H. F. Abbas and W. M. Daud, Hydrogen production by methane decomposition: A review, International Journal of Hydrogen Energy, vol.35, issue.3, pp.1160-1190, 2010.

Y. Li, D. Li, and G. Wang, Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts: A review, Catalysis Today, vol.162, issue.1, pp.1-48, 2011.

N. Muradov, Catalysis of methane decomposition over elemental carbon, Catalysis Communications, vol.2, issue.3-4, pp.89-94, 2001.

D. P. Serrano, J. Botas, J. L. Fierro, R. Guil-lópez, P. Pizarro et al., Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials, Fuel, vol.89, issue.6, pp.1241-1248, 2010.

S. Krzyzynski and M. Kozlowski, Activated carbons as catalysts for hydrogen production via methane decomposition, International Journal of Hydrogen Energy, vol.33, issue.21, pp.6172-6177, 2008.

Z. Bai, H. Chen, B. Li, and W. Li, Methane decomposition over Ni loaded activated carbon for hydrogen production and the formation of filamentous carbon, International Journal of Hydrogen Energy, vol.32, issue.1, pp.32-37, 2007.

J. Prasad, V. Dhand, V. Himabindu, and Y. Anjaneyulu, Production of hydrogen and carbon nanofibers through the decomposition of methane over activated carbon supported Ni catalysts, International Journal of Hydrogen Energy, vol.36, issue.18, pp.11702-11711, 2011.

N. Muradov, B. Fidalgo, A. C. Gujar, N. Garceau, and A. T-raissi, Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming, Biomass and Bioenergy, vol.42, pp.123-131, 2012.

N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, Catalyst Properties and Catalytic Performance of Char from Biomass Gasification, Industrial & Engineering Chemistry Research, vol.51, issue.40, pp.13113-13122, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01632400

. Dufour, V. Celzard, E. Fierro, F. Martin, . Broust et al., Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas, Applied Catalysis A: General, vol.346, issue.1-2, pp.164-173, 2008.

. Dufour, B. Celzard, F. Ouartassi, V. Broust, . Fierro et al., Effect of micropores diffusion on kinetics of CH4 decomposition over a wood-derived carbon catalyst, Applied Catalysis A: General, vol.360, issue.2, pp.120-125, 2009.

Y. Richardson, J. Blin, G. Volle, J. Motuzas, and A. Julbe, In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification, Applied Catalysis A: General, vol.382, issue.2, pp.220-230, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01701151

S. Hurley, H. Li, and C. C. Xu, Effects of impregnated metal ions on air/CO2-gasification of woody biomass, Bioresource technology, vol.101, issue.23, pp.9301-9308, 2010.

K. Bru, J. Blin, G. Julbe, and . Volle, Pyrolysis of metal impregnated biomass: An innovative catalytic way to produce gas fuel, Journal of Analytical and Applied Pyrolysis, vol.78, issue.2, pp.291-300, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165774

C. Guizani, J. E. Sanz, and S. Salvador, Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties, Fuel, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959129

D. Chen, K. Christensen, E. Ochoafernandez, Z. Yu, B. Totdal et al., Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition, Journal of Catalysis, vol.229, issue.1, pp.82-96, 2005.

Y. Kodama, K. Sato, K. Suzuki, Y. Saito, T. Suzuki et al., Electron microscope study of the formation of graphitic nanostructures in nickel-loaded wood char, Carbon, vol.50, issue.10, pp.3486-3496, 2012.

Y. Kameya and K. Hanamura, Carbon black texture evolution during catalytic methane decomposition, Carbon, vol.50, issue.10, pp.3503-3512, 2012.

Y. Kameya and K. Hanamura, Kinetic and Raman spectroscopic study on catalytic characteristics of carbon blacks in methane decomposition, Chemical Engineering Journal, vol.173, issue.2, pp.627-635, 2011.

J. Qiu, Y. Li, Y. Wang, C. Liang, T. Wang et al., A novel form of carbon micro-balls from coal, Carbon, vol.41, issue.4, pp.767-772, 2003.

I. Suelves, M. Lazaro, R. Moliner, B. Corbella, and J. Palacios, Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics, International Journal of Hydrogen Energy, vol.30, issue.15, pp.1555-1567, 2005.

A. M. Amin, E. Croiset, and W. Epling, Review of methane catalytic cracking for hydrogen production, International Journal of Hydrogen Energy, vol.36, issue.4, pp.2904-2935, 2011.

K. K. Lee, G. Y. Han, K. J. Yoon, and B. K. Lee, Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst, Catalysis Today, pp.81-86, 2004.

P. Larkin and P. Interpretation, No Title, p.227, 2011.

C. Pham-huu, R. Vieira, B. Louis, A. Carvalho, J. Amadou et al., About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst, Journal of Catalysis, vol.240, issue.2, pp.194-202, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00211503

L. Zhang, Z. Tan, S. Wang, and D. Wu, Combustion calorimetric and thermogravimetric studies of graphite and coals doped with a coal-burning additive, Thermochimica acta, vol.299, issue.97, pp.13-17, 1997.

B. R. Stanmore, S. Salvador, and J. Commandre, Reaction rates for the oxidation of highly sulphurised petroleum cokes&: the influence of thermogravimetric conditions and some coke properties q, Fuel, vol.82, pp.715-720, 2003.

C. and D. Blasi, Combustion and gasification rates of lignocellulosic chars, Progress in Energy and Combustion Science, vol.35, issue.2, pp.121-140, 2009.