C. , D. S. Chinnan, and M. S. , Biopolymer-based antimicrobial packaging: A review, Critical Reviews in Food Science and Nutrition, vol.44, p.223, 2004.

S. , J. D. Schauer, and C. L. , A review: Electrospinning of biopolymer nanofibers and their applications, Polymer Reviews, vol.48, p.317, 2008.

M. , T. Kao, and N. , PLA Based Biopolymer Reinforced with Natural Fibre: A Review, Journal of Polymers and the Environment, vol.19, p.714, 2011.

B. , P. K. Singh, I. Madaan, and J. , Development and characterization of PLA-based green composites: A review, Journal of Thermoplastic Composite Materials, vol.27, p.52, 2014.

T. , G. Faridi, N. Wang, P. Gogos, and C. G. , Polymeric Foams for Oral Drug Delivery-A Review, Plastics Engineering, vol.68, p.32, 2012.

J. , B. Kim, H. K. Cha, S. W. Lee, S. J. Han et al., Microcellular foam processing of biodegradable polymers ? review, International Journal of Precision Engineering and Manufacturing, vol.14, p.679, 2013.

S. , M. Fages, J. Common, A. Nikitine, C. Rodier et al., New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide, Progress in Polymer Science, vol.36, p.749, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01152908

W. , J. Zhu, W. L. Zhang, H. T. Park, and C. B. , Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chemical Engineering Science, vol.75, p.390, 2012.

M. , D. Kumar, and V. , Microcellular extrusion of PLA utilizing solid-state nucleation in the gassaturated pellet extrusion process, Journal of Applied Polymer Science, vol.127, p.1967, 2013.

A. Larsen and C. Neldin, Physical extruder foaming of poly(lactic acid)-processing and foam properties, Polymer Engineering & Science, vol.25, issue.5, p.941, 2013.
DOI : 10.1016/j.biomaterials.2003.10.023

L. , W. Wang, X. D. Li, H. Q. Du, Z. J. Zhang et al., Study on rheological and extrusion foaming behaviors of chain-extended poly (lactic acid)/clay nanocomposites, Journal of Cellular Plastics, vol.49, p.535, 2013.

R. , Q. , W. , J. J. Zhai, W. T. Su et al., Solid State Foaming of Poly(lactic acid) Blown with Compressed CO 2 : Influences of Long Chain Branching and Induced Crystallization on Foam Expansion and Cell Morphology, Industrial and Engineering Chemistry Research, vol.52, p.13411, 2013.

N. , C. Rodier, E. Sauceau, M. Letourneau, J. Fages et al., Controlling the structure of a porous polymer by coupling supercritical CO 2 and single screw extrusion process, Journal of Applied Polymer Science, vol.115, p.981, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01618294

C. , C. Rodier, E. Sauceau, M. Fages, and J. , Flow and mixing efficiency characterisation in a CO 2 -assisted single-screw extrusion process by residence time distribution using Raman spectroscopy, Chemical Engineering Research and Design, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01611624

S. , R. Wagner, and W. , A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, Journal of Physical and Chemical Reference Data, vol.25, p.1509, 1996.

M. , M. Huneault, M. A. Favis, B. D. Li, and H. , Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends, Macromolecular Bioscience, vol.7, p.907, 2007.

N. , H. E. Park, and C. , Strategies for achieving ultra low-density polypropylene foams, Polymer Engineering and Science, vol.42, p.1481, 2002.