.9685-9695, 2015.

J. Xu and G. Froment, Methane steam reforming, methanation and water-gas shift. 1. Intrinsic kinetics, AICHE J, vol.35, pp.88-96, 1989.

J. Xu and M. Saeys, First principles study of the coking resistance and the activity of a boron promoted Ni catalyst, Chem. Eng. Sci, vol.62, issue.18, pp.5039-5041, 2007.

L. Yao, M. E. Galvez, C. Hu, and P. Da-costa, Mo-promoted Ni/Al 2 O 3 catalyst for dry reforming of methane, Int. J. Hydrog. Energy, vol.42, issue.37, pp.23500-23507, 2017.

M. Zarei, F. Meshkani, and M. Rezaei, Preparation of mesoporous nanocrystalline Ni-MgAl 2 O 4 catalysts by sol-gel combustion method and its applications in dry reforming reaction, Adv. Powder Technol, vol.27, issue.5, pp.1963-1970, 2016.

M. Zeppieri, P. L. Villa, N. Verdone, M. Scarsella, and P. De-filippis, Kinetic of methane steam reforming reaction over nickel-and rhodium-based catalysts, Appl. Catal. A Gen, vol.387, pp.147-154, 2010.

L. Zhang, Q. Zhang, Y. Liu, and Y. Zhang, Dry reforming of methane over Ni/MgO-Al 2 O 3 catalysts prepared by two-step hydrothermal method, Appl. Surf. Sci, vol.389, pp.25-33, 2016.

S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane, ACS Catal, vol.3, issue.8, pp.1855-1864, 2013.

S. Zhang, C. Shi, B. Chen, Y. Zhang, Y. Zhu et al., Catalytic role of ?-Mo 2 C in DRM catalysts that contain Ni and Mo, Catal. Today, vol.258, pp.676-683, 2015.

H. Zou, S. Chen, J. Huang, and Z. Zhao, Effect of additives on the properties of nickel molybdenum carbides for the tri-reforming of methane, Int. J. Hydrog. Energy, vol.41, issue.38, pp.16842-16850, 2016.