U. Arena, Process and technological aspects of municipal solid waste gasification. A review, Waste Manag, vol.32, pp.625-639, 2012.

T. A. Milne, R. Evans, and N. Abatzoglou, Biomass Gasifier Tars: Their Nature, Formation and Conversion, 1998.

L. L. Coq and A. Duga, Syngas treatment unit for small scale gasification-application to IC engine gas quality requirement, J. Appl. Fluid Mech, vol.5, pp.95-103, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01423677

L. Burhenne and T. Aicher, Benzene removal over a fixed bed of wood char: the effect of pyrolysis temperature and activation with CO2 on the char reactivity, Fuel Process. Technol, vol.127, pp.140-148, 2014.

Z. , A. El-rub, E. A. Bramer, and G. Brem, Review of catalysts for tar elimination in biomass gasification processes, Ind. Eng. Chem. Res, vol.43, pp.6911-6919, 2004.

L. Devi, K. J. Ptasinski, and F. J. Janssen, Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar, Fuel Process. Technol, vol.86, pp.707-730, 2005.

P. J. Woolcock and R. C. Brown, A review of cleaning technologies for biomass-derived syngas, Biomass Bioenergy, vol.52, pp.54-84, 2013.

M. L. Valderrama-rios, A. M. González, E. E. Lora, and O. A. , Almazán del Olmo, Reduction of tar generated during biomass gasification: a review, Biomass Bioenergy, vol.108, pp.345-370, 2018.

A. Villot, Y. Gonthier, E. Gonze, A. Bernis, S. Ravel et al., Separation of particles from syngas at high-temperatures with an electrostatic precipitator, Separ. Purif. Technol, vol.92, pp.181-190, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01391512

S. A. Nair, A. J. Pemen, K. Yan, F. M. Van-gompel, H. E. Van-leuken et al., Tar removal from biomass-derived fuel gas by pulsed corona discharges, vol.84, pp.53-58, 2003.

Y. Shen, J. Wang, X. Ge, and M. Chen, By-products recycling for syngas cleanup in biomass pyrolysis-an overview, Renew. Sustain. Energy Rev, vol.59, pp.1246-1268, 2016.

Y. Shen and K. Yoshikawa, Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-a review, Renew. Sustain. Energy Rev, vol.21, pp.371-392, 2013.

S. Mani, J. R. Kastner, and A. Juneja, Catalytic decomposition of toluene using a biomass derived catalyst, Fuel Process. Technol, vol.114, pp.118-125, 2013.

Z. , A. El-rub, E. A. Bramer, and G. Brem, Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel, vol.87, pp.2243-2252, 2008.

Y. Shen, P. Zhao, Q. Shao, D. Ma, F. Takahashi et al., In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B Environ, pp.140-151, 2014.

L. Devi, K. J. Ptasinski, F. J. Janssen, S. V. Van-paasen, P. C. Bergman et al., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine, Renew. Energy, vol.30, pp.565-587, 2005.

G. Guan, G. Chen, Y. Kasai, E. W. Lim, X. Hao et al., Catalytic steam reforming of biomass tar over iron-or nickel-based catalyst supported on calcined scallop shell, Appl. Catal. B Environ, pp.159-168, 2012.

J. F. González, S. Román, G. Engo, J. M. Encinar, and G. Martínez, Reduction of tars by dolomite cracking during two-stage gasification of olive cake, Biomass Bioenergy, vol.35, pp.4324-4330, 2011.

D. A. Constantinou, J. L. Fierro, and A. M. Efstathiou, A comparative study of the steam reforming of phenol towards H 2 production over natural calcite, dolomite and olivine materials, Appl. Catal. B Environ, vol.95, pp.255-269, 2010.

M. F. Tennant and D. W. Mazyck, Steam-pyrolysis activation of wood char for superior odorant removal, Carbon, vol.41, issue.03, pp.211-213, 2003.

J. N. Kuhn, Z. Zhao, L. G. Felix, R. B. Slimane, C. W. Choi et al., Olivine catalysts for methane-and tar-steam reforming, Appl. Catal. B Environ, vol.81, pp.14-26, 2008.

M. Virginie, C. Courson, D. Niznansky, N. Chaoui, and A. Kiennemann, Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification, Appl. Catal. B Environ, vol.101, pp.90-100, 2010.

P. R. Buchireddy, R. M. Bricka, J. Rodriguez, and W. Holmes, Biomass gasification: catalytic removal of tars over zeolites and nickel supported zeolites, Energy Fuels, vol.24, pp.2707-2715, 2010.

M. Azhar-uddin, H. Tsuda, S. Wu, and E. Sasaoka, Catalytic decomposition of biomass tars with iron oxide catalysts, Fuel, vol.87, pp.451-459, 2008.

D. Sutton, B. Kelleher, and J. R. Ross, Review of literature on catalysts for biomass gasification, Fuel Process. Technol, vol.73, pp.155-173, 2001.

J. Chen, M. Tamura, Y. Nakagawa, K. Okumura, and K. Tomishige, Promoting effect of trace Pd on hydrotalcite-derived Ni/Mg/Al catalyst in oxidative steam reforming of biomass tar, Appl. Catal. B Environ, vol.179, pp.412-421, 2015.

S. J. Juutilainen, P. A. Simell, and A. O. Krause, Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas, Appl. Catal. B Environ, vol.62, pp.86-92, 2006.

S. Cheah, K. R. Gaston, Y. O. Parent, M. W. Jarvis, T. B. Vinzant et al., Nickel cerium olivine catalyst for catalytic gasification of biomass, Appl. Catal. B Environ, pp.34-45, 2013.

D. A. Constantinou, M. C. Álvarez-galván, J. L. Fierro, and A. M. Efstathiou, Low-temperature conversion of phenol into CO, CO2 and H2 by steam reforming over Lacontaining supported Rh catalysts, Appl. Catal. B Environ, pp.81-95, 2012.

L. Wang, Y. Hisada, M. Koike, D. Li, H. Watanabe et al., Catalyst property of Co-Fe alloy particles in the steam reforming of biomass tar and toluene, Appl. Catal. B Environ, pp.95-104, 2012.

K. Raveendran, A. Ganesh, and K. C. Khilar, Influence of mineral matter on biomass pyrolysis characteristics, Fuel, vol.74, issue.95, pp.80013-80021, 1995.

N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, Influence of char composition and inorganics on catalytic activity of char from biomass gasification, Fuel, vol.157, pp.37-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01611006

P. H. Blanco, C. Wu, J. A. Onwudili, and P. T. Williams, Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel, Appl. Catal. B Environ, pp.238-250, 2013.

J. Park, Y. Lee, and C. Ryu, Reduction of primary tar vapor from biomass by hot char particles in fixed bed gasification, Biomass Bioenergy, vol.90, pp.114-121, 2016.

D. Feng, Y. Zhao, Y. Zhang, Z. Zhang, L. Zhang et al., In-situ steam reforming of biomass tar over sawdust biochar in mild catalytic temperature, Biomass Bioenergy, vol.107, pp.261-270, 2017.

G. P. Assima, A. Paquet, and J. Lavoie, Utilization of MSW-derived Char for Catalytic Reforming of Tars and Light Hydrocarbons in the Primary Syngas Produced during Wood Chips and MSW-rdf Air Gasification, Waste Biomass Valorization, pp.1-20, 2017.

H. Liu, T. Chen, D. Chang, D. Chen, H. He et al., Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni, J. Mol. Catal. Chem, pp.304-310, 2012.

Z. Min, M. Asadullah, P. Yimsiri, S. Zhang, H. Wu et al., Catalytic reforming of tar during gasification. Part I. Steam reforming of biomass tar using ilmenite as a catalyst, Fuel, vol.90, pp.1847-1854, 2011.

J. Fermoso, F. Rubiera, and D. Chen, Sorption enhanced catalytic steam gasification process: a direct route from lignocellulosic biomass to high purity hydrogen, Energy Environ. Sci, vol.5, pp.6358-6367, 2012.

Y. Zhang, S. Kajitani, M. Ashizawa, and Y. Oki, Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace, Fuel, vol.89, pp.302-309, 2010.

S. Hosokai, K. Norinaga, T. Kimura, M. Nakano, C. Li et al., Reforming of volatiles from the biomass pyrolysis over charcoal in a sequence of coke deposition and steam gasification of coke, Energy Fuels, vol.25, pp.5387-5393, 2011.

A. V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy, vol.38, pp.68-94, 2012.

P. Gilbert, C. Ryu, V. Sharifi, and J. Swithenbank, Tar reduction in pyrolysis vapours from biomass over a hot char bed, Bioresour. Technol, vol.100, pp.6045-6051, 2009.

S. Liu, Y. Wang, R. Wu, X. Zeng, S. Gao et al., Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal, Energy Fuels, vol.1, pp.58-66, 2014.

F. Wang, S. Zhang, Z. Chen, C. Liu, and Y. Wang, Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal, J. Anal. Appl. Pyrolysis, vol.105, pp.269-275, 2014.

M. Ducousso, E. Weiss-hortala, A. Nzihou, and M. J. Castaldi, Reactivity enhancement of gasification biochars for catalytic applications, Fuel, vol.159, pp.491-499, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01609221

P. Lu, Q. Huang, Y. Chi, and J. Yan, Preparation of high catalytic activity biochar from biomass waste for tar conversion, J. Anal. Appl. Pyrolysis, vol.127, pp.47-56, 2017.

N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, Catalyst properties and catalytic performance of char from biomass gasification, Ind. Eng. Chem. Res, vol.51, pp.13113-13122, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01632400

S. Zhang, Y. Song, Y. C. Song, Q. Yi, L. Dong et al., An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: effects of inorganic species in char on the reforming of tars from wood and agricultural wastes, Fuel, vol.183, pp.177-184, 2016.

D. M. Keown, J. Hayashi, and C. Li, Drastic changes in biomass char structure and reactivity upon contact with steam, Fuel, vol.87, pp.1127-1132, 2008.

P. Fu, S. Hu, L. Sun, J. Xiang, T. Yang et al., Structural evolution of maize stalk/char particles during pyrolysis, Bioresour. Technol, vol.100, pp.4877-4883, 2009.

Z. Min, P. Yimsiri, M. Asadullah, S. Zhang, and C. Li, Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming, Fuel, vol.90, pp.2545-2552, 2011.

G. Yildiz, F. Ronsse, R. Venderbosch, R. Van-duren, S. R. Kersten et al., Effect of biomass ash in catalytic fast pyrolysis of pine wood, Appl. Catal. B Environ, pp.203-211, 2015.

O. Ma?ek, N. Sonoyama, E. Ohtsubo, S. Hosokai, C. Li et al., Examination of catalytic roles of inherent metallic species in steam reforming of nascent volatiles from the rapid pyrolysis of a brown coal, Fuel Process. Technol, vol.88, pp.179-185, 2007.

T. Sueyasu, T. Oike, A. Mori, S. Kudo, K. Norinaga et al., Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassiumloaded woody biomass, Energy Fuels, vol.26, pp.199-208, 2012.

D. Feng, Y. Zhao, Y. Zhang, S. Sun, S. Meng et al., Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H 2 O or CO 2, Chem. Eng. J, vol.306, pp.422-432, 2016.

P. Lu, X. Qian, Q. Huang, Y. Chi, and J. Yan, Catalytic cracking of toluene as a tar model compound using sewage-sludge-derived char, Energy Fuels, vol.30, pp.8327-8334, 2016.

E. Mura, O. Debono, A. Villot, and F. Paviet, Pyrolysis of biomass in a semi-industrial scale reactor: study of the fuel-nitrogen oxidation during combustion of volatiles, Biomass Bioenergy, vol.59, pp.187-194, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01391545

M. Molina-sabio, M. T. Gonzalez, F. Rodriguez-reinoso, and A. Sepúlveda-escribano, Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, Carbon, vol.34, issue.96, pp.6-7, 1996.

N. M. Nor, L. C. Lau, K. T. Lee, and A. R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-a review, J. Environ. Chem. Eng, vol.1, pp.658-666, 2013.

J. Zhou, Z. Sui, J. Zhu, P. Li, D. Chen et al., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon, vol.45, pp.785-796, 2007.

M. Hervy, S. Berhanu, E. Weiss-hortala, A. Chesnaud, C. Gérente et al., Multi-scale characterisation of chars mineral species for tar cracking, Fuel, vol.189, pp.88-97, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01391562

R. T. Downs, The RRUFF Project: an Integrated Study of the Chemistry, Crystallography, Raman and Infrared Spectroscopy of minerals., Program Abstr, Gen. Meet. Int. Mineral. Assoc. Kobe Jpn

W. Liu, F. Zeng, H. Jiang, and X. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Technol, vol.102, pp.8247-8252, 2011.

A. Dufour, A. Celzard, V. Fierro, E. Martin, F. Broust et al., Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas, Appl. Catal. Gen, vol.346, pp.164-173, 2008.

M. Hervy, D. Pham-minh, C. Gérente, E. Weiss-hortala, A. Nzihou et al., H 2 S removal from syngas using wastes pyrolysis chars, Chem. Eng. J, vol.334, pp.2179-2189, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01667285

C. Dupont, S. Jacob, K. O. Marrakchy, C. Hognon, M. Grateau et al., How inorganic elements of biomass influence char steam gasification kinetics, Energy, vol.109, pp.430-435, 2016.

F. Nestler, L. Burhenne, M. J. Amtenbrink, and T. Aicher, Catalytic decomposition of biomass tars: the impact of wood char surface characteristics on the catalytic performance for naphthalene removal, Fuel Process. Technol, vol.145, pp.31-41, 2016.

U. Arena and F. D. Gregorio, Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor, Energy, vol.68, pp.735-743, 2014.

P. Lahijani, Z. A. Zainal, M. Mohammadi, and A. R. Mohamed, Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: a review, Renew. Sustain. Energy Rev, vol.41, pp.615-632, 2015.

M. F. Pereira, J. J. Orfao, and J. L. Figueiredo, Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups, Appl. Catal. Gen, vol.184, pp.153-160, 1999.

S. Gomez-sanz, L. Mcmillan, J. Mcgregor, J. A. Zeitler, N. Al-yassir et al., A new perspective on catalytic dehydrogenation of ethylbenzene: the influence of side-reactions on catalytic performance, Catal Sci Technol, vol.5, pp.3782-3797, 2015.

Q. Chen and G. F. Froment, Thermal cracking of substituted aromatic hydrocarbons. II. Kinetic study of the thermal cracking of n-propylbenzene and ethylbenzene, J. Anal. Appl. Pyrolysis, vol.21, pp.51-77, 1991.

C. Hermann, P. Quicker, and R. Dittmeyer, Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor, J. Membr. Sci, vol.136, pp.81990-81994, 1997.

C. Hoang-van, B. L. Villemin, and S. J. Teichner, Hydrogenolysis of ethylbenzene over a supported nickel catalyst derived from nickel hydroaluminate, J. Catal, vol.105, pp.90074-90075, 1987.

S. Wang, G. Q. Lu, and G. J. Millar, Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art, Energy Fuels, vol.10, pp.896-904, 1996.

B. Vasconcelos, L. Zhao, P. Sharrock, A. Nzihou, and D. P. Minh, Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites, Appl. Surf. Sci, vol.390, pp.141-156, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01609114

T. S. Phan, A. R. Sane, B. Rêgo-de-vasconcelos, A. Nzihou, P. Sharrock et al., Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane, Appl. Catal. B Environ, vol.224, pp.310-321, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01630309

A. Schraut, G. Emig, and H. Sockel, Composition and structure of active coke in the oxydehydrogenation of ethylbenzene, Appl. Catal., A, vol.29, pp.82901-82903, 1987.

Y. Iwasawa, H. Nobe, and S. Ogasawara, Reaction mechanism for styrene synthesis over polynaphthoquinone, J. Catal, vol.31, pp.444-449, 1973.

X. Li and C. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII. Catalysis and changes in char structure during gasification in steam, Fuel, vol.85, pp.1518-1525, 2006.

D. P. Serrano, J. A. Botas, J. L. Fierro, R. Guil-lópez, P. Pizarro et al., Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials, Fuel, vol.89, pp.1241-1248, 2010.