Y. W. Huang, M. Q. Chen, and H. F. Luo, Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model, Chem Eng J, vol.298, pp.154-61, 2016.

M. Van-der-stelt, H. Gerhauser, J. Kiel, and K. J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: a review, Biomass Bioenergy, vol.35, issue.9, pp.3748-62, 2011.

D. Tapasvi, R. S. Kempegowda, K. Tran, Ø. Skreiberg, and M. Grnli, A simulation study on the torrefied biomass gasification, Energy Convers Manage, vol.90, pp.446-57, 2015.

D. R. Nhuchhen, P. Basu, and B. Acharya, A comprehensive review on biomass torrefaction, Research Gate, p.56, 2014.

A. Ohliger, M. Förster, and R. Kneer, Torrefaction of beechwood: a parametric study including heat of reaction and grindability, Fuel, vol.104, pp.607-620, 2013.

W. Guo, Self-heating and spontaneous combustion of wood pellets during storage, 2013.

P. Russo, D. Rosa, A. Mazzaro, and M. , Silo explosion from smoldering combustion: a case study, Can J Chem Eng, vol.95, issue.9, pp.1721-1730, 2017.

S. H. Larsson, T. A. Lestander, D. Crompton, S. Melin, and S. Sokhansanj, Temperature patterns in large scale wood pellet silo storage, Appl Energy, vol.92, pp.322-329, 2012.

A. Bradbury and F. Shafizadeh, Role of oxygen chemisorption in low-temperature ignition of cellulose, Combust. Flame, issue.80, pp.90073-90078

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling, Prog Energy Combust Sci, vol.29, issue.6, pp.487-513, 2003.

J. N. Carras and B. C. Young, Self-heating of coal and related materials: models, application and test methods, Prog Energy Combust Sci, vol.20, issue.1, pp.90004-90007, 1994.

D. Blasi, C. Branca, C. Sarnataro, F. E. Gallo, and A. , Thermal runaway in the pyrolysis of some lignocellulosic biomasses, Energy Fuels, vol.28, issue.4, pp.2684-96, 2014.

Á. Ramírez-gómez, Research needs on biomass characterization to prevent handling problems and hazards in industry, Part Sci Technol, vol.34, issue.4, pp.432-473, 2016.

W. Guo, K. Trischuk, X. Bi, C. J. Lim, and S. Sokhansanj, Measurements of wood pellets selfheating kinetic parameters using isothermal calorimetry, Biomass Bioenergy, vol.63, pp.1-9, 2014.

G. Cocchi, The relationship between thermal diffusivity, energy of activation and temperature rise in subcritical self heating of fuels in simple geometries, Fuel, vol.158, pp.816-841, 2015.

X. D. Chen, On basket heating methods for obtaining exothermic reactivity of solid materials, Process Saf Environ Prot, vol.77, issue.4, pp.187-92, 1999.

A. H. Mahmoudi, F. Hoffmann, M. Markovic, B. Peters, and G. Brem, Numerical modeling of self-heating and self-ignition in a packed-bed of biomass using XDEM, Combust Flame, vol.163, pp.358-69, 2016.

T. Luangwilai, H. S. Sidhu, and M. I. Nelson, One-dimensional spatial model for self-heating in compost piles: investigating effects of moisture and air flow, Food Bioprod Process, vol.108, pp.18-26, 2018.

M. Escudey, A. Arias, J. Förster, N. Moraga, C. Zambra et al., Sewage sludge selfheating and spontaneous combustion field, laboratory and numerical studies, High Temp Mater Process, vol.27, issue.5, pp.337-383, 2011.
DOI : 10.1515/htmp.2008.27.5.337

I. Larsson, A. Lönnermark, P. Blomqvist, and H. Persson, Measurement of self-heating potential of biomass pellets with isothermal calorimetry, Fire Mater, vol.41, issue.8, pp.1007-1022, 2017.

C. Ceballos, D. C. Hawboldt, K. Hellleur, and R. , Effect of production conditions on selfheating propensity of torrefied sawmill residues, Fuel, vol.160, pp.227-264, 2015.

V. Babrauskas, Ignition of wood: a review of the state of the art, J Fire Prot Eng, vol.12, issue.3, pp.163-89, 2002.

S. Cavagnol, J. F. Roesler, E. Sanz, W. Nastoll, P. Lu et al., Exothermicity in wood torrefaction and its impact on product mass yields: from micro to pilot scale, Can J Chem Eng, vol.93, issue.2, pp.331-340, 2015.
DOI : 10.1002/cjce.22128

URL : https://hal.archives-ouvertes.fr/hal-01128752

R. B. Bates and A. F. Ghoniem, Modeling kinetics-transport interactions during biomass torrefaction: the effects of temperature, particle size, and moisture content, Fuel, vol.137, pp.216-245, 2014.

P. Perré, R. Rémond, and I. Turner, A comprehensive dual-scale wood torrefaction model: application to the analysis of thermal run-away in industrial heat treatment processes, Int J Heat Mass Transf, vol.64, pp.838-887, 2013.

G. Torrent, J. , F. Anez, N. , M. Pejic et al., Assessment of self-ignition risks of solid biofuels by thermal analysis, Fuel, vol.143, pp.484-91, 2015.

P. Nordon, B. C. Young, and N. W. Bainbridge, The rate of oxidation of char and coal in relation to their tendency to self-heat, Fuel, vol.58, issue.6, pp.90086-90089, 1979.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Kinetic modeling of low-temperature oxidation of coal, Combust Flame, vol.131, issue.4, pp.416-425, 2002.

S. Krishnaswamy, R. D. Gunn, and P. K. Agarwal, Low-temperature oxidation of coal. 2. An experimental and modelling investigation using a fixed-bed isothermal flow reactor, Fuel, vol.75, issue.3, pp.177-185, 1996.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Experimental study on low-temperature oxidation of an australian coal, Energy Fuels, vol.13, issue.6, pp.1173-1182, 1999.
DOI : 10.1021/ef990040s

S. Krishnaswamy, S. Bhat, R. D. Gunn, and P. K. Agarwal, Low-temperature oxidation of coal. 1. A single-particle reaction-diffusion model, Fuel, vol.75, issue.3, pp.333-376, 1996.

H. Wang, B. Z. Dlugogorski, and E. M. Kennedy, Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures, Fuel, vol.81, issue.15, pp.122-131, 2002.
DOI : 10.1016/s0016-2361(02)00122-9

J. Deng, Y. Xiao, Q. Li, J. Lu, and H. Wen, Experimental studies of spontaneous combustion and anaerobic cooling of coal, Fuel, vol.157, pp.261-270, 2015.

H. Su, F. Zhou, J. Li, and H. Qi, Effects of oxygen supply on low-temperature oxidation of coal: a case study of Jurassic coal in Yima, China, Fuel, vol.202, pp.446-54, 2017.

B. Evangelista, P. Arlabosse, A. Govin, S. Salvador, O. Bonnefoy et al., Reactor scale study of self-heating and self-ignition of torrefied wood in contact with oxygen, Fuel, vol.214, pp.590-596, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01650705

K. Candelier, J. Dibdiakova, G. Volle, and P. Rousset, Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis, Thermochim Acta, vol.644, pp.33-42, 2016.

V. Pozzobon, G. Baud, S. Salvador, and G. Debenest, Darcy scale modeling of smoldering: impact of heat loss, Combust Sci Technol, vol.189, issue.2, pp.340-65, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619244

R. S. Miller and J. Bellan, Analysis of reaction products and conversion time in the pyrolysis of cellulose and wood particles, Combust Sci Technol, vol.119, issue.1-6, pp.331-73, 1996.

E. W. Lemmon and R. T. Jacobsen, Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air, Int J Thermophys, vol.25, issue.1, pp.21-69, 2004.

R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki, A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa, J Phys Chem Ref Data, vol.29, issue.6, pp.1361-433, 2000.

J. H. Keenan, J. Chao, and J. Kaye, Gas tables: International version. Gas tables: international version, 1983.

M. Chase, Nist-janaf thermochemical tables (journal of physical and chemical reference data monograph

M. Itay, C. R. Hill, and D. Glasser, A study of the low temperature oxidation of coal, Fuel Process Technol, vol.21, issue.2, pp.81-97, 1989.

R. Kaji, Y. Hishinuma, and Y. Nakamura, Low temperature oxidation of coals-a calorimetric study, Fuel, vol.66, issue.2, pp.154-161, 1987.

J. W. Cumming, Reactivity assessment of coals via a weighted mean activation energy, Fuel, vol.63, issue.10, pp.1436-1476, 1984.