A. Funke and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering, Biofuels, Bioproducts and Biorefining, vol.12, issue.2, pp.160-177, 2010.
DOI : 10.2172/82402

J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis, Biofuels, vol.3759, issue.1, pp.89-124, 2011.
DOI : 10.1039/b805671b

D. Basso, D. Castello, M. Baratieri, and L. Fiori, Hydrothermal carbonization of waste biomass: Progress report and prospects, Proceedings of the 21st European Biomass Conference and Exhibition, pp.3-7, 2013.

M. Volpe, J. L. Goldfarb, L. Fiori, R. Volpe, and L. Fiori, Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties, Bioresource Technology, vol.247, pp.310-318, 2018.
DOI : 10.1016/j.biortech.2017.09.072

C. Liu, X. Huang, and L. Kong, Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density, Energies, vol.104, issue.12, p.2094, 2017.
DOI : 10.1016/j.biombioe.2010.11.023

URL : http://www.mdpi.com/1996-1073/10/12/2094/pdf

C. Guizani, M. Jeguirim, S. Valin, L. Limousy, and S. Salvador, Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies, vol.10, p.796, 2017.
DOI : 10.3390/en10060796

URL : https://hal.archives-ouvertes.fr/hal-01619257

J. Cai, B. Li, C. Chen, J. Wang, M. Zhao et al., Hydrothermal carbonization of tobacco stalk for fuel application, Bioresource Technology, vol.220, pp.305-311, 2016.
DOI : 10.1016/j.biortech.2016.08.098

URL : https://doi.org/10.1016/j.biortech.2016.08.098

M. Mäkelä, C. W. Kwong, M. Broström, and K. Yoshikawa, Hydrothermal treatment of grape marc for solid fuel applications. Energy Convers, pp.371-377, 2017.

D. Basso, R. Pavanetto, and . Greenpeat, An innovative sustainable material recovered from waste, Procedia Environ. Sci. Eng. Manag, vol.4, pp.9-16, 2017.

C. W. Purnomo, D. Castello, and L. Fiori, Granular Activated Carbon from Grape Seeds Hydrothermal Char, Applied Sciences, vol.8, issue.3, p.331, 2018.
DOI : 10.1016/j.jenvman.2012.04.047

URL : https://doi.org/10.3390/app8030331

M. Volpe and L. Fiori, From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties, Journal of Analytical and Applied Pyrolysis, vol.124, pp.63-72, 2017.
DOI : 10.1016/j.jaap.2017.02.022

X. Xu and E. Jiang, Treatment of urban sludge by hydrothermal carbonization, Bioresource Technology, vol.238, issue.238, pp.182-187
DOI : 10.1016/j.biortech.2017.03.174

A. Food, Available online: http://faostat3.fao.org/home, United Nations Statistics Division (FAOE, 2015.

R. A. Muhlack, R. Potumarthi, and D. W. Jeffery, Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products, Waste Management, vol.72, pp.99-118, 2018.
DOI : 10.1016/j.wasman.2017.11.011

M. Lucian and L. Fiori, Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis, Energies, vol.28, issue.2, p.211, 2017.
DOI : 10.1007/BF00833405

URL : http://www.mdpi.com/1996-1073/10/2/211/pdf

L. Fiori and L. Florio, Gasification and Combustion of Grape Marc: Comparison Among Different Scenarios, Waste and Biomass Valorization, vol.34, issue.2, pp.191-200, 2010.
DOI : 10.1007/s12649-010-9025-7

R. Jordan, Ecorecycle Australian Report on Grape Marc Utilization?Cold Pressed Grape Seed Oil and Meal by the Cooperative Research Centre for International Food Manufacture and Packaging Science Available online, 2008.

K. R. Corbin, Y. S. Hsieh, N. S. Betts, C. S. Byrt, M. Henderson et al., Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification, Bioresource Technology, vol.193, pp.76-83, 2015.
DOI : 10.1016/j.biortech.2015.06.030

D. Basso, E. Hortala, F. Patuzzi, D. Castello, M. Baratieri et al., Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment, Bioresource Technology, vol.182, pp.217-224, 2015.
DOI : 10.1016/j.biortech.2015.01.118

URL : https://hal.archives-ouvertes.fr/hal-01769061

L. Fiori, D. Basso, D. Castello, and M. Baratieri, Hydrothermal carbonization of biomass: Design of a batch reactor and preliminary experimental results, Chem. Eng. Trans. 2014, vol.37, pp.55-60

H. P. Ruyter, Coalification model, Fuel, vol.61, issue.12, pp.1182-1187, 1982.
DOI : 10.1016/0016-2361(82)90017-5

N. Abatzoglou, E. Chornet, K. Belkacemi, and R. P. Overend, Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation, Chemical Engineering Science, vol.47, issue.5, pp.1109-1122, 1992.
DOI : 10.1016/0009-2509(92)80235-5

K. K. Janga, K. Oyaas, T. Hertzberg, and S. Moe, Application of a pseudo-kinetic generalized severity model to the concentrated sulfuric acid hydrolysis of pinewood and aspenwood, BioResources, vol.7, pp.2728-2741, 2012.

S. Kieseler, Y. Neubauer, and N. Zobel, Ultimate and Proximate Correlations for Estimating the Higher Heating Value of Hydrothermal Solids, Energy & Fuels, vol.27, issue.2, pp.908-918, 2013.
DOI : 10.1021/ef301752d

M. T. Reza, W. Yan, M. H. Uddin, J. G. Lynam, S. K. Hoekman et al., Reaction kinetics of hydrothermal carbonization of loblolly pine, Bioresource Technology, vol.139, pp.161-169, 2013.
DOI : 10.1016/j.biortech.2013.04.028

D. Forchheim, U. Hornung, A. Kruse, and T. Sutter, Kinetic Modelling of Hydrothermal Lignin Depolymerisation, Waste and Biomass Valorization, vol.25, issue.5, pp.985-994, 2014.
DOI : 10.1021/ef200803d

D. W. Van-krevelen, Graphical-statistical method for the study of structure and reaction processes of coal, Fuel, vol.29, pp.269-284, 1950.

A. Funke and F. Ziegler, Heat of reaction measurements for hydrothermal carbonization of biomass, Bioresource Technology, vol.102, issue.16, pp.7595-7598, 2011.
DOI : 10.1016/j.biortech.2011.05.016

H. N. Schafer, Factors affecting the equilibrium moisture contents of low-rank coals, Fuel, vol.51, issue.1, pp.4-9, 1972.
DOI : 10.1016/0016-2361(72)90029-4

M. Blaszò, E. Jakab, A. Vargha, T. Székely, H. Zoebel et al., The effect of hydrothermal treatment on Merseburg lignite, Fuel, vol.65, pp.337-341, 1986.

F. S. Lau, M. J. Roberts, D. M. Rue, D. V. Punwani, W. W. Wen et al., Peat beneficiation by wet carbonization, International Journal of Coal Geology, vol.8, issue.1-2, pp.111-121, 1987.
DOI : 10.1016/0166-5162(87)90026-7

M. Pala, I. C. Kantarli, H. B. Buyukisik, and J. Yanik, Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation, Bioresource Technology, vol.161, pp.255-262, 2014.
DOI : 10.1016/j.biortech.2014.03.052

L. Lu, T. Namioka, and K. Yoshikawa, Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes, Applied Energy, vol.88, issue.11, pp.3659-3664, 2011.
DOI : 10.1016/j.apenergy.2011.04.022

J. B. Müller and F. Vogel, Tar and coke formation during hydrothermal processing of glycerol and glucose. Influence of temperature, residence time and feed concentration, The Journal of Supercritical Fluids, vol.70, pp.126-136, 2012.
DOI : 10.1016/j.supflu.2012.06.016

S. K. Hoekman, A. Broch, L. Felix, and W. Farthing, Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder. Energy Convers, pp.247-259, 2017.
DOI : 10.1016/j.enconman.2016.12.035