J. Alvar, I. D. Vélez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis worldwide and global estimates of its incidence, PLoS One, vol.7, 2012.

A. Masmoudi, W. Hariz, S. Marrekchi, M. Amouri, and H. Turki, Old World cutaneous leishmaniasis: diagnosis and treatment, J Dermatol Case Rep, vol.7, pp.31-41, 2013.

G. F. Cota, D. Sousa, M. R. Fereguetti, T. O. Saleme, P. S. Alvarisa et al., The cure rate after placebo or no therapy in American cutaneous leishmaniasis: a systematic review and meta-analysis, PLoS One, vol.11, pp.1-15, 2016.

I. Kevric, M. A. Cappel, and J. H. Keeling, New World and Old World leishmania infections: a practical review, Dermatol Clin, vol.33, pp.579-593, 2015.

H. Iqbal, M. Ishfaq, A. Wahab, M. N. Abbas, I. Ahmad et al., Therapeutic modalities to combat leishmaniasis, a review, Asian Pacific J Trop Dis, vol.6, pp.60975-60981, 2016.

S. Sundar and J. Chakravarty, An update on pharmacotherapy for leishmaniasis, Expert Opin Pharmacother, vol.2, pp.237-252, 2015.

D. H. Kim, H. J. Chung, J. Bleys, and R. F. Ghohestani, Is paromomycin an effective and safe treatment against cutaneous leishmaniasis? A metaanalysis of 14 randomized controlled trials, PLoS Negl Trop Dis, vol.3, 2009.

B. Rethi and L. Eidsmo, Fasl and TRAIL signaling in the skin during cutaneous leishmaniasis: implications for tissue immunopathology and infectious control, Front Immunol, vol.3, pp.1-8, 2012.

J. D. Bos and M. M. Meinardi, The 500 Dalton rule for the skin penetration of chemical compounds and drugs, Exp Dermatol, vol.9, pp.165-169, 2000.

A. C. Williams and B. W. Barry, Penetration enhancers, Adv Drug Deliv Rev, vol.64, pp.128-137, 2012.

É. Ferreira-evasconcellos, F. Pimentel, M. I. , D. Oliveira-schubach, A. et al., Short report: Intralesional meglumine antimoniate for treatment of cutaneous leishmaniasis patients with contraindication to systemic therapy from Rio de Janeiro, Am J Trop Med Hyg, vol.87, pp.257-260, 2000.

V. M. Goyonlo, E. Vosoughi, B. Kiafar, Y. Nahidi, A. Momenzadeh et al., Efficacy of intralesional amphotericin B for the treatment of cutaneous leishmaniasis, Indian J Dermatol, vol.59, pp.631-636, 2014.

I. Esfandiarpour, S. Farajzadeh, Z. Rahnama, E. A. Fathabadi, and A. Heshmatkhah, Adverse effects of intralesional meglumine antimoniate and its influence on clinical laboratory parameters in the treatment of cutaneous leishmaniasis, Int J Dermatol, vol.51, pp.1221-1225, 2012.

S. Mushtaq, D. Dogra, and N. Dogra, Clinical response with intralesional amphotericin B in the treatment of Old World cutaneous leishmaniasis: a preliminary report, Dermatol Ther, vol.29, pp.398-405, 2016.

S. Ministério-da-saúde and . De-vigilância-em-saúde, Manual de vigilância da leishmaniose tegumentar recurso eletrônico. Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissívei, Sao Paolo, 2017.

Y. Wang, W. Qu, and S. H. Choi, FDA's regulatory science program for generic PLA/PLGA-based drug products, Am Pharm Rev, vol.19, pp.5-9, 2016.

S. Abadi, A. Moin, and G. H. Veerabhadrappa, Review article: fabricated microparticles: an innovative method to minimize the side effects of NSAIDs in arthritis, Crit Rev Ther Drug Carrier Syst, vol.33, pp.433-488, 2016.

M. Westphal, Z. Ram, V. Riddle, D. Hilt, and E. Bortey, Gliadel® wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial, Acta Neurochir, vol.148, pp.269-275, 2006.

M. D. Hornstein, E. S. Surrey, G. W. Weisberg, and L. A. Casino, Leuprolide acetate depot and hormonal add-back in endometriosis: a 12-month study. Lupron Add-Back Study Group, Obstet Gynecol, vol.91, pp.16-24, 1998.

W. V. Bobo and R. C. Shelton, Risperidone long-acting injectable (Risperdal Consta®) for maintenance treatment in patients with bipolar disorder, Expert Rev Neurother, vol.10, pp.1637-1658, 2010.

H. K. Makadia and S. Steve, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers (Basel), vol.3, pp.1377-1397, 2011.

N. Tajuddeen, M. B. Isah, M. A. Suleiman, F. R. Van-heerden, and M. A. Ibrahim, The chemotherapeutic potential of chalcones against leishmaniases: a review, Int J Antimicrob Agents, vol.2017, pp.1-28, 2017.

J. Piñero, R. M. Temporal, A. J. Silva-gonçalves, I. A. Jiménez, I. L. Bazzocchi et al., New administration model of trans-chalcone biodegradable polymers for the treatment of experimental leishmaniasis, Acta Trop, vol.98, pp.59-65, 2006.

E. C. Torres-santos, J. Rodrigues, D. L. Moreira, M. Kaplan, and B. Rossi-bergmann, Improvement of in vitro and in vivo antileishmanial activities of 2=,6=-dihydroxy-4=-methoxychalcone by entrapment in poly(D,L-lactide) nanoparticles, Antimicrob Agents Chemother, vol.43, pp.1776-1778, 1999.

P. Boeck, C. A. Bandeira-falcão, P. C. Leal, R. A. Yunes, V. C. Filho et al., Synthesis of chalcone analogues with increased antileishmanial activity, Bioorganic Med Chem, vol.14, pp.1538-1545, 2006.

N. J. Lapara and B. L. Kelly, Suppression of LPS-induced inflammatory responses in macrophages infected with leishmania, J Inflamm, vol.7, 2010.

M. Olivier, D. J. Gregory, and G. Forget, Subversion mechanisms by which leishmania parasites can escape the host immune response: a signaling point of view, Clin Microbiol Rev, vol.18, pp.293-305, 2005.

P. Balestieri, F. M. , P. Queiroz, A. R. Scavone, C. et al., Leishmania amazonensisinduced inhibition of nitric oxide synthesis in host macrophages, vol.4, pp.23-29, 2002.

Z. Nowakowska, A review of anti-infective and anti-inflammatory chalcones, Eur J Med Chem, vol.42, pp.125-137, 2007.

E. C. Torres-santos, D. L. Moreira, M. Kaplan, M. N. Meirelles, and B. Rossi-bergmann, Selective effect of 2=,6=-dihydroxy-4=-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis, Antimicrob Agents Chemother, vol.43, pp.1234-1241, 1999.

B. K. Lee, Y. Yun, and K. Park, PLA micro-and nanoparticles, Adv Drug Deliv Rev, vol.107, pp.176-191, 2016.

P. Pandey, D. Jain, and S. Chakraborty, Poly-lactic-co-glycolic acid (PLGA) copolymer and its pharmaceutical application, Handbook of polymers for pharmaceutical technologies, pp.151-172, 2016.

A. Navaei, M. Rasoolian, A. Momeni, S. Emami, and M. Rafienia, Doublewalled microspheres loaded with meglumine antimoniate: preparation, characterization, and in vitro release study, Drug Dev Ind Pharm, vol.40, pp.701-710, 2014.

A. A. Momeni, M. Rasoolian, A. Navaei, S. Emami, Z. Shaker et al., Development of liposomes loaded with antileishmanial drugs for the treatment of cutaneous leishmaniasis, J Liposome Res, vol.23, pp.134-144, 2013.

J. Champion, A. Walker, and S. Mitragotri, Role of particle size in phagocytosis of polymeric microspheres, Pharm Res, vol.25, pp.1815-1821, 2008.

M. Gaumet, A. Vargas, R. Gurny, and F. Delie, Nanoparticles for drug delivery: the need for precision in reporting particle size parameters, Eur J Pharm Biopharm, vol.69, pp.1-9, 2008.

E. Fröhlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, Int J Nanomed, vol.7, pp.5577-5591, 2012.

R. Nicolete, S. Dos, D. F. Faccioli, and L. H. , The uptake of PLGA microor nanoparticles by macrophages provokes distinct in vitro inflammatory response, Int Immunopharmacol, vol.11, pp.1557-1563, 2011.

P. M. Sivakumar, P. K. Prabhakar, and M. Doble, Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones, Med Chem Res, vol.20, pp.482-492, 2011.

F. Herencia, M. L. Ferrándiz, A. Ubeda, I. Guillén, J. N. Dominguez et al., Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages, FEBS Lett, vol.453, pp.707-710, 1999.

S. Prior, B. Gander, N. Blarer, H. P. Merkle, M. L. Subirá et al., In vitro phagocytosis and monocyte-macrophage activation with poly(lactide) and poly(lactide-co-glycolide) microspheres, Eur J Pharm Sci, vol.15, pp.197-207, 2002.

D. Da-neves, E. D. Caldas, and R. Sampaio, Antimony in plasma and skin of patients with cutaneous leishmaniasis: relationship with side effects after treatment with meglumine antimoniate, Trop Med Int Heal, vol.14, pp.1515-1522, 2009.

, Guide for the care and use of laboratory animals, National Academy of Sciences, 2011.

E. Martin, M. W. Simon, F. W. Schaefer, and A. J. Mukkada, Enzymes of carbohydrate metabolism in four human species of leishmania: a comparative survey, J Protozool, vol.23, pp.600-607, 1976.

D. S. Bredt and S. H. Snyder, Nitric oxide: a physiologic messenger molecule, Annu Rev Biochem, vol.63, pp.175-195, 1994.

H. C. Lima, J. A. Bleyenberg, and R. G. Titus, A simple method for quantifying leishmania in tissues of infected animals, Parasitol Today, vol.13, pp.80-82, 1997.

D. Cunha-júnior, E. F. Pacienza-lima, W. Ribeiro, G. A. Netto, C. D. Do-canto-cavalheiro et al., Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis, J Antimicrob Chemother, vol.66, pp.1555-1559, 2011.

T. Otsuka, H. Takagi, N. Horiguchi, M. Toyoda, K. Sato et al., CCl 4 -induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK2 overexpression, FEBS Lett, vol.532, pp.3714-3720, 2002.

, Single-Dose Treatment for Cutaneous Leishmaniasis Antimicrobial Agents and Chemotherapy