F. J. Heemstra, Software cost estimation, Inf Softw Technol, vol.34, issue.10, pp.627-666, 1992.

S. Laqrichi, F. Marmier, and D. Gourc, Toward an effort estimation model for information system project integrating risk. 22 nd ICPR, 2013.

A. Idri, Un modèle intelligent d'estimation des coûts de développement de logiciels, 2003.

B. W. Boehm, Software engineering economics, 1981.

S. Basha and D. Ponnurangam, Analysis of Empirical Software Effort Estimation Models, vol.7, pp.68-77, 2010.

. Kok-p-a.-m, D. Kitchenham, and D. J. Kirawkowski, The MERMAID Approach to software cost estimation. ESPRIT '90, pp.296-314, 1990.

P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, Software productivity and effort prediction with ordinal regression, Inf Softw Technol. 1 janv, vol.47, issue.1, pp.17-29, 2005.

S. S. Haykin, Neural Networks: A Comprehensive Foundation, 1999.

I. F. De-barcelos-tronto, D. Silva, J. Sant'anna, and N. , Comparison of artificial neural network and regression models in software effort estimation, pp.771-777, 2007.

A. Idri, T. M. Khoshgoftaar, and A. Abran, Can neural networks be easily interpreted in software cost estimation? IEEE, pp.1162-1167

A. Idri, A. Zakrani, and A. Zahi, Design of radial basis function neural networks for software effort estimation, IJCSI Int J Comput Sci Issues, vol.7, issue.4, 2010.

G. R. Finnie, G. E. Wittig, and J. Desharnais, A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models, J Syst Softw. déc, vol.39, issue.3, pp.281-289, 1997.

A. Heiat, Comparison of artificial neural network and regression models for estimating software development effort, Inf Softw Technol, vol.44, issue.15, pp.911-933, 2002.

S. Huang, N. Chiu, and Y. Liu, A comparative evaluation on the accuracies of software effort estimates from clustered data, Inf Softw Technol. août, vol.50, issue.9, pp.879-888, 2008.

A. M. Neto, L. Rittner, N. Leite, D. E. Zampieri, R. Lotufo et al., Pearson's Correlation Coefficient for Discarding Redundant Information in Real Time Autonomous Navigation System, IEEE Int Conf Control Appl, pp.426-431, 2007.

P. Refaeilzadeh, L. Tang, and H. Liu, Cross-Validation, Liu L, Özsu T, éditeurs. Encycl Database Syst

U. S. Springer, , pp.532-538, 2009.

G. Boetticher, An assessment of metric contribution in the construction of a neural network-based effort estimator, Second Int Work Soft Comput Appl Softw Eng Enschade NL, 2001.

B. Karlik and A. V. Olgac, Performance analysis of various activation functions in generalized MLP architectures of neural networks, Int J Artif Intell Expert Syst, vol.1, issue.4, pp.111-133, 2011.

S. Trenn, Multilayer perceptrons: approximation order and necessary number of hidden units, IEEE Trans Neural Networks Publ IEEE Neural Networks Counc. mai, vol.19, issue.5, pp.836-844, 2008.

F. Rosenblatt, Principles of neurodynamics: perceptrons and the theory of brain mechanisms, 1962.

S. D. Conte, Software Engineering Metrics and Models, 1986.

C. F. Kemerer, An empirical validation of software cost estimation models, Commun ACM, vol.30, issue.5, pp.416-445, 1987.

T. T. Moores, Developing a software size model for rule-based systems: a case study, Expert Syst Appl, vol.21, issue.4, pp.229-237, 2001.

S. Garavaglia and A. Sharma, A smart guide to dummy variables: four applications and a macro, Proc Northeast SAS Users Group Conf, 1998.

A. Gelman, T. Tjur, P. Mccullagh, J. Hox, and H. Hoijtink, Analysis of variance: Why it is more important than ever. Discussions. Author's reply, Ann Stat, vol.33, issue.1, pp.1-53

G. Boetticher and D. Eichmann, A neural network paradigm for characterizing reusable software, 1993.